Linear Algebra 2

Lecture #16

The orthogonal complement of a subspace. Orthogonal projection onto a subspace

Irena Penev

March 13, 2024

• This lecture has three parts:

- This lecture has three parts:
 - The orthogonal complement of a subspace

- This lecture has three parts:
 - The orthogonal complement of a subspace
 - Orthogonal projection onto a subspace

- This lecture has three parts:
 - The orthogonal complement of a subspace
 - Orthogonal projection onto a subspace
 - **(**) Orthogonal projection onto subspaces of \mathbb{R}^n

• The orthogonal complement of a subspace

The orthogonal complement of a subspace

Definition

Let *V* be a real or complex vector space *V*, equipped with a scalar product $\langle \cdot, \cdot \rangle$. For a set $A \subseteq V$,^{*a*} the *orthogonal complement* of *A*, denoted by A^{\perp} , is the set of all vectors in *V* that are orthogonal to *A*.

^aHere, A may or may not be a subspace of V.

• Thus, we have the following:

$$\begin{aligned} \mathsf{A}^{\perp} &= \{ \mathbf{v} \in V \mid \mathbf{v} \perp A \} \\ &= \{ \mathbf{v} \in V \mid \mathbf{v} \perp \mathbf{a} \ \forall \mathbf{a} \in A \} \\ &= \{ \mathbf{v} \in V \mid \langle \mathbf{v}, \mathbf{a} \rangle = 0 \ \forall \mathbf{a} \in A \} \end{aligned}$$

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $A, B \subseteq V$. Then

- (a) A^{\perp} is a subspace of $V;^a$
- () if $A \subseteq B$, then $A^{\perp} \supseteq B^{\perp}$.

^aNote that it is possible that $A = \emptyset$. In this case, we simply get that $A^{\perp} = V$. This is because every vector in V is (vacuously) orthogonal to every vector in the empty set.

Proof (outline).

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $A, B \subseteq V$. Then

- (a) A^{\perp} is a subspace of $V;^a$
- (a) if $A \subseteq B$, then $A^{\perp} \supseteq B^{\perp}$.

^aNote that it is possible that $A = \emptyset$. In this case, we simply get that $A^{\perp} = V$. This is because every vector in V is (vacuously) orthogonal to every vector in the empty set.

Proof (outline). For (a), we simply check that A^{\perp} contains **0** and is closed under vector addition and scalar multiplication (details: Lecture Notes).

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $A, B \subseteq V$. Then

- (a) A^{\perp} is a subspace of $V;^a$
- **(b)** if $A \subseteq B$, then $A^{\perp} \supseteq B^{\perp}$.

^aNote that it is possible that $A = \emptyset$. In this case, we simply get that $A^{\perp} = V$. This is because every vector in V is (vacuously) orthogonal to every vector in the empty set.

Proof (outline). For (a), we simply check that A^{\perp} contains **0** and is closed under vector addition and scalar multiplication (details: Lecture Notes).

Part (b) is "obvious": if $A \subseteq B$, then any vector that is orthogonal to every vector in B is, in particular, orthogonal to every vector in A. \Box

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in V$. Then $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}^{\perp} = \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)^{\perp}$.

Proof.

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in V$. Then $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}^{\perp} = \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)^{\perp}$.

Proof. Since $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\} \subseteq \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$, Prop. 6.4.1(b) guarantees that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}^{\perp} \supseteq \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)^{\perp}$.

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in V$. Then $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}^{\perp} = \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)^{\perp}$.

Proof. Since $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\} \subseteq \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$, Prop. 6.4.1(b) guarantees that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}^{\perp} \supseteq \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)^{\perp}$.

Let us prove the reverse inclusion.

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in V$. Then $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}^{\perp} = \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)^{\perp}$.

Proof. Since $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\} \subseteq \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$, Prop. 6.4.1(b) guarantees that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}^{\perp} \supseteq \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)^{\perp}$.

Let us prove the reverse inclusion. Fix $\mathbf{x} \in {\{\mathbf{u}_1, \dots, \mathbf{u}_k\}}^{\perp}$. WTS $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)^{\perp}$.

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in V$. Then $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}^{\perp} = \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)^{\perp}$.

Proof. Since $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\} \subseteq \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$, Prop. 6.4.1(b) guarantees that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}^{\perp} \supseteq \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)^{\perp}$.

Let us prove the reverse inclusion. Fix $\mathbf{x} \in {\{\mathbf{u}_1, \dots, \mathbf{u}_k\}}^{\perp}$. WTS $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)^{\perp}$. Fix $\mathbf{u} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$.

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in V$. Then $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}^{\perp} = \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)^{\perp}$.

Proof. Since $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\} \subseteq \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$, Prop. 6.4.1(b) guarantees that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}^{\perp} \supseteq \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)^{\perp}$.

Let us prove the reverse inclusion. Fix $\mathbf{x} \in {\{\mathbf{u}_1, \dots, \mathbf{u}_k\}}^{\perp}$. WTS $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)^{\perp}$. Fix $\mathbf{u} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$. Then there exist scalars $\alpha_1, \dots, \alpha_k$ s.t. $\mathbf{u} = \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k$.

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in V$. Then $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}^{\perp} = \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)^{\perp}$.

 $\begin{array}{l} \textit{Proof. Since } \{u_1, \ldots, u_k\} \subseteq \textsf{Span}(u_1, \ldots, u_k), \textit{ Prop. 6.4.1(b)} \\ \textit{guarantees that } \{u_1, \ldots, u_k\}^{\perp} \supseteq \textsf{Span}(u_1, \ldots, u_k)^{\perp}. \end{array}$

Let us prove the reverse inclusion. Fix $\mathbf{x} \in {\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}}^{\perp}$. WTS $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)^{\perp}$. Fix $\mathbf{u} \in \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$. Then there exist scalars $\alpha_1, \ldots, \alpha_k$ s.t. $\mathbf{u} = \alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k$. But now

$$\mathbf{u}, \mathbf{x} \rangle = \langle \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k, \mathbf{x} \rangle$$
$$= \alpha_1 \langle \mathbf{u}_1, \mathbf{x} \rangle + \dots + \alpha_k \langle \mathbf{u}_k, \mathbf{x} \rangle$$
$$\stackrel{(*)}{=} \alpha_1 \mathbf{0} + \dots + \alpha_k \mathbf{0} = \mathbf{0},$$

where (*) follows from the fact that $\mathbf{x} \in {\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}}^{\perp}$. This proves that $\mathbf{x} \perp \mathbf{u}$, and consequently, $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)^{\perp}$. \Box

Recall from subsection 3.1.3 of the Lecture Notes (last semester) that if V is a vector space over a field 𝔽, and U and W are subspaces of V, then

$$U + W := \{\mathbf{u} + \mathbf{w} \mid \mathbf{u} \in U, \ \mathbf{w} \in W\}$$

is a subspace of V.

• Moreover, recall from subsection 3.2.6 of the Lecture Notes that if V = U + W and $U \cap W = \{\mathbf{0}\}$, then we say that V is the *direct sum* of U and W, and we write $V = U \oplus W$.

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let U be a subspace of V. Then U^{\perp} is a subspace of V, and all the following hold:

- if {u₁,..., u_k} is an orthogonal basis of U, and {u₁,..., u_k, u_{k+1},..., u_n} is an extension of that basis to an orthogonal basis of V, then {u_{k+1},..., u_n} is an orthogonal basis of U[⊥];
- if {u₁,..., u_k} is an orthonormal basis of U, and {u₁,..., u_k, u_{k+1},..., u_n} is an extension of that basis to an orthonormal basis of V, then {u_{k+1},..., u_n} is an orthonormal basis of U[⊥];

$$\ \, (U^{\perp})^{\perp}=U;$$

 $\ \, {\boldsymbol{\mathbb O}} \quad {\boldsymbol V}={\boldsymbol U}\oplus{\boldsymbol U}^\perp, \text{ that is, } {\boldsymbol V}={\boldsymbol U}+{\boldsymbol U}^\perp \text{ and } {\boldsymbol U}\cap{\boldsymbol U}^\perp=\{{\boldsymbol 0}\};$

$${igsim}$$
 dim $(V)={
m dim}(U)+{
m dim}(U^{\perp}).$

Theorem 6.4.3

if {u₁,...,u_k} is an orthogonal basis of U, and {u₁,...,u_k, u_{k+1},...,u_n} is an extension of that basis to an orthogonal basis of V, then {u_{k+1},...,u_n} is an orthogonal basis of U[⊥];

Proof of (a).

Theorem 6.4.3

if {u₁,..., u_k} is an orthogonal basis of U, and {u₁,..., u_k, u_{k+1},..., u_n} is an extension of that basis to an orthogonal basis of V, then {u_{k+1},..., u_n} is an orthogonal basis of U[⊥];

Proof of (a). Assume that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of U, and that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an extension of that basis to an orthogonal basis of V. WTS $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an orthogonal basis of U^{\perp} .

Theorem 6.4.3

if {u₁,..., u_k} is an orthogonal basis of U, and {u₁,..., u_k, u_{k+1},..., u_n} is an extension of that basis to an orthogonal basis of V, then {u_{k+1},..., u_n} is an orthogonal basis of U[⊥];

Proof of (a). Assume that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of U, and that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an extension of that basis to an orthogonal basis of V. WTS $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an orthogonal basis of U^{\perp} . Clearly, $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an orthogonal set of vectors, and so it suffices to show that $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is in fact a basis of U^{\perp} .

Theorem 6.4.3

if {u₁,..., u_k} is an orthogonal basis of U, and {u₁,..., u_k, u_{k+1},..., u_n} is an extension of that basis to an orthogonal basis of V, then {u_{k+1},..., u_n} is an orthogonal basis of U[⊥];

Proof of (a). Assume that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of U, and that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an extension of that basis to an orthogonal basis of V. WTS $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an orthogonal basis of U^{\perp} . Clearly, $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an orthogonal set of vectors, and so it suffices to show that $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is in fact a basis of U^{\perp} . We already know that $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is linearly independent (because it is a subset of the basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ of V), and so we need only show that $Span(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n) = U^{\perp}$.

if {u₁,..., u_k} is an orthogonal basis of U, and {u₁,..., u_k, u_{k+1},..., u_n} is an extension of that basis to an orthogonal basis of V, then {u_{k+1},..., u_n} is an orthogonal basis of U[⊥];

Proof of (a) (cont.). Reminder: WTS Span $(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n) = U^{\perp}$.

if {u₁,..., u_k} is an orthogonal basis of U, and {u₁,..., u_k, u_{k+1},..., u_n} is an extension of that basis to an orthogonal basis of V, then {u_{k+1},..., u_n} is an orthogonal basis of U[⊥];

Proof of (a) (cont.). Reminder: WTS Span $(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n) = U^{\perp}$. We first prove that Span $(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n) \supseteq U^{\perp}$.

if {u₁,..., u_k} is an orthogonal basis of U, and {u₁,..., u_k, u_{k+1},..., u_n} is an extension of that basis to an orthogonal basis of V, then {u_{k+1},..., u_n} is an orthogonal basis of U[⊥];

Proof of (a) (cont.). Reminder: WTS Span $(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n) = U^{\perp}$. We first prove that Span $(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n) \supseteq U^{\perp}$. Fix $\mathbf{x} \in U^{\perp}$.

if {u₁,..., u_k} is an orthogonal basis of U, and {u₁,..., u_k, u_{k+1},..., u_n} is an extension of that basis to an orthogonal basis of V, then {u_{k+1},..., u_n} is an orthogonal basis of U[⊥];

Proof of (a) (cont.). Reminder: WTS Span $(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n) = U^{\perp}$. We first prove that Span $(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n) \supseteq U^{\perp}$. Fix $\mathbf{x} \in U^{\perp}$. Then

$$\mathbf{x} \stackrel{(*)}{=} \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i \stackrel{(**)}{=} \sum_{i=k+1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$$

where (*) follows from Theorem 6.3.5 (since $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an orthogonal basis of V) and (**) follows from the fact that $\mathbf{x} \in U^{\perp}$ and $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$, we so $\langle \mathbf{x}, \mathbf{u}_i \rangle = 0$ for all $i \in \{1, \ldots, k\}$.

if {u₁,...,u_k} is an orthogonal basis of U, and {u₁,...,u_k, u_{k+1},...,u_n} is an extension of that basis to an orthogonal basis of V, then {u_{k+1},...,u_n} is an orthogonal basis of U[⊥];

Proof of (a) (cont.). Reminder: WTS Span $(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n) = U^{\perp}$. We first prove that Span $(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n) \supseteq U^{\perp}$. Fix $\mathbf{x} \in U^{\perp}$. Then

$$\mathbf{x} \stackrel{(*)}{=} \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i \stackrel{(**)}{=} \sum_{i=k+1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$$

where (*) follows from Theorem 6.3.5 (since $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an orthogonal basis of V) and (**) follows from the fact that $\mathbf{x} \in U^{\perp}$ and $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$, we so $\langle \mathbf{x}, \mathbf{u}_i \rangle = 0$ for all $i \in \{1, \ldots, k\}$.

Thus, **x** is a linear combination of the vectors $\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$, and we deduce that $\mathbf{x} \in \text{Span}(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n)$.

if {u₁,..., u_k} is an orthogonal basis of U, and {u₁,..., u_k, u_{k+1},..., u_n} is an extension of that basis to an orthogonal basis of V, then {u_{k+1},..., u_n} is an orthogonal basis of U[⊥];

Proof of (a) (cont.). Reminder: WTS Span $(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n) = U^{\perp}$. We first prove that Span $(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n) \supseteq U^{\perp}$. Fix $\mathbf{x} \in U^{\perp}$. Then

$$\mathbf{x} \stackrel{(*)}{=} \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i \stackrel{(**)}{=} \sum_{i=k+1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$$

where (*) follows from Theorem 6.3.5 (since $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an orthogonal basis of V) and (**) follows from the fact that $\mathbf{x} \in U^{\perp}$ and $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$, we so $\langle \mathbf{x}, \mathbf{u}_i \rangle = 0$ for all $i \in \{1, \ldots, k\}$.

Thus, **x** is a linear combination of the vectors $\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$, and we deduce that $\mathbf{x} \in \text{Span}(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n)$. This proves that $\text{Span}(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n) \supseteq U^{\perp}$.

if {u₁,..., u_k} is an orthogonal basis of U, and {u₁,..., u_k, u_{k+1},..., u_n} is an extension of that basis to an orthogonal basis of V, then {u_{k+1},..., u_n} is an orthogonal basis of U[⊥];

Proof of (a) (cont.). Reminder: WTS Span $(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n) = U^{\perp}$. It remains to show that Span $(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n) \subseteq U^{\perp}$.

if {u₁,..., u_k} is an orthogonal basis of U, and {u₁,..., u_k, u_{k+1},..., u_n} is an extension of that basis to an orthogonal basis of V, then {u_{k+1},..., u_n} is an orthogonal basis of U[⊥];

Proof of (a) (cont.). Reminder: WTS $\text{Span}(\mathbf{u}_{k+1}, \dots, \mathbf{u}_n) = U^{\perp}$. It remains to show that $\text{Span}(\mathbf{u}_{k+1}, \dots, \mathbf{u}_n) \subseteq U^{\perp}$. Fix an arbitrary $\mathbf{x} \in \text{Span}(\mathbf{u}_{k+1}, \dots, \mathbf{u}_n)$. WTS $\mathbf{x} \in U^{\perp}$.

if {u₁,..., u_k} is an orthogonal basis of U, and {u₁,..., u_k, u_{k+1},..., u_n} is an extension of that basis to an orthogonal basis of V, then {u_{k+1},..., u_n} is an orthogonal basis of U[⊥];

Proof of (a) (cont.). Reminder: WTS Span($\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$) = U^{\perp} . It remains to show that Span($\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$) $\subseteq U^{\perp}$. Fix an arbitrary $\mathbf{x} \in \text{Span}(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n)$. WTS $\mathbf{x} \in U^{\perp}$. Fix scalars $\alpha_{k+1}, \ldots, \alpha_n$ such that

$$\mathbf{x} = \alpha_{k+1}\mathbf{u}_{k+1} + \cdots + \alpha_n\mathbf{u}_n.$$

if {u₁,..., u_k} is an orthogonal basis of U, and {u₁,..., u_k, u_{k+1},..., u_n} is an extension of that basis to an orthogonal basis of V, then {u_{k+1},..., u_n} is an orthogonal basis of U[⊥];

Proof of (a) (cont.). Reminder: WTS Span($\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$) = U^{\perp} . It remains to show that Span($\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$) $\subseteq U^{\perp}$. Fix an arbitrary $\mathbf{x} \in \text{Span}(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n)$. WTS $\mathbf{x} \in U^{\perp}$. Fix scalars $\alpha_{k+1}, \ldots, \alpha_n$ such that

$$\mathbf{x} = \alpha_{k+1}\mathbf{u}_{k+1} + \cdots + \alpha_n\mathbf{u}_n.$$

Fix any $\mathbf{u} \in U$; we must show that $\mathbf{x} \perp \mathbf{u}$. Since $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a basis of U, we know that there exist scalars $\alpha_1, \ldots, \alpha_k$ such that

$$\mathbf{u} = \alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k.$$

if {u₁,..., u_k} is an orthogonal basis of U, and {u₁,..., u_k, u_{k+1},..., u_n} is an extension of that basis to an orthogonal basis of V, then {u_{k+1},..., u_n} is an orthogonal basis of U[⊥];

Proof of (a) (cont.). Reminder: WTS Span($\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$) = U^{\perp} . It remains to show that Span($\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$) $\subseteq U^{\perp}$. Fix an arbitrary $\mathbf{x} \in \text{Span}(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n)$. WTS $\mathbf{x} \in U^{\perp}$. Fix scalars $\alpha_{k+1}, \ldots, \alpha_n$ such that

 $\mathbf{x} = \alpha_{k+1}\mathbf{u}_{k+1} + \dots + \alpha_n\mathbf{u}_n.$

Fix any $\mathbf{u} \in U$; we must show that $\mathbf{x} \perp \mathbf{u}$. Since $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a basis of U, we know that there exist scalars $\alpha_1, \ldots, \alpha_k$ such that

$$\mathbf{u} = \alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k.$$

Since $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\} \perp \{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$, it readily follows that $\mathbf{x} \perp \mathbf{u}$ (details: Lecture Notes), and we deduce that Span $(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n) \subseteq U^{\perp}$. This proves (a).

- if {u₁,..., u_k} is an orthogonal basis of U, and {u₁,..., u_k, u_{k+1},..., u_n} is an extension of that basis to an orthogonal basis of V, then {u_{k+1},..., u_n} is an orthogonal basis of U[⊥];
- if {u₁,...,u_k} is an orthonormal basis of U, and {u₁,...,u_k, u_{k+1},...,u_n} is an extension of that basis to an orthonormal basis of V, then {u_{k+1},...,u_n} is an orthonormal basis of U[⊥];

Proof of (b). Part (b) follows immediately from part (a).

(
$$U^{\perp})^{\perp}=U;$$

$${f 0}$$
 $V=U\oplus U^{ot}$, that is, $V=U+U^{ot}$ and $U\cap U^{ot}=\{{f 0}\};$

$$Im(V) = \dim(U) + \dim(U^{\perp}).$$

Proof (continued). It remains to prove (c), (d), and (e).

(
$$U^{\perp})^{\perp} = U;$$

$$\ \, {\color{black} 0} \quad V = U \oplus U^{\perp} \text{, that is, } \ V = U + U^{\perp} \text{ and } \ U \cap U^{\perp} = \{ {\color{black} 0} \};$$

• dim
$$(V)$$
 = dim (U) + dim (U^{\perp}) .

Proof (continued). It remains to prove (c), (d), and (e).

First, since V is finite-dimensional, so is U.

(
$$U^{\perp})^{\perp} = U;$$

$$Im(V) = \dim(U) + \dim(U^{\perp}).$$

Proof (continued). It remains to prove (c), (d), and (e).

First, since V is finite-dimensional, so is U. So, by Corollary 6.3.11(a), U has an orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$.

$$\ \, (U^{\perp})^{\perp}=U;$$

• dim
$$(V)$$
 = dim (U) + dim (U^{\perp}) .

Proof (continued). It remains to prove (c), (d), and (e).

First, since V is finite-dimensional, so is U. So, by Corollary 6.3.11(a), U has an orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$. By Corollary 6.3.11(b), the orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ of U can be extended to an orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ of V.

$$\ \, (U^{\perp})^{\perp}=U;$$

• dim
$$(V)$$
 = dim (U) + dim (U^{\perp}) .

Proof (continued). It remains to prove (c), (d), and (e).

First, since V is finite-dimensional, so is U. So, by Corollary 6.3.11(a), U has an orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$. By Corollary 6.3.11(b), the orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ of U can be extended to an orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ of V. By (a), $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an orthogonal basis of U^{\perp} .

$$(U^{\perp})^{\perp} = U;$$

• dim
$$(V)$$
 = dim (U) + dim (U^{\perp}) .

Proof (continued). It remains to prove (c), (d), and (e).

First, since V is finite-dimensional, so is U. So, by Corollary 6.3.11(a), U has an orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$. By Corollary 6.3.11(b), the orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ of U can be extended to an orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ of V. By (a), $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an orthogonal basis of U^{\perp} . But then $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n, \mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of V that extends $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$,

$$(U^{\perp})^{\perp} = U;$$

$$Im(V) = \dim(U) + \dim(U^{\perp}).$$

Proof (continued). It remains to prove (c), (d), and (e).

First, since V is finite-dimensional, so is U. So, by Corollary 6.3.11(a), U has an orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$. By Corollary 6.3.11(b), the orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ of U can be extended to an orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ of V. By (a), $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an orthogonal basis of U^{\perp} . But then $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n, \mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of V that extends $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$, and so by (a) applied to the vector space U^{\perp} , we have that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of $(U^{\perp})^{\perp}$.

$$(U^{\perp})^{\perp} = U;$$

$$Im(V) = \dim(U) + \dim(U^{\perp}).$$

Proof (continued). It remains to prove (c), (d), and (e).

First, since V is finite-dimensional, so is U. So, by Corollary 6.3.11(a), U has an orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$. By Corollary 6.3.11(b), the orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ of U can be extended to an orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ of V. By (a), $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an orthogonal basis of U^{\perp} . But then $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n, \mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of V that extends $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$, and so by (a) applied to the vector space U^{\perp} , we have that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of $(U^{\perp})^{\perp}$. But now $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a basis of both U and $(U^{\perp})^{\perp}$, and it follows that $U = (U^{\perp})^{\perp}$, i.e. (c) holds.

(
$$U^{\perp}$$
) ^{\perp} = U ;
 $V = U \oplus U^{\perp}$, that is, $V = U + U^{\perp}$ and $U \cap U^{\perp} = \{\mathbf{0}\}$;
 $\dim(V) = \dim(U) + \dim(U^{\perp})$.

Proof (continued). Further, we have the following:

- dim(U) = k, since $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is a basis of U;
- dim $(U^{\perp}) = n k$, since $\{\mathbf{u}_{k+1}, \dots, \mathbf{u}_n\}$ is a basis of U^{\perp} ;
- dim(V) = n, since $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is a basis of V.

It now immediately follows that $\dim(V) = \dim(U) + \dim(U^{\perp})$, i.e. (e) holds.

(
$$U^{\perp}$$
) ^{\perp} = U ;

$$@ \quad V = U \oplus U^{\perp}$$
, that is, $V = U + U^{\perp}$ and $U \cap U^{\perp} = \{ m{0} \} \}$

Proof (continued). Finally, we prove (d).

$$(U^{\perp})^{\perp} = U;$$

④
$$V=U\oplus U^{\perp}$$
, that is, $V=U+U^{\perp}$ and $U\cap U^{\perp}=\{\mathbf{0}\};$

$${f O} \quad {\sf dim}(V) = {\sf dim}(U) + {\sf dim}(U^{\perp}).$$

Proof (continued). Finally, we prove (d).

Let us first show that $U \cap U^{\perp} = \{\mathbf{0}\}.$

$$(U^{\perp})^{\perp} = U;$$

④
$$V=U\oplus U^{\perp}$$
, that is, $V=U+U^{\perp}$ and $U\cap U^{\perp}=\{\mathbf{0}\}$

Proof (continued). Finally, we prove (d).

Let us first show that $U \cap U^{\perp} = \{\mathbf{0}\}$. Since U and U^{\perp} are both subspaces of V, they both contain $\mathbf{0}$, and consequently, $\mathbf{0} \in U \cap U^{\perp}$.

$$(U^{\perp})^{\perp} = U;$$

④
$$V=U\oplus U^{\perp}$$
, that is, $V=U+U^{\perp}$ and $U\cap U^{\perp}=\{\mathbf{0}\};$

$$\ \, {\sf Omm}(V) = {\sf dim}(U) + {\sf dim}(U^{\perp}).$$

Proof (continued). Finally, we prove (d).

Let us first show that $U \cap U^{\perp} = \{\mathbf{0}\}$. Since U and U^{\perp} are both subspaces of V, they both contain $\mathbf{0}$, and consequently, $\mathbf{0} \in U \cap U^{\perp}$.

Now, fix any $\mathbf{u} \in U \cap U^{\perp}$; we must show that $\mathbf{u} = \mathbf{0}$.

$$(U^{\perp})^{\perp} = U;$$

④
$$V=U\oplus U^{\perp}$$
, that is, $V=U+U^{\perp}$ and $U\cap U^{\perp}=\{\mathbf{0}\}$

$$\ \, {\sf Omm}(V) = {\sf dim}(U) + {\sf dim}(U^{\perp}).$$

Proof (continued). Finally, we prove (d).

Let us first show that $U \cap U^{\perp} = \{\mathbf{0}\}$. Since U and U^{\perp} are both subspaces of V, they both contain $\mathbf{0}$, and consequently, $\mathbf{0} \in U \cap U^{\perp}$.

Now, fix any $\mathbf{u} \in U \cap U^{\perp}$; we must show that $\mathbf{u} = \mathbf{0}$. Since $\mathbf{u} \in U$ and $\mathbf{u} \in U^{\perp}$, we have that $\mathbf{u} \perp \mathbf{u}$, i.e. $\langle \mathbf{u}, \mathbf{u} \rangle = \mathbf{0}$.

$$(U^{\perp})^{\perp} = U;$$

④
$$V=U\oplus U^{\perp}$$
, that is, $V=U+U^{\perp}$ and $U\cap U^{\perp}=\{\mathbf{0}\};$

$$\ \, {\sf Omm}(V) = {\sf dim}(U) + {\sf dim}(U^{\perp}).$$

Proof (continued). Finally, we prove (d).

Let us first show that $U \cap U^{\perp} = \{\mathbf{0}\}$. Since U and U^{\perp} are both subspaces of V, they both contain $\mathbf{0}$, and consequently, $\mathbf{0} \in U \cap U^{\perp}$.

Now, fix any $\mathbf{u} \in U \cap U^{\perp}$; we must show that $\mathbf{u} = \mathbf{0}$. Since $\mathbf{u} \in U$ and $\mathbf{u} \in U^{\perp}$, we have that $\mathbf{u} \perp \mathbf{u}$, i.e. $\langle \mathbf{u}, \mathbf{u} \rangle = 0$. But then by the definition of a scalar product, we have that $\mathbf{u} = \mathbf{0}$.

$$(U^{\perp})^{\perp} = U;$$

④
$$V=U\oplus U^{\perp}$$
, that is, $V=U+U^{\perp}$ and $U\cap U^{\perp}=\{\mathbf{0}\};$

$$\ \, {\sf Omm}(V) = {\sf dim}(U) + {\sf dim}(U^{\perp}).$$

Proof (continued). Finally, we prove (d).

Let us first show that $U \cap U^{\perp} = \{\mathbf{0}\}$. Since U and U^{\perp} are both subspaces of V, they both contain $\mathbf{0}$, and consequently, $\mathbf{0} \in U \cap U^{\perp}$.

Now, fix any $\mathbf{u} \in U \cap U^{\perp}$; we must show that $\mathbf{u} = \mathbf{0}$. Since $\mathbf{u} \in U$ and $\mathbf{u} \in U^{\perp}$, we have that $\mathbf{u} \perp \mathbf{u}$, i.e. $\langle \mathbf{u}, \mathbf{u} \rangle = 0$. But then by the definition of a scalar product, we have that $\mathbf{u} = \mathbf{0}$. This proves that $U \cap U^{\perp} = \{\mathbf{0}\}$.

$$(U^{\perp})^{\perp} = U;$$

$$@ \quad V = U \oplus U^{\perp}$$
, that is, $V = U + U^{\perp}$ and $U \cap U^{\perp} = \{ oldsymbol{0} \};$

• dim
$$(V) = \dim(U) + \dim(U^{\perp})$$
.

Proof (continued). It remains to show that $V = U + U^{\perp}$.

(1)
$$U^{\perp} = U;$$

(1) $V = U \oplus U^{\perp}$, that is, $V = U + U^{\perp}$ and $U \cap U^{\perp} = \{\mathbf{0}\};$
(2) $\dim(V) = \dim(U) + \dim(U^{\perp}).$

Proof (continued). It remains to show that $V = U + U^{\perp}$.

It is clear that $U + U^{\perp} \subseteq V$, and so we need only show that $V \subseteq U + U^{\perp}$.

(a)
$$(U^{\perp})^{\perp} = U;$$

(a) $V = U \oplus U^{\perp}$, that is, $V = U + U^{\perp}$ and $U \cap U^{\perp} = \{\mathbf{0}\};$
(b) $\dim(V) = \dim(U) + \dim(U^{\perp}).$

Proof (continued). It remains to show that $V = U + U^{\perp}$.

It is clear that $U + U^{\perp} \subseteq V$, and so we need only show that $V \subseteq U + U^{\perp}$.

Fix any $\mathbf{v} \in V$.

Proof (continued). It remains to show that $V = U + U^{\perp}$.

It is clear that $U + U^{\perp} \subseteq V$, and so we need only show that $V \subseteq U + U^{\perp}$.

Fix any $\mathbf{v} \in V$. Since $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is a basis of V, we know that there exist scalars $\alpha_1, \ldots, \alpha_n$ such that $\mathbf{v} = \alpha_1 \mathbf{u}_1 + \cdots + \alpha_n \mathbf{u}_n$. Set $\mathbf{v}_1 := \alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k$ and $\mathbf{v}_2 := \alpha_{k+1} \mathbf{u}_{k+1} + \cdots + \alpha_n \mathbf{u}_n$. Then $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$. Since $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a basis of U, we see that $\mathbf{v}_1 \in U$, and since $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is a basis of U^{\perp} , we see that $\mathbf{v}_2 \in U^{\perp}$. So, $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ belongs to $U + U^{\perp}$, and it follows that $V \subseteq U + U^{\perp}$. This proves (d), and we are done. \Box

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let U be a subspace of V. Then U^{\perp} is a subspace of V, and all the following hold:

- if {u₁,..., u_k} is an orthogonal basis of U, and {u₁,..., u_k, u_{k+1},..., u_n} is an extension of that basis to an orthogonal basis of V, then {u_{k+1},..., u_n} is an orthogonal basis of U[⊥];
- if {u₁,..., u_k} is an orthonormal basis of U, and {u₁,..., u_k, u_{k+1},..., u_n} is an extension of that basis to an orthonormal basis of V, then {u_{k+1},..., u_n} is an orthonormal basis of U[⊥];

$$\ \, (U^{\perp})^{\perp}=U;$$

 $\ \, {\boldsymbol{\mathbb O}} \quad {\boldsymbol V}={\boldsymbol U}\oplus{\boldsymbol U}^\perp, \text{ that is, } {\boldsymbol V}={\boldsymbol U}+{\boldsymbol U}^\perp \text{ and } {\boldsymbol U}\cap{\boldsymbol U}^\perp=\{{\boldsymbol 0}\};$

$${igsim}$$
 dim $(V)={
m dim}(U)+{
m dim}(U^{\perp}).$

- As a corollary of Theorem 6.4.3(a-b), we obtain the following computationally useful proposition.
 - The proposition is long, and we need to slides to state it.

Proposition 6.4.4

Let *V* be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ be any linearly independent set of vectors *V*, and let $\{\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_n\}$ be an extension of that linearly independent set to a basis of *V*. Set $U := \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

- If the Gram-Schmidt orthogonalization process (version 1) is applied to input vectors v₁,..., v_k, v_{k+1},..., v_n to produce output vectors u₁,..., u_k, u_{k+1},..., u_n, then both the following hold:
 - {**u**₁,...,**u**_k} is an orthogonal basis of U, and {**u**_{k+1},...,**u**_n} is an orthogonal basis of U[⊥];
 - $\left\{ \frac{\mathbf{u}_1}{||\mathbf{u}_1||}, \dots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||} \right\}$ is an orthonormal basis of U, and $\left\{ \frac{\mathbf{u}_{k+1}}{||\mathbf{u}_{k+1}||}, \dots, \frac{\mathbf{u}_n}{||\mathbf{u}_n||} \right\}$ is an orthonormal basis of U^{\perp} .

Proposition 6.4.4

Let *V* be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ be any linearly independent set of vectors *V*, and let $\{\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_n\}$ be an extension of that linearly independent set to a basis of *V*. Set $U := \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

If the Gram-Schmidt orthogonalization process (version 2) is applied to input vectors v₁,..., v_k, v_{k+1},..., v_n to produce output vectors z₁,..., z_k, z_{k+1},..., z_n, then {z₁,..., z_k} is an orthonormal basis of U, and {z_{k+1},..., z_n} is an orthonormal basis of U[⊥].

Proposition 6.4.4

Let *V* be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ be any linearly independent set of vectors *V*, and let $\{\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_n\}$ be an extension of that linearly independent set to a basis of *V*. Set $U := \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

- If the Gram-Schmidt orthogonalization process (version 2) is applied to input vectors v₁,..., v_k, v_{k+1},..., v_n to produce output vectors z₁,..., z_k, z_{k+1},..., z_n, then {z₁,..., z_k} is an orthonormal basis of U, and {z_{k+1},..., z_n} is an orthonormal basis of U[⊥].
 - This is an easy corollary of Theorem 6.4.3 (details: Lecture Notes).

Example 6.4.5

Consider the following vectors in \mathbb{R}^4 :

$$\mathbf{a}_1 = \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 2\\2\\2\\0 \end{bmatrix}, \quad \mathbf{a}_3 = \begin{bmatrix} 0\\3\\3\\3 \end{bmatrix}, \quad \mathbf{a}_4 = \begin{bmatrix} 2\\4\\4\\2 \end{bmatrix}.$$

Compute an orthonormal basis of $U := \text{Span}(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4)$ and an orthonormal basis of U^{\perp} .

Solution.

Example 6.4.5

Consider the following vectors in \mathbb{R}^4 :

$$\mathbf{a}_1 = \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 2\\2\\2\\0 \end{bmatrix}, \quad \mathbf{a}_3 = \begin{bmatrix} 0\\3\\3\\3 \end{bmatrix}, \quad \mathbf{a}_4 = \begin{bmatrix} 2\\4\\4\\2 \end{bmatrix}.$$

Compute an orthonormal basis of $U := \text{Span}(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4)$ and an orthonormal basis of U^{\perp} .

Solution. First, we need to find a basis of U and extend it to a basis of \mathbb{R}^4 . For this, we use Proposition 3.3.21. We consider the standard basis $\mathcal{E}_4 = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ of \mathbb{R}^4 , and we form the matrix

$$C := \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 & \mathbf{e}_4 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 2 & 0 & 2 & 1 & 0 & 0 & 0 \\ 1 & 2 & 3 & 4 & 0 & 1 & 0 & 0 \\ 1 & 2 & 3 & 4 & 0 & 0 & 1 & 0 \\ 0 & 0 & 3 & 2 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

By row reducing, we obtain

$$\mathsf{RREF}(C) = \begin{bmatrix} 1 & 2 & 0 & 2 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 2/3 & 0 & 0 & 0 & 1/3 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \end{bmatrix}$$

٠

By row reducing, we obtain

$$\mathsf{RREF}(C) = \begin{bmatrix} 1 & 2 & 0 & 2 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 2/3 & 0 & 0 & 0 & 1/3 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \end{bmatrix}$$

•

As we can see, the pivot columns of C are its first, third, fifth, and sixth column.

By row reducing, we obtain

$$\mathsf{RREF}(C) = \begin{bmatrix} 1 & 2 & 0 & 2 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 2/3 & 0 & 0 & 0 & 1/3 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \end{bmatrix}$$

As we can see, the pivot columns of *C* are its first, third, fifth, and sixth column. So, by Proposition 3.3.21, $\{a_1, a_3\}$ is a basis of *U*, and $\{a_1, a_3, e_1, e_2\}$ is a basis of \mathbb{R}^4 that extends $\{a_1, a_3\}$.

By row reducing, we obtain

$$\mathsf{RREF}(C) = \begin{bmatrix} 1 & 2 & 0 & 2 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 2/3 & 0 & 0 & 0 & 1/3 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \end{bmatrix}$$

As we can see, the pivot columns of *C* are its first, third, fifth, and sixth column. So, by Proposition 3.3.21, $\{a_1, a_3\}$ is a basis of *U*, and $\{a_1, a_3, e_1, e_2\}$ is a basis of \mathbb{R}^4 that extends $\{a_1, a_3\}$. By applying the Gram-Schmidt orthogonalization process (version 2) to the vectors a_1, a_3, e_1, e_2 , we obtain the following vectors (next slide): Solution (continued).

$$\mathbf{z}_{1} = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \\ 0 \end{bmatrix}, \qquad \mathbf{z}_{2} = \begin{bmatrix} -2/\sqrt{15} \\ 1/\sqrt{15} \\ 1/\sqrt{15} \\ 3/\sqrt{15} \end{bmatrix},$$
$$\mathbf{z}_{3} = \begin{bmatrix} 2/\sqrt{10} \\ -1/\sqrt{10} \\ -1/\sqrt{10} \\ 2/\sqrt{10} \end{bmatrix}, \qquad \mathbf{z}_{4} = \begin{bmatrix} 0 \\ 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{bmatrix}.$$

Solution (continued).

$$\begin{aligned} \mathbf{z}_{1} &= \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \\ 0 \end{bmatrix}, \qquad \mathbf{z}_{2} &= \begin{bmatrix} -2/\sqrt{15} \\ 1/\sqrt{15} \\ 1/\sqrt{15} \\ 3/\sqrt{15} \end{bmatrix}, \\ \mathbf{z}_{3} &= \begin{bmatrix} 2/\sqrt{10} \\ -1/\sqrt{10} \\ -1/\sqrt{10} \\ 2/\sqrt{10} \end{bmatrix}, \qquad \mathbf{z}_{4} &= \begin{bmatrix} 0 \\ 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{bmatrix}. \end{aligned}$$

By Proposition 6.4.4(b), $\{z_1, z_2\}$ is an orthonormal basis of U, whereas $\{z_3, z_4\}$ is an orthonormal basis of U^{\perp} . \Box

Example 6.4.5

Consider the following vectors in \mathbb{R}^4 :

$$\mathbf{a}_1 = \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 2\\2\\2\\0 \end{bmatrix}, \quad \mathbf{a}_3 = \begin{bmatrix} 0\\3\\3\\3 \end{bmatrix}, \quad \mathbf{a}_4 = \begin{bmatrix} 2\\4\\4\\2 \end{bmatrix}.$$

Compute an orthonormal basis of $U := \text{Span}(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4)$ and an orthonormal basis of U^{\perp} .

Remark: We could also have applied the Gram-Schmidt orthogonalization process (version 1) to the vectors a₁, a₃, e₁, e₂, and then normalized the output vectors. We would have gotten the same vectors z₁, z₂, z₃, z₄ as above. Proposition 6.4.4(a) would then imply that {z₁, z₂} is an orthonormal basis of U, whereas {z₃, z₄} is an orthonormal basis of U[⊥].

Orthogonal projection onto a subspace

Orthogonal projection onto a subspace

Theorem 6.5.1

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then there exists a unique vector $\mathbf{x}_U \in U$ that has the property that

$$||\mathbf{x} - \mathbf{x}_U|| = \min_{\mathbf{u} \in U} ||\mathbf{x} - \mathbf{u}||.$$

Moreover, if $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of U, then this vector \mathbf{x}_U is given by the formula

$$\mathbf{x}_U = \sum_{i=1}^k \operatorname{proj}_{\mathbf{u}_i}(\mathbf{x}) = \sum_{i=1}^k \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

• **Terminology/Notation:** The vector **x**_U from Theorem 6.5.1 is called the *orthogonal projection* of **x** onto U.

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then there exists a unique vector $\mathbf{x}_U \in U$ that has the property that

$$||\mathbf{x} - \mathbf{x}_U|| = \min_{\mathbf{u} \in U} ||\mathbf{x} - \mathbf{u}||.$$

Moreover, if $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of U, then this vector \mathbf{x}_U is given by the formula

$$\mathbf{x}_U = \sum_{i=1}^k \operatorname{proj}_{\mathbf{u}_i}(\mathbf{x}) = \sum_{i=1}^k \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

• Remarks:

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then there exists a unique vector $\mathbf{x}_U \in U$ that has the property that

$$||\mathbf{x} - \mathbf{x}_U|| = \min_{\mathbf{u} \in U} ||\mathbf{x} - \mathbf{u}||.$$

Moreover, if $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of U, then this vector \mathbf{x}_U is given by the formula

$$\mathbf{x}_U = \sum_{i=1}^k \operatorname{proj}_{\mathbf{u}_i}(\mathbf{x}) = \sum_{i=1}^k \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Remarks:

• If $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is an **orthonormal** basis of U, then

$$\mathbf{x}_U = \sum_{i=1}^k \operatorname{proj}_{\mathbf{u}_i}(\mathbf{x}) = \sum_{i=1}^k \langle \mathbf{x}, \mathbf{u}_i \rangle | \mathbf{u}_i.$$

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then there exists a unique vector $\mathbf{x}_U \in U$ that has the property that

$$||\mathbf{x} - \mathbf{x}_U|| = \min_{\mathbf{u} \in U} ||\mathbf{x} - \mathbf{u}||.$$

Moreover, if $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of U, then this vector \mathbf{x}_U is given by the formula

$$\mathbf{x}_U = \sum_{i=1}^k \operatorname{proj}_{\mathbf{u}_i}(\mathbf{x}) = \sum_{i=1}^k \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

- Remarks:
 - If $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is an **orthonormal** basis of U, then

$$\mathbf{x}_U = \sum_{i=1}^k \operatorname{proj}_{\mathbf{u}_i}(\mathbf{x}) = \sum_{i=1}^k \langle \mathbf{x}, \mathbf{u}_i \rangle | \mathbf{u}_i.$$

• If $\mathbf{x} \in U$, then $\mathbf{x}_U = \mathbf{x}$, since in this case, the expression $||\mathbf{x} - \mathbf{u}||$ (for $\mathbf{u} \in U$) is minimized for $\mathbf{u} = \mathbf{x}$.

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then there exists a unique vector $\mathbf{x}_U \in U$ that has the property that

$$||\mathbf{x} - \mathbf{x}_U|| = \min_{\mathbf{u} \in U} ||\mathbf{x} - \mathbf{u}||.$$

Moreover, if $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of U, then this vector \mathbf{x}_U is given by the formula

$$\mathbf{x}_U = \sum_{i=1}^k \operatorname{proj}_{\mathbf{u}_i}(\mathbf{x}) = \sum_{i=1}^k \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Now let's prove the theorem!

Proof.

Proof. Using Corollary 6.3.11, we fix an orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ of U, and we extend it to an orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ of V.

$$\mathbf{u}^* := \sum_{i=1}^k \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

$$\mathbf{u}^* := \sum_{i=1}^k \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

• So, **u*** is defined via the formula from the statement of the theorem.

$$\mathbf{u}^* := \sum_{i=1}^k \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

- So, **u**^{*} is defined via the formula from the statement of the theorem.
- The reason we call it u^{*} rather than x_U is because we have not proven the existence and uniqueness of x_U yet.

$$\mathbf{u}^* := \sum_{i=1}^k \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

- So, **u**^{*} is defined via the formula from the statement of the theorem.
- The reason we call it u^{*} rather than x_U is because we have not proven the existence and uniqueness of x_U yet.
- However, this is just a minor stylistic matter!

$$\mathbf{u}^* := \sum_{i=1}^k \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

- So, **u**^{*} is defined via the formula from the statement of the theorem.
- The reason we call it u^{*} rather than x_U is because we have not proven the existence and uniqueness of x_U yet.
- However, this is just a minor stylistic matter!

Since \mathbf{u}^* is a linear combination of the vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$, which form a basis of U, we see that $\mathbf{u}^* \in U$.

$$\mathbf{u}^* := \sum_{i=1}^k \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

- So, **u**^{*} is defined via the formula from the statement of the theorem.
- The reason we call it u^{*} rather than x_U is because we have not proven the existence and uniqueness of x_U yet.
- However, this is just a minor stylistic matter!

Since \mathbf{u}^* is a linear combination of the vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$, which form a basis of U, we see that $\mathbf{u}^* \in U$.

Now, fix any $\mathbf{u} \in U$. We must show that $||\mathbf{x} - \mathbf{u}^*|| \le ||\mathbf{x} - \mathbf{u}||$, and that equality holds iff $\mathbf{u}^* = \mathbf{u}$. Clearly, this is sufficient to prove the theorem.

Proof (continued). Reminder: $\mathbf{u}^* := \sum_{i=1}^k \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$; $\mathbf{u} \in U$; WTS $||\mathbf{x} - \mathbf{u}^*|| \le ||\mathbf{x} - \mathbf{u}||$ and that equality holds iff $\mathbf{u}^* = \mathbf{u}$.

Proof (continued). Reminder: $\mathbf{u}^* := \sum_{i=1}^k \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$; $\mathbf{u} \in U$; WTS $||\mathbf{x} - \mathbf{u}^*|| \le ||\mathbf{x} - \mathbf{u}||$ and that equality holds iff $\mathbf{u}^* = \mathbf{u}$. Let us first prove that $(\mathbf{u}^* - \mathbf{u}) \perp (\mathbf{x} - \mathbf{u}^*)$. *Proof (continued).* Reminder: $\mathbf{u}^* := \sum_{i=1}^{k} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$; $\mathbf{u} \in U$; WTS $||\mathbf{x} - \mathbf{u}^*|| \le ||\mathbf{x} - \mathbf{u}||$ and that equality holds iff $\mathbf{u}^* = \mathbf{u}$. Let us first prove that $(\mathbf{u}^* - \mathbf{u}) \perp (\mathbf{x} - \mathbf{u}^*)$. Since $\mathbf{u}^*, \mathbf{u} \in U$, and

since U is a subspace of V, it is clear that $\mathbf{u}^* - \mathbf{u} \in U$.

Proof (continued). Reminder: $\mathbf{u}^* := \sum_{i=1}^{k} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$; $\mathbf{u} \in U$; WTS $||\mathbf{x} - \mathbf{u}^*|| \le ||\mathbf{x} - \mathbf{u}||$ and that equality holds iff $\mathbf{u}^* = \mathbf{u}$. Let us first prove that $(\mathbf{u}^* - \mathbf{u}) \perp (\mathbf{x} - \mathbf{u}^*)$. Since $\mathbf{u}^*, \mathbf{u} \in U$, and

since U is a subspace of V, it is clear that $\mathbf{u}^* - \mathbf{u} \in U$. So, it suffices to show that $\mathbf{x} - \mathbf{u}^* \in U^{\perp}$.

By Theorem 6.3.5, we have that

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i,$$

By Theorem 6.3.5, we have that

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i,$$

and it follows that

$$\mathbf{x} - \mathbf{u}^* = \sum_{i=k+1}^n \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

By Theorem 6.3.5, we have that

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i,$$

and it follows that

$$\mathbf{x} - \mathbf{u}^* = \sum_{i=k+1}^n \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

So, $\mathbf{x} - \mathbf{u}^*$ is a linear combination of the vectors $\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$; since those n - k vectors form a basis of U^{\perp} , it follows that $\mathbf{x} - \mathbf{u}^* \in U^{\perp}$.

By Theorem 6.3.5, we have that

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i,$$

and it follows that

$$\mathbf{x} - \mathbf{u}^* = \sum_{i=k+1}^n \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

So, $\mathbf{x} - \mathbf{u}^*$ is a linear combination of the vectors $\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$; since those n - k vectors form a basis of U^{\perp} , it follows that $\mathbf{x} - \mathbf{u}^* \in U^{\perp}$. This proves that $(\mathbf{u}^* - \mathbf{u}) \perp (\mathbf{x} - \mathbf{u}^*)$. *Proof (continued).* Reminder: $\mathbf{u}^* := \sum_{i=1}^k \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$; $\mathbf{u} \in U$; WTS $||\mathbf{x} - \mathbf{u}^*|| \le ||\mathbf{x} - \mathbf{u}||$ and that equality holds iff $\mathbf{u}^* = \mathbf{u}$.

Now that we have shown that vectors $\mathbf{u}^* - \mathbf{u}$ and $\mathbf{x} - \mathbf{u}^*$ are orthogonal to each other, we can apply the Pythagorean theorem to them, as follows:

$$\begin{aligned} ||\mathbf{x} - \mathbf{u}||^2 &= ||(\mathbf{x} - \mathbf{u}^*) + (\mathbf{u}^* - \mathbf{u})||^2 \\ \stackrel{(*)}{=} ||\mathbf{x} - \mathbf{u}^*||^2 + ||\mathbf{u}^* - \mathbf{u}||^2 \\ &\geq ||\mathbf{x} - \mathbf{u}^*||^2, \end{aligned}$$

where (*) follows from the Pythagorean theorem.

Proof (continued). Reminder: $\mathbf{u}^* := \sum_{i=1}^k \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$; $\mathbf{u} \in U$; WTS $||\mathbf{x} - \mathbf{u}^*|| \le ||\mathbf{x} - \mathbf{u}||$ and that equality holds iff $\mathbf{u}^* = \mathbf{u}$.

Now that we have shown that vectors $\mathbf{u}^* - \mathbf{u}$ and $\mathbf{x} - \mathbf{u}^*$ are orthogonal to each other, we can apply the Pythagorean theorem to them, as follows:

$$\begin{aligned} ||\mathbf{x} - \mathbf{u}||^2 &= ||(\mathbf{x} - \mathbf{u}^*) + (\mathbf{u}^* - \mathbf{u})||^2 \\ \stackrel{(*)}{=} ||\mathbf{x} - \mathbf{u}^*||^2 + ||\mathbf{u}^* - \mathbf{u}||^2 \\ &\geq ||\mathbf{x} - \mathbf{u}^*||^2, \end{aligned}$$

where (*) follows from the Pythagorean theorem. Consequently, we have that $||\mathbf{x} - \mathbf{u}^*|| \le ||\mathbf{x} - \mathbf{u}||$. Moreover, the inequality above is an equality iff $||\mathbf{u}^* - \mathbf{u}|| = 0$, i.e. iff $\mathbf{u}^* = \mathbf{u}$. This completes the argument. \Box

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then there exists a unique vector $\mathbf{x}_U \in U$ that has the property that

$$||\mathbf{x} - \mathbf{x}_U|| = \min_{\mathbf{u} \in U} ||\mathbf{x} - \mathbf{u}||.$$

Moreover, if $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of U, then this vector \mathbf{x}_U is given by the formula

$$\mathbf{x}_U = \sum_{i=1}^k \operatorname{proj}_{\mathbf{u}_i}(\mathbf{x}) = \sum_{i=1}^k \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

• **Terminology/Notation:** The vector **x**_U from Theorem 6.5.1 is called the *orthogonal projection* of **x** onto U.

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let \mathbf{u} be any non-zero vector in V, and set $U := \text{Span}(\mathbf{u})$.^{*a*} Then for every $\mathbf{x} \in V$, we have that

$$\mathbf{x}_U = \operatorname{proj}_{\mathbf{u}}(\mathbf{x}) = \frac{\langle \mathbf{x}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}.$$

^aSo, U is a one-dimensional subspace of V.

Proof.

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let \mathbf{u} be any non-zero vector in V, and set $U := \text{Span}(\mathbf{u})$.^{*a*} Then for every $\mathbf{x} \in V$, we have that

$$\mathbf{x}_U = \operatorname{proj}_{\mathbf{u}}(\mathbf{x}) = \frac{\langle \mathbf{x}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}.$$

^aSo, U is a one-dimensional subspace of V.

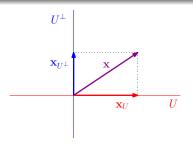
Proof. Clearly, $\{u\}$ is an orthogonal basis of U. So, the result follows immediately from Theorem 6.5.1. \Box

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then

$$\mathbf{x} = \mathbf{x}_U + \mathbf{x}_{U^{\perp}}.$$

Moreover, this is the unique way of expressing **x** as a sum of a vector in U and a vector in U^{\perp} .^{*a*}

^aThis means that for all $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$, if $\mathbf{x} = \mathbf{y} + \mathbf{z}$, then $\mathbf{y} = \mathbf{x}_U$ and $\mathbf{z} = \mathbf{x}_{U^{\perp}}$.



Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then

$$\mathbf{x} = \mathbf{x}_U + \mathbf{x}_{U^{\perp}}.$$

Moreover, this is the unique way of expressing **x** as a sum of a vector in U and a vector in U^{\perp} .^{*a*}

^aThis means that for all $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$, if $\mathbf{x} = \mathbf{y} + \mathbf{z}$, then $\mathbf{y} = \mathbf{x}_U$ and $\mathbf{z} = \mathbf{x}_{U^{\perp}}$.

Proof.

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then

$$\mathbf{x} = \mathbf{x}_U + \mathbf{x}_{U^{\perp}}.$$

Moreover, this is the unique way of expressing **x** as a sum of a vector in U and a vector in U^{\perp} .^{*a*}

^aThis means that for all $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$, if $\mathbf{x} = \mathbf{y} + \mathbf{z}$, then $\mathbf{y} = \mathbf{x}_U$ and $\mathbf{z} = \mathbf{x}_{U^{\perp}}$.

Proof. By Corollary 6.3.11, U has an orthogonal basis $\{u_1, \ldots, u_k\}$, and moreover, this basis can be extended to an orthogonal basis $\{u_1, \ldots, u_k, u_{k+1}, \ldots, u_n\}$ of V. By Theorem 6.4.3(a), we have that $\{u_{k+1}, \ldots, u_n\}$ is an orthogonal basis of U^{\perp} .

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then

$$\mathbf{x} = \mathbf{x}_U + \mathbf{x}_{U^{\perp}}.$$

Moreover, this is the unique way of expressing **x** as a sum of a vector in U and a vector in U^{\perp} .^{*a*}

^aThis means that for all $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$, if $\mathbf{x} = \mathbf{y} + \mathbf{z}$, then $\mathbf{y} = \mathbf{x}_U$ and $\mathbf{z} = \mathbf{x}_{U^{\perp}}$.

Proof. By Corollary 6.3.11, U has an orthogonal basis $\{u_1, \ldots, u_k\}$, and moreover, this basis can be extended to an orthogonal basis $\{u_1, \ldots, u_k, u_{k+1}, \ldots, u_n\}$ of V. By Theorem 6.4.3(a), we have that $\{u_{k+1}, \ldots, u_n\}$ is an orthogonal basis of U^{\perp} . Now, by Theorem 6.3.5, we have that

$$\mathbf{x}_U = \sum_{i=1}^k \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i \quad \text{and} \quad \mathbf{x}_{U^\perp} = \sum_{i=k+1}^n \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Consequently,

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i = \left(\sum_{i=1}^{k} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i \right) + \left(\sum_{i=k+1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i \right) = \mathbf{x}_U + \mathbf{x}_{U^{\perp}}.$$

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Consequently,

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i = \left(\sum_{i=1}^{k} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i \right) + \left(\sum_{i=k+1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i \right) = \mathbf{x}_U + \mathbf{x}_{U^{\perp}}.$$

It remains to prove the uniqueness part of the corollary.

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Consequently,

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i = \left(\sum_{i=1}^{k} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i \right) + \left(\sum_{i=k+1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i \right) = \mathbf{x}_U + \mathbf{x}_{U^{\perp}}.$$

It remains to prove the uniqueness part of the corollary. So, suppose that $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$ are such that $\mathbf{x} = \mathbf{y} + \mathbf{z}$. WTS $\mathbf{y} = \mathbf{x}_U$ and $\mathbf{z} = \mathbf{x}_{U^{\perp}}$.

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Consequently,

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i = \left(\sum_{i=1}^{k} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i \right) + \left(\sum_{i=k+1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i \right) = \mathbf{x}_U + \mathbf{x}_{U^{\perp}}.$$

It remains to prove the uniqueness part of the corollary. So, suppose that $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$ are such that $\mathbf{x} = \mathbf{y} + \mathbf{z}$. WTS $\mathbf{y} = \mathbf{x}_U$ and $\mathbf{z} = \mathbf{x}_{U^{\perp}}$. We have that

$$\mathbf{x}_{\boldsymbol{U}} + \mathbf{x}_{\boldsymbol{U}^{\perp}} = \mathbf{x} = \mathbf{y} + \mathbf{z},$$

and consequently,

$$\mathbf{x}_U - \mathbf{y} = \mathbf{z} - \mathbf{x}_{U^{\perp}}.$$

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Consequently,

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i = \left(\sum_{i=1}^{k} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i \right) + \left(\sum_{i=k+1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i \right) = \mathbf{x}_U + \mathbf{x}_{U^{\perp}}.$$

It remains to prove the uniqueness part of the corollary. So, suppose that $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$ are such that $\mathbf{x} = \mathbf{y} + \mathbf{z}$. WTS $\mathbf{y} = \mathbf{x}_U$ and $\mathbf{z} = \mathbf{x}_{U^{\perp}}$. We have that

$$\mathbf{x}_{\boldsymbol{U}} + \mathbf{x}_{\boldsymbol{U}^{\perp}} = \mathbf{x} = \mathbf{y} + \mathbf{z},$$

and consequently,

$$\mathbf{x}_U - \mathbf{y} = \mathbf{z} - \mathbf{x}_{U^{\perp}}$$

But $\mathbf{x}_{\boldsymbol{U}} - \mathbf{y} \in \boldsymbol{U}$ and $\mathbf{z} - \mathbf{x}_{\boldsymbol{U}^{\perp}} \in \boldsymbol{U}^{\perp}$.

Solution (continued). On the other hand, by Theorem 6.3.5, we have that

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Consequently,

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i = \left(\sum_{i=1}^{k} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i \right) + \left(\sum_{i=k+1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i \right) = \mathbf{x}_U + \mathbf{x}_{U^{\perp}}.$$

It remains to prove the uniqueness part of the corollary. So, suppose that $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$ are such that $\mathbf{x} = \mathbf{y} + \mathbf{z}$. WTS $\mathbf{y} = \mathbf{x}_U$ and $\mathbf{z} = \mathbf{x}_{U^{\perp}}$. We have that

$$\mathbf{x}_{\boldsymbol{U}} + \mathbf{x}_{\boldsymbol{U}^{\perp}} = \mathbf{x} = \mathbf{y} + \mathbf{z},$$

and consequently,

$$\mathbf{x}_U - \mathbf{y} = \mathbf{z} - \mathbf{x}_{U^{\perp}}$$

But $\mathbf{x}_U - \mathbf{y} \in U$ and $\mathbf{z} - \mathbf{x}_{U^{\perp}} \in U^{\perp}$. Since $U \cap U^{\perp} = \{\mathbf{0}\}$ (by Theorem 6.4.3(d)), it follows that $\mathbf{x}_U - \mathbf{y} = \mathbf{z} - \mathbf{x}_{U^{\perp}} = \mathbf{0}$,

Solution (continued). On the other hand, by Theorem 6.3.5, we have that

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Consequently,

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i = \left(\sum_{i=1}^{k} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i \right) + \left(\sum_{i=k+1}^{n} \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i \right) = \mathbf{x}_U + \mathbf{x}_{U^{\perp}}.$$

It remains to prove the uniqueness part of the corollary. So, suppose that $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$ are such that $\mathbf{x} = \mathbf{y} + \mathbf{z}$. WTS $\mathbf{y} = \mathbf{x}_U$ and $\mathbf{z} = \mathbf{x}_{U^{\perp}}$. We have that

$$\mathbf{x}_{\boldsymbol{U}} + \mathbf{x}_{\boldsymbol{U}^{\perp}} = \mathbf{x} = \mathbf{y} + \mathbf{z},$$

and consequently,

$$\mathbf{x}_U - \mathbf{y} = \mathbf{z} - \mathbf{x}_{U^{\perp}}.$$

But $\mathbf{x}_U - \mathbf{y} \in U$ and $\mathbf{z} - \mathbf{x}_{U^{\perp}} \in U^{\perp}$. Since $U \cap U^{\perp} = \{\mathbf{0}\}$ (by Theorem 6.4.3(d)), it follows that $\mathbf{x}_U - \mathbf{y} = \mathbf{z} - \mathbf{x}_{U^{\perp}} = \mathbf{0}$, and consequently, $\mathbf{y} = \mathbf{x}_U$ and $\mathbf{z} = \mathbf{x}_{U^{\perp}}$. \Box

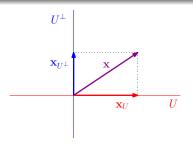
Corollary 6.5.3

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then

$$\mathbf{x} = \mathbf{x}_U + \mathbf{x}_{U^{\perp}}.$$

Moreover, this is the unique way of expressing **x** as a sum of a vector in U and a vector in U^{\perp} .^{*a*}

^aThis means that for all $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$, if $\mathbf{x} = \mathbf{y} + \mathbf{z}$, then $\mathbf{y} = \mathbf{x}_U$ and $\mathbf{z} = \mathbf{x}_{U^{\perp}}$.



 Suppose that V is a finite-dimensional real or complex vector space, equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||, and suppose that U is a subspace of V.

- Suppose that V is a finite-dimensional real or complex vector space, equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||, and suppose that U is a subspace of V.
- We can then define the function $\operatorname{proj}_U : V \to V$ by setting $\operatorname{proj}_U(\mathbf{x}) = \mathbf{x}_U$ for all $\mathbf{x} \in V$ (where \mathbf{x}_U is the orthogonal projection of \mathbf{x} onto U, as in Theorem 6.5.1).

- Suppose that V is a finite-dimensional real or complex vector space, equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||, and suppose that U is a subspace of V.
- We can then define the function $\operatorname{proj}_U : V \to V$ by setting $\operatorname{proj}_U(\mathbf{x}) = \mathbf{x}_U$ for all $\mathbf{x} \in V$ (where \mathbf{x}_U is the orthogonal projection of \mathbf{x} onto U, as in Theorem 6.5.1).
- Clearly, $proj_U(\mathbf{u}) = \mathbf{u}$ for all $\mathbf{u} \in U$.

- Suppose that V is a finite-dimensional real or complex vector space, equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||, and suppose that U is a subspace of V.
- We can then define the function $\operatorname{proj}_U : V \to V$ by setting $\operatorname{proj}_U(\mathbf{x}) = \mathbf{x}_U$ for all $\mathbf{x} \in V$ (where \mathbf{x}_U is the orthogonal projection of \mathbf{x} onto U, as in Theorem 6.5.1).
- Clearly, $\operatorname{proj}_U(\mathbf{u}) = \mathbf{u}$ for all $\mathbf{u} \in U$.
- Moreover, we have that $Im(proj_U) = U$ and $proj_U[U] = U$.

- Suppose that V is a finite-dimensional real or complex vector space, equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||, and suppose that U is a subspace of V.
- We can then define the function $\operatorname{proj}_U : V \to V$ by setting $\operatorname{proj}_U(\mathbf{x}) = \mathbf{x}_U$ for all $\mathbf{x} \in V$ (where \mathbf{x}_U is the orthogonal projection of \mathbf{x} onto U, as in Theorem 6.5.1).
- Clearly, $\operatorname{proj}_U(\mathbf{u}) = \mathbf{u}$ for all $\mathbf{u} \in U$.
- Moreover, we have that $Im(proj_U) = U$ and $proj_U[U] = U$.
- Using the formula from Theorem 6.5.1, we can easily see that the function proj_U is linear.

- Suppose that V is a finite-dimensional real or complex vector space, equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||, and suppose that U is a subspace of V.
- We can then define the function $\operatorname{proj}_U : V \to V$ by setting $\operatorname{proj}_U(\mathbf{x}) = \mathbf{x}_U$ for all $\mathbf{x} \in V$ (where \mathbf{x}_U is the orthogonal projection of \mathbf{x} onto U, as in Theorem 6.5.1).
- Clearly, $\operatorname{proj}_U(\mathbf{u}) = \mathbf{u}$ for all $\mathbf{u} \in U$.
- Moreover, we have that $Im(proj_U) = U$ and $proj_U[U] = U$.
- Using the formula from Theorem 6.5.1, we can easily see that the function proj_U is linear.
- Indeed, if {u₁,..., u_k} is any orthogonal basis of U (such a basis exists by Corollary 6.3.11), then the following hold (next two slides):

• for all $\mathbf{x}, \mathbf{y} \in V$, we have that

$$\operatorname{proj}_{U}(\mathbf{x} + \mathbf{y}) \stackrel{(*)}{=} \sum_{i=1}^{k} \frac{\langle \mathbf{x} + \mathbf{y}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i}$$

$$\stackrel{(**)}{=} \sum_{i=1}^{k} \frac{\langle \mathbf{x}, \mathbf{u}_{i} \rangle + \langle \mathbf{y}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i}$$

$$= \left(\sum_{i=1}^{k} \frac{\langle \mathbf{x}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i} \right) + \left(\sum_{i=1}^{k} \frac{\langle \mathbf{y}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i} \right)$$

$$\stackrel{(*)}{=} \operatorname{proj}_{U}(\mathbf{x}) + \operatorname{proj}_{U}(\mathbf{y}),$$

where both instances of (*) follow from Theorem 6.5.1, and (**) follows from r.2 or c.2;

• for all $\mathbf{x} \in V$ and scalars α , we have that

$$\operatorname{proj}_{U}(\alpha \mathbf{x}) \stackrel{(*)}{=} \sum_{i=1}^{k} \frac{\langle \alpha \mathbf{x}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i}$$
$$\stackrel{(**)}{=} \sum_{i=1}^{k} \frac{\alpha \langle \mathbf{x}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i}$$
$$= \alpha \sum_{i=1}^{k} \frac{\langle \mathbf{x}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i}$$
$$\stackrel{(*)}{=} \alpha \operatorname{proj}_{U}(\mathbf{x}),$$

where both instances of (*) follow from Theorem 6.5.1, and (**) follows from r.3 or c.3.

③ Orthogonal projection onto subspaces of \mathbb{R}^n

- **③** Orthogonal projection onto subspaces of \mathbb{R}^n
 - In the remainder of this lecture, we assume that \mathbb{R}^n is equipped with the standard scalar product \cdot and the induced norm $|| \cdot ||$.

- **③** Orthogonal projection onto subspaces of \mathbb{R}^n
 - In the remainder of this lecture, we assume that ℝⁿ is equipped with the standard scalar product • and the induced norm || • ||.
 - Now, suppose that U is a subspace of \mathbb{R}^n .

- **(**) Orthogonal projection onto subspaces of \mathbb{R}^n
 - In the remainder of this lecture, we assume that ℝⁿ is equipped with the standard scalar product • and the induced norm || • ||.
 - Now, suppose that U is a subspace of \mathbb{R}^n .
 - As we saw, $\operatorname{proj}_U : \mathbb{R}^n \to \mathbb{R}^n$ is linear (and its image is U).

- **③** Orthogonal projection onto subspaces of \mathbb{R}^n
 - In the remainder of this lecture, we assume that ℝⁿ is equipped with the standard scalar product • and the induced norm || • ||.
 - Now, suppose that U is a subspace of \mathbb{R}^n .
 - As we saw, $\operatorname{proj}_U : \mathbb{R}^n \to \mathbb{R}^n$ is linear (and its image is U).
 - Since $proj_U$ is linear, it has a standard matrix.

- **③** Orthogonal projection onto subspaces of \mathbb{R}^n
 - In the remainder of this lecture, we assume that ℝⁿ is equipped with the standard scalar product • and the induced norm || • ||.
 - Now, suppose that U is a subspace of \mathbb{R}^n .
 - As we saw, $\operatorname{proj}_U : \mathbb{R}^n \to \mathbb{R}^n$ is linear (and its image is U).
 - Since $proj_U$ is linear, it has a standard matrix.
 - Note that this matrix belongs to $\mathbb{R}^{n \times n}$.

③ Orthogonal projection onto subspaces of \mathbb{R}^n

- In the remainder of this lecture, we assume that ℝⁿ is equipped with the standard scalar product • and the induced norm || • ||.
- Now, suppose that U is a subspace of \mathbb{R}^n .
 - As we saw, $\operatorname{proj}_U : \mathbb{R}^n \to \mathbb{R}^n$ is linear (and its image is U).
 - Since $proj_U$ is linear, it has a standard matrix.
 - Note that this matrix belongs to $\mathbb{R}^{n \times n}$.
 - Our goal is to we give formulas for the standard matrices of orthogonal projections onto various subspaces of ℝⁿ.

• In section 3.3 of the Lecture Notes (last semester), we defined the row space of a matrix A to be the span of the rows of A.

- In section 3.3 of the Lecture Notes (last semester), we defined the row space of a matrix A to be the span of the rows of A.
- Proposition 3.3.1(b) states that

$$\mathsf{Row}(A) = \{\mathbf{u}^T \mid \mathbf{u} \in \mathsf{Col}(A^T)\}.$$

- In section 3.3 of the Lecture Notes (last semester), we defined the row space of a matrix A to be the span of the rows of A.
- Proposition 3.3.1(b) states that

$$\operatorname{Row}(A) = \{ \mathbf{u}^T \mid \mathbf{u} \in \operatorname{Col}(A^T) \}.$$

 In what follows, it will be convenient to slightly modify the definition of the row space, as follows:

$$\operatorname{Row}(A) := \operatorname{Col}(A^T).$$

- In section 3.3 of the Lecture Notes (last semester), we defined the row space of a matrix A to be the span of the rows of A.
- Proposition 3.3.1(b) states that

$$\mathsf{Row}(A) = \{\mathbf{u}^T \mid \mathbf{u} \in \mathsf{Col}(A^T)\}.$$

 In what follows, it will be convenient to slightly modify the definition of the row space, as follows:

$$\operatorname{Row}(A) := \operatorname{Col}(A^T).$$

 So, we (re)defined the row space of a matrix to be the span of the transposes of its rows. • For example, for the matrix

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 3 & 2 & 3 \\ 3 & 4 & 3 & 4 \end{bmatrix},$$

we have that

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix},$$

and consequently,

$$\operatorname{Row}(A) = \operatorname{Span}\left(\begin{bmatrix}1\\2\\1\\2\end{bmatrix}, \begin{bmatrix}2\\3\\2\\3\end{bmatrix}, \begin{bmatrix}3\\4\\3\\4\end{bmatrix}\right).$$

• For example, for the matrix

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 3 & 2 & 3 \\ 3 & 4 & 3 & 4 \end{bmatrix},$$

we have that

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix},$$

and consequently,

$$\operatorname{Row}(A) = \operatorname{Span}\left(\begin{bmatrix}1\\2\\1\\2\end{bmatrix}, \begin{bmatrix}2\\3\\2\\3\end{bmatrix}, \begin{bmatrix}3\\4\\3\\4\end{bmatrix}\right).$$

 If this change of definition bothers you, then every time you see Row(□), mentally replace it with Col(□^T).

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp} = \operatorname{Nul}(A)$ and $\operatorname{Row}(A) = \operatorname{Nul}(A)^{\perp}$.

Proof.

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp} = \operatorname{Nul}(A)$ and $\operatorname{Row}(A) = \operatorname{Nul}(A)^{\perp}$.

Proof. In view of Theorem 6.4.3(c), it suffices to show that $Row(A)^{\perp} = Nul(A)$.

• Indeed, by Theorem 6.4.3(c), we have that

$$(\operatorname{Row}(A)^{\perp})^{\perp} = \operatorname{Row}(A).$$

• So, if
$$\operatorname{Row}(A)^{\perp} = \operatorname{Nul}(A)$$
, then

$$\operatorname{Nul}(A)^{\perp} = (\operatorname{Row}(A)^{\perp})^{\perp} = \operatorname{Row}(A).$$

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp} = \operatorname{Nul}(A)$ and $\operatorname{Row}(A) = \operatorname{Nul}(A)^{\perp}$.

Proof. In view of Theorem 6.4.3(c), it suffices to show that $Row(A)^{\perp} = Nul(A)$.

• Indeed, by Theorem 6.4.3(c), we have that

$$(\operatorname{Row}(A)^{\perp})^{\perp} = \operatorname{Row}(A).$$

• So, if
$$\operatorname{Row}(A)^{\perp} = \operatorname{Nul}(A)$$
, then
 $\operatorname{Nul}(A)^{\perp} = (\operatorname{Row}(A)^{\perp})^{\perp} = \operatorname{Row}(A)$.

Set

$$A = \begin{bmatrix} \mathbf{a}_1^T \\ \vdots \\ \mathbf{a}_n^T \end{bmatrix},$$
so that Row(A) = Span($\mathbf{a}_1, \dots, \mathbf{a}_n$).

Proof (continued). Now, for all vectors $\mathbf{x} \in \mathbb{R}^m$:

 $\mathbf{x} \in$

$$\operatorname{Nul}(A) \iff A\mathbf{x} = \mathbf{0}$$

$$\iff \begin{bmatrix} \mathbf{a}_{1}^{T} \\ \vdots \\ \mathbf{a}_{n}^{T} \end{bmatrix} \mathbf{x} = \mathbf{0}$$

$$\iff \begin{bmatrix} \mathbf{a}_{1} \cdot \mathbf{x} \\ \vdots \\ \mathbf{a}_{n} \cdot \mathbf{x} \end{bmatrix} = \mathbf{0}$$

$$\iff \mathbf{a}_{i} \cdot \mathbf{x} = \mathbf{0} \quad \forall i \in \{1, \dots, n\}$$

$$\iff \mathbf{a}_{i} \perp \mathbf{x} \quad \forall i \in \{1, \dots, n\}$$

$$\iff \mathbf{x} \in \{\mathbf{a}_{1}, \dots, \mathbf{a}_{n}\}^{\perp}$$

$$\stackrel{(*)}{\iff} \mathbf{x} \in \operatorname{Span}(\mathbf{a}_{1}, \dots, \mathbf{a}_{n})^{\perp}$$

$$\iff \mathbf{x} \in \operatorname{Row}(A)^{\perp},$$

where (*) follows from the fact that $\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}^{\perp} = \operatorname{Span}(\mathbf{a}_1, \ldots, \mathbf{a}_m)^{\perp}$ (by Proposition 6.4.2). This proves that $\operatorname{Nul}(A) = \operatorname{Row}(A)^{\perp}$, and we are done. \Box

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp} = \operatorname{Nul}(A)$ and $\operatorname{Row}(A) = \operatorname{Nul}(A)^{\perp}$.

Let
$$A \in \mathbb{R}^{n \times m}$$
. Then $\operatorname{Row}(A)^{\perp} = \operatorname{Nul}(A)$ and $\operatorname{Row}(A) = \operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:

$$I Nul(A^T A) = Nul(A);$$

$$rank(A^T A) = rank(A)$$

Proof.

Let
$$A \in \mathbb{R}^{n \times m}$$
. Then $\operatorname{Row}(A)^{\perp} = \operatorname{Nul}(A)$ and $\operatorname{Row}(A) = \operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:

$$I Wul(A^T A) = Nul(A);$$

$$rank(A^T A) = rank(A)$$

Proof. We first prove (a).

Let
$$A \in \mathbb{R}^{n imes m}$$
. Then $\mathsf{Row}(A)^{\perp} = \mathsf{Nul}(A)$ and $\mathsf{Row}(A) = \mathsf{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:

$$I Wul(A^T A) = Nul(A);$$

$$rank(A^T A) = rank(A).$$

Proof. We first prove (a). Note that $A^T A \in \mathbb{R}^{m \times m}$, and that both Nul(A) and Nul($A^T A$) are subspaces of \mathbb{R}^m .

Let
$$A \in \mathbb{R}^{n imes m}$$
. Then $\mathsf{Row}(A)^{\perp} = \mathsf{Nul}(A)$ and $\mathsf{Row}(A) = \mathsf{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:

$$I Wul(A^T A) = Nul(A);$$

$$rank(A^T A) = rank(A).$$

Proof. We first prove (a). Note that $A^T A \in \mathbb{R}^{m \times m}$, and that both Nul(A) and Nul($A^T A$) are subspaces of \mathbb{R}^m . Now, fix any $\mathbf{x} \in \mathbb{R}^m$. WTS $\mathbf{x} \in \text{Nul}(A^T A)$ iff $\mathbf{x} \in \text{Nul}(A)$.

Let
$$A \in \mathbb{R}^{n \times m}$$
. Then $\mathsf{Row}(A)^{\perp} = \mathsf{Nul}(A)$ and $\mathsf{Row}(A) = \mathsf{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:

$$I Wul(A^T A) = Nul(A);$$

$$rank(A^T A) = rank(A).$$

Proof. We first prove (a). Note that $A^T A \in \mathbb{R}^{m \times m}$, and that both Nul(A) and Nul($A^T A$) are subspaces of \mathbb{R}^m . Now, fix any $\mathbf{x} \in \mathbb{R}^m$. WTS $\mathbf{x} \in \text{Nul}(A^T A)$ iff $\mathbf{x} \in \text{Nul}(A)$.

Suppose first that $\mathbf{x} \in Nul(A)$.

Let
$$A \in \mathbb{R}^{n \times m}$$
. Then $\mathsf{Row}(A)^{\perp} = \mathsf{Nul}(A)$ and $\mathsf{Row}(A) = \mathsf{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:

$$I Wul(A^T A) = Nul(A);$$

$$rank(A^T A) = rank(A).$$

Proof. We first prove (a). Note that $A^T A \in \mathbb{R}^{m \times m}$, and that both Nul(A) and Nul($A^T A$) are subspaces of \mathbb{R}^m . Now, fix any $\mathbf{x} \in \mathbb{R}^m$. WTS $\mathbf{x} \in \text{Nul}(A^T A)$ iff $\mathbf{x} \in \text{Nul}(A)$.

Suppose first that $\mathbf{x} \in Nul(A)$. Then $A\mathbf{x} = \mathbf{0}$, and consequently, $A^T A \mathbf{x} = \mathbf{0}$. So, $\mathbf{x} \in Nul(A^T A)$.

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp} = \operatorname{Nul}(A)$ and $\operatorname{Row}(A) = \operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:

• rank
$$(A^T A)$$
 = rank (A) .

Proof (continued). Suppose, conversely, that $\mathbf{x} \in \text{Nul}(A^T A)$.

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp} = \operatorname{Nul}(A)$ and $\operatorname{Row}(A) = \operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:

• rank
$$(A^T A)$$
 = rank (A) .

Proof (continued). Suppose, conversely, that $\mathbf{x} \in \text{Nul}(A^T A)$. Then $A^T A \mathbf{x} = \mathbf{0}$, and it follows that $\mathbf{x}^T A^T A \mathbf{x} = \mathbf{0}$.

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp} = \operatorname{Nul}(A)$ and $\operatorname{Row}(A) = \operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:

• rank
$$(A^T A)$$
 = rank (A) .

Proof (continued). Suppose, conversely, that $\mathbf{x} \in \text{Nul}(A^T A)$. Then $A^T A \mathbf{x} = \mathbf{0}$, and it follows that $\mathbf{x}^T A^T A \mathbf{x} = \mathbf{0}$. But note that

$$\mathbf{x}^T A^T A \mathbf{x} = (A \mathbf{x})^T (A \mathbf{x}) = (A \mathbf{x}) \cdot (A \mathbf{x}) = ||A \mathbf{x}||^2;$$

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp} = \operatorname{Nul}(A)$ and $\operatorname{Row}(A) = \operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:

$$I Wul(A^T A) = Nul(A);$$

• rank
$$(A^T A)$$
 = rank (A) .

Proof (continued). Suppose, conversely, that $\mathbf{x} \in \text{Nul}(A^T A)$. Then $A^T A \mathbf{x} = \mathbf{0}$, and it follows that $\mathbf{x}^T A^T A \mathbf{x} = \mathbf{0}$. But note that

$$\mathbf{x}^T A^T A \mathbf{x} = (A \mathbf{x})^T (A \mathbf{x}) = (A \mathbf{x}) \cdot (A \mathbf{x}) = ||A \mathbf{x}||^2;$$

consequently, $||A\mathbf{x}||^2 = 0$.

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp} = \operatorname{Nul}(A)$ and $\operatorname{Row}(A) = \operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:

• rank
$$(A^T A)$$
 = rank (A) .

Proof (continued). Suppose, conversely, that $\mathbf{x} \in \text{Nul}(A^T A)$. Then $A^T A \mathbf{x} = \mathbf{0}$, and it follows that $\mathbf{x}^T A^T A \mathbf{x} = \mathbf{0}$. But note that

$$\mathbf{x}^T A^T A \mathbf{x} = (A \mathbf{x})^T (A \mathbf{x}) = (A \mathbf{x}) \cdot (A \mathbf{x}) = ||A \mathbf{x}||^2;$$

consequently, $||A\mathbf{x}||^2 = 0$. It follows that $||A\mathbf{x}|| = 0$, and therefore, $A\mathbf{x} = \mathbf{0}$, i.e. $\mathbf{x} \in \text{Nul}(A)$. This proves (a).

Let
$$A \in \mathbb{R}^{n \times m}$$
. Then $\operatorname{Row}(A)^{\perp} = \operatorname{Nul}(A)$ and $\operatorname{Row}(A) = \operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:

$$I ul(A^T A) = Nul(A);$$

$$I ontropy (A^T A) = \operatorname{rank}(A).$$

Proof (continued). For (b), we observe that

$$Row(A^{T}A) = Nul(A^{T}A)^{\perp}$$
by Theorem 6.6.1
$$= Nul(A)^{\perp}$$
by (a)
$$= Row(A)$$
by Theorem 6.6.1.

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp} = \operatorname{Nul}(A)$ and $\operatorname{Row}(A) = \operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:

$$rank(A^T A) = rank(A).$$

Proof (continued). Finally, for (c), we have the following:

$$\operatorname{rank}(A^{T}A) = \operatorname{dim}(\operatorname{Row}(A^{T}A))$$
 by Theorem 3.3.9

$$= \dim(\operatorname{Row}(A))$$
 by (b)

$$=$$
 rank(A) by Theorem 3.3.9.

This completes the argument. \Box

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A(A^T A)^{-1}A^T$ is the standard matrix of orthogonal projection onto Col(A), that is, for all $\mathbf{x} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{x} onto C := Col(A) is given by

$$\mathbf{x}_C = A(A^T A)^{-1} A^T \mathbf{x}.$$

Proof.

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A(A^T A)^{-1}A^T$ is the standard matrix of orthogonal projection onto Col(A), that is, for all $\mathbf{x} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{x} onto C := Col(A) is given by

 $\mathbf{x}_C = A(A^T A)^{-1} A^T \mathbf{x}.$

Proof. Fix $\mathbf{x} \in \mathbb{R}^n$. We must first check that the expression $A(A^T A)^{-1}A^T \mathbf{x}$ is defined and belongs to C = Col(A).

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A(A^T A)^{-1}A^T$ is the standard matrix of orthogonal projection onto Col(A), that is, for all $\mathbf{x} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{x} onto C := Col(A) is given by

 $\mathbf{x}_C = A(A^T A)^{-1} A^T \mathbf{x}.$

Proof. Fix $\mathbf{x} \in \mathbb{R}^n$. We must first check that the expression $A(A^T A)^{-1}A^T \mathbf{x}$ is defined and belongs to C = Col(A).

First, note that $A^T A \in \mathbb{R}^{m \times m}$, and that by Corollary 6.6.2(a), we have that rank $(A^T A) = \operatorname{rank}(A) = m$.

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A(A^T A)^{-1}A^T$ is the standard matrix of orthogonal projection onto Col(A), that is, for all $\mathbf{x} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{x} onto C := Col(A) is given by

 $\mathbf{x}_{C} = A(A^{T}A)^{-1}A^{T}\mathbf{x}.$

Proof. Fix $\mathbf{x} \in \mathbb{R}^n$. We must first check that the expression $A(A^T A)^{-1}A^T \mathbf{x}$ is defined and belongs to C = Col(A).

First, note that $A^T A \in \mathbb{R}^{m \times m}$, and that by Corollary 6.6.2(a), we have that rank $(A^T A) = \operatorname{rank}(A) = m$. So, by the Invertible Matrix Theorem, $A^T A$ is invertible, and we see that $(A^T A)^{-1}$ is defined and belongs to $\mathbb{R}^{m \times m}$.

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A(A^T A)^{-1}A^T$ is the standard matrix of orthogonal projection onto Col(A), that is, for all $\mathbf{x} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{x} onto C := Col(A) is given by

 $\mathbf{x}_C = A(A^T A)^{-1} A^T \mathbf{x}.$

Proof. Fix $\mathbf{x} \in \mathbb{R}^n$. We must first check that the expression $A(A^T A)^{-1}A^T \mathbf{x}$ is defined and belongs to C = Col(A).

First, note that $A^T A \in \mathbb{R}^{m \times m}$, and that by Corollary 6.6.2(a), we have that rank $(A^T A) = \operatorname{rank}(A) = m$. So, by the Invertible Matrix Theorem, $A^T A$ is invertible, and we see that $(A^T A)^{-1}$ is defined and belongs to $\mathbb{R}^{m \times m}$. Since $A \in \mathbb{R}^{n \times m}$, $(A^T A)^{-1} \in \mathbb{R}^{m \times m}$, and $A^T \in \mathbb{R}^{m \times n}$, we see that $A(A^T A)^{-1}A^T \in \mathbb{R}^{n \times n}$;

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A(A^T A)^{-1}A^T$ is the standard matrix of orthogonal projection onto Col(A), that is, for all $\mathbf{x} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{x} onto C := Col(A) is given by

 $\mathbf{x}_C = A(A^T A)^{-1} A^T \mathbf{x}.$

Proof. Fix $\mathbf{x} \in \mathbb{R}^n$. We must first check that the expression $A(A^T A)^{-1}A^T \mathbf{x}$ is defined and belongs to C = Col(A).

First, note that $A^T A \in \mathbb{R}^{m \times m}$, and that by Corollary 6.6.2(a), we have that rank $(A^T A) = \operatorname{rank}(A) = m$. So, by the Invertible Matrix Theorem, $A^T A$ is invertible, and we see that $(A^T A)^{-1}$ is defined and belongs to $\mathbb{R}^{m \times m}$. Since $A \in \mathbb{R}^{n \times m}$, $(A^T A)^{-1} \in \mathbb{R}^{m \times m}$, and $A^T \in \mathbb{R}^{m \times n}$, we see that $A(A^T A)^{-1}A^T \in \mathbb{R}^{n \times n}$; since $\mathbf{x} \in \mathbb{R}^n$, we see that $A(A^T A)^{-1}A^T \in \mathbb{R}^{n \times n}$; since $\mathbf{x} \in \mathbb{R}^n$, we see that $A(A^T A)^{-1}A^T \mathbf{x}$ is defined and belongs to \mathbb{R}^n .

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A(A^T A)^{-1}A^T$ is the standard matrix of orthogonal projection onto Col(A), that is, for all $\mathbf{x} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{x} onto C := Col(A) is given by

 $\mathbf{x}_C = A(A^T A)^{-1} A^T \mathbf{x}.$

Proof. Fix $\mathbf{x} \in \mathbb{R}^n$. We must first check that the expression $A(A^T A)^{-1}A^T \mathbf{x}$ is defined and belongs to C = Col(A).

First, note that $A^T A \in \mathbb{R}^{m \times m}$, and that by Corollary 6.6.2(a), we have that rank $(A^T A) = \operatorname{rank}(A) = m$. So, by the Invertible Matrix Theorem, $A^T A$ is invertible, and we see that $(A^T A)^{-1}$ is defined and belongs to $\mathbb{R}^{m \times m}$. Since $A \in \mathbb{R}^{n \times m}$, $(A^T A)^{-1} \in \mathbb{R}^{m \times m}$, and $A^T \in \mathbb{R}^{m \times n}$, we see that $A(A^T A)^{-1}A^T \in \mathbb{R}^{n \times n}$; since $\mathbf{x} \in \mathbb{R}^n$, we see that $A(A^T A)^{-1}A^T \mathbf{x}$ is defined and belongs to \mathbb{R}^n . Meanwhile, $(A^T A)^{-1}A^T \mathbf{x}$ is a vector in \mathbb{R}^m , and so (next slide):

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A(A^T A)^{-1}A^T$ is the standard matrix of orthogonal projection onto Col(A), that is, for all $\mathbf{x} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{x} onto C := Col(A) is given by

$$\mathbf{x}_C = A(A^T A)^{-1} A^T \mathbf{x}.$$

Proof (continued).

$$A(A^{T}A)^{-1}A^{T}\mathbf{x} = \underbrace{A}_{\in\mathbb{R}^{n\times m}}\left(\underbrace{(A^{T}A)^{-1}A^{T}\mathbf{x}}_{\in\mathbb{R}^{m}}\right)$$

is a linear combination of the columns of A. By definition, this means that $A(A^T A)^{-1}A^T \mathbf{x} \in \text{Col}(A) = C$.

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A(A^T A)^{-1}A^T$ is the standard matrix of orthogonal projection onto Col(A), that is, for all $\mathbf{x} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{x} onto C := Col(A) is given by

 $\mathbf{x}_C = A(A^T A)^{-1} A^T \mathbf{x}.$

Proof (continued). In view of Corollary 6.5.3, it is now enough to prove that $(\mathbf{x} - A(A^T A)^{-1}A^T \mathbf{x}) \in C^{\perp}$, for it will then follow that $\mathbf{x}_C = A(A^T A)^{-1}A^T \mathbf{x}$, which is what we need to show.

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A(A^T A)^{-1}A^T$ is the standard matrix of orthogonal projection onto Col(A), that is, for all $\mathbf{x} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{x} onto C := Col(A) is given by

 $\mathbf{x}_C = A(A^T A)^{-1} A^T \mathbf{x}.$

Proof (continued). In view of Corollary 6.5.3, it is now enough to prove that $(\mathbf{x} - A(A^T A)^{-1}A^T \mathbf{x}) \in C^{\perp}$, for it will then follow that $\mathbf{x}_C = A(A^T A)^{-1}A^T \mathbf{x}$, which is what we need to show.

• Indeed, if we can show that $(\mathbf{x} - A(A^T A)^{-1}A^T \mathbf{x}) \in C^{\perp}$, then we get that

$$\mathbf{x} = \underbrace{A(A^T A)^{-1} A^T \mathbf{x}}_{\in C} + (\underbrace{\mathbf{x} - A(A^T A)^{-1} A^T \mathbf{x}}_{\in C^{\perp}}),$$

which (by Corollary 6.5.3) implies that $\mathbf{x}_C = A(A^T A)^{-1} A^T \mathbf{x}$ and $\mathbf{x}_{C^{\perp}} = \mathbf{x} - A(A^T A)^{-1} A^T \mathbf{x}$.

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A(A^T A)^{-1}A^T$ is the standard matrix of orthogonal projection onto Col(A), that is, for all $\mathbf{x} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{x} onto C := Col(A) is given by

$$\mathbf{x}_C = A(A^T A)^{-1} A^T \mathbf{x}.$$

Proof (continued). But note that

$$C^{\perp} = \operatorname{Col}(A)^{\perp} = \operatorname{Row}(A^{T})^{\perp} \stackrel{(*)}{=} \operatorname{Nul}(A^{T}),$$

where (*) follows from Theorem 6.6.1.

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A(A^T A)^{-1}A^T$ is the standard matrix of orthogonal projection onto Col(A), that is, for all $\mathbf{x} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{x} onto C := Col(A) is given by

$$\mathbf{x}_C = A(A^T A)^{-1} A^T \mathbf{x}.$$

Proof (continued). But note that

$$C^{\perp} = \operatorname{Col}(A)^{\perp} = \operatorname{Row}(A^{T})^{\perp} \stackrel{(*)}{=} \operatorname{Nul}(A^{T}),$$

where (*) follows from Theorem 6.6.1. So, it in fact suffices to show that the vector $\mathbf{x} - A(A^T A)^{-1}A^T \mathbf{x}$ belongs to Nul (A^T) .

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A(A^T A)^{-1}A^T$ is the standard matrix of orthogonal projection onto Col(A), that is, for all $\mathbf{x} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{x} onto C := Col(A) is given by

$$\mathbf{x}_C = A(A^T A)^{-1} A^T \mathbf{x}.$$

Proof (continued). But note that

$$C^{\perp} = \operatorname{Col}(A)^{\perp} = \operatorname{Row}(A^{T})^{\perp} \stackrel{(*)}{=} \operatorname{Nul}(A^{T}),$$

where (*) follows from Theorem 6.6.1. So, it in fact suffices to show that the vector $\mathbf{x} - A(A^T A)^{-1}A^T \mathbf{x}$ belongs to Nul (A^T) . For this, we compute:

$$A^{T}\left(\mathbf{x}-A(A^{T}A)^{-1}A^{T}\mathbf{x}\right) = A^{T}\mathbf{x}-\underbrace{A^{T}A(A^{T}A)^{-1}}_{=I_{m}}A^{T}\mathbf{x} = \mathbf{0}.$$

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A(A^T A)^{-1}A^T$ is the standard matrix of orthogonal projection onto Col(A), that is, for all $\mathbf{x} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{x} onto C := Col(A) is given by

$$\mathbf{x}_C = A(A^T A)^{-1} A^T \mathbf{x}.$$

Proof (continued). But note that

$$C^{\perp} = \operatorname{Col}(A)^{\perp} = \operatorname{Row}(A^{T})^{\perp} \stackrel{(*)}{=} \operatorname{Nul}(A^{T}),$$

where (*) follows from Theorem 6.6.1. So, it in fact suffices to show that the vector $\mathbf{x} - A(A^T A)^{-1}A^T \mathbf{x}$ belongs to Nul (A^T) . For this, we compute:

$$A^{T}\left(\mathbf{x}-A(A^{T}A)^{-1}A^{T}\mathbf{x}\right) = A^{T}\mathbf{x}-\underbrace{A^{T}A(A^{T}A)^{-1}}_{=I_{m}}A^{T}\mathbf{x} = \mathbf{0}.$$

This proves that $\mathbf{x} - A(A^T A)^{-1}A^T \mathbf{x} \in \text{Nul}(A^T)$, and we are done. \Box

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A(A^T A)^{-1}A^T$ is the standard matrix of orthogonal projection onto Col(A), that is, for all $\mathbf{x} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{x} onto C := Col(A) is given by

 $\mathbf{x}_C = A(A^T A)^{-1} A^T \mathbf{x}.$

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A(A^T A)^{-1}A^T$ is the standard matrix of orthogonal projection onto Col(A), that is, for all $\mathbf{x} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{x} onto C := Col(A) is given by

 $\mathbf{x}_C = A(A^T A)^{-1} A^T \mathbf{x}.$

Corollary 6.6.4

Let **a** be a non-zero vector in \mathbb{R}^n . Then the standard matrix of projection onto the line $L := \text{Span}(\mathbf{a})$ is the matrix

$$\mathbf{a}(\mathbf{a}^{\mathsf{T}}\mathbf{a})^{-1}\mathbf{a}^{\mathsf{T}} = \mathbf{a}(\mathbf{a}\cdot\mathbf{a})^{-1}\mathbf{a}^{\mathsf{T}} = \frac{1}{\mathbf{a}\cdot\mathbf{a}}\mathbf{a}\mathbf{a}^{\mathsf{T}}$$

Consequently, for every vector $\mathbf{x} \in \mathbb{R}^n$, we have that

$$\mathbf{x}_L = \operatorname{proj}_L(\mathbf{x}) = \frac{1}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T \mathbf{x}.$$

Proof. This is a special case of Theorem 6.6.3 for $A = |\mathbf{a}|$.

Let U be a subspace of \mathbb{R}^n , and let $P \in \mathbb{R}^{n \times n}$ be the standard matrix of proj_{U^{\perp}}. Then $I_n - P$ is the standard matrix of proj_{U^{\perp}}, that is, for all $\mathbf{x} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{x} onto U^{\perp} is given by $\mathbf{x}_{U^{\perp}} = (I_n - P)\mathbf{x}$.

Proof.

Let U be a subspace of \mathbb{R}^n , and let $P \in \mathbb{R}^{n \times n}$ be the standard matrix of proj_U. Then $I_n - P$ is the standard matrix of proj_{U^{\perp}}, that is, for all $\mathbf{x} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{x} onto U^{\perp} is given by $\mathbf{x}_{U^{\perp}} = (I_n - P)\mathbf{x}$.

Proof. We observe that for all $\mathbf{x} \in \mathbb{R}^n$, we have that

$$(I_n - P)\mathbf{x} = I_n\mathbf{x} - P\mathbf{x} \stackrel{(*)}{=} \mathbf{x} - \mathbf{x}_U \stackrel{(**)}{=} \mathbf{x}_{U^{\perp}},$$

where (*) follows from the fact that P is the standard matrix of proj_U, and (**) follows from Corollary 6.5.3. So, $I_n - P$ is indeed the standard matrix of proj_{U[⊥]}. \Box

Corollary 6.6.6

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank n (i.e. A is a matrix of full row rank). Then the matrix $I_m - A^T (AA^T)^{-1}A$ is the standard matrix of orthogonal projection onto N := Nul(A), that is, for all $\mathbf{x} \in \mathbb{R}^m$, the orthogonal projection of \mathbf{x} onto N is given by $\mathbf{x}_N = (I_m - A^T (AA^T)^{-1}A)\mathbf{x}$.

Proof.

Corollary 6.6.6

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank n (i.e. A is a matrix of full row rank). Then the matrix $I_m - A^T (AA^T)^{-1}A$ is the standard matrix of orthogonal projection onto N := Nul(A), that is, for all $\mathbf{x} \in \mathbb{R}^m$, the orthogonal projection of \mathbf{x} onto N is given by $\mathbf{x}_N = (I_m - A^T (AA^T)^{-1}A)\mathbf{x}$.

Proof. First, note that

$$\operatorname{Nul}(A) \stackrel{(*)}{=} \operatorname{Row}(A)^{\perp} = \operatorname{Col}(A^{\mathcal{T}})^{\perp}.$$

where (*) follows from Theorem 6.6.1.

Corollary 6.6.6

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank n (i.e. A is a matrix of full row rank). Then the matrix $I_m - A^T (AA^T)^{-1}A$ is the standard matrix of orthogonal projection onto N := Nul(A), that is, for all $\mathbf{x} \in \mathbb{R}^m$, the orthogonal projection of \mathbf{x} onto N is given by $\mathbf{x}_N = (I_m - A^T (AA^T)^{-1}A)\mathbf{x}$.

Proof. First, note that

$$\operatorname{Nul}(A) \stackrel{(*)}{=} \operatorname{Row}(A)^{\perp} = \operatorname{Col}(A^{T})^{\perp}.$$

where (*) follows from Theorem 6.6.1. Note further that $A^T \in \mathbb{R}^{m \times n}$ and that $\operatorname{rank}(A^T) = \operatorname{rank}(A) = n$, i.e. A^T has full column rank.

Corollary 6.6.6

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank n (i.e. A is a matrix of full row rank). Then the matrix $I_m - A^T (AA^T)^{-1}A$ is the standard matrix of orthogonal projection onto N := Nul(A), that is, for all $\mathbf{x} \in \mathbb{R}^m$, the orthogonal projection of \mathbf{x} onto N is given by $\mathbf{x}_N = (I_m - A^T (AA^T)^{-1}A)\mathbf{x}$.

Proof. First, note that

$$\operatorname{Nul}(A) \stackrel{(*)}{=} \operatorname{Row}(A)^{\perp} = \operatorname{Col}(A^T)^{\perp}.$$

where (*) follows from Theorem 6.6.1. Note further that $A^T \in \mathbb{R}^{m \times n}$ and that $\operatorname{rank}(A^T) = \operatorname{rank}(A) = n$, i.e. A^T has full column rank. So, by Theorem 6.6.3, the standard matrix of orthogonal projection onto $\operatorname{Col}(A^T)$ is $A^T(AA^T)^{-1}A$.

Corollary 6.6.6

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank n (i.e. A is a matrix of full row rank). Then the matrix $I_m - A^T (AA^T)^{-1}A$ is the standard matrix of orthogonal projection onto N := Nul(A), that is, for all $\mathbf{x} \in \mathbb{R}^m$, the orthogonal projection of \mathbf{x} onto N is given by $\mathbf{x}_N = (I_m - A^T (AA^T)^{-1}A)\mathbf{x}$.

Proof. First, note that

$$\operatorname{Nul}(A) \stackrel{(*)}{=} \operatorname{Row}(A)^{\perp} = \operatorname{Col}(A^{\mathcal{T}})^{\perp}.$$

where (*) follows from Theorem 6.6.1. Note further that $A^T \in \mathbb{R}^{m \times n}$ and that rank $(A^T) = \operatorname{rank}(A) = n$, i.e. A^T has full column rank. So, by Theorem 6.6.3, the standard matrix of orthogonal projection onto $\operatorname{Col}(A^T)$ is $A^T(AA^T)^{-1}A$. Finally, by Theorem 6.6.5, the standard matrix of orthogonal projection onto $\operatorname{Col}(A^T)^{\perp} = \operatorname{Nul}(A)$ is $I_m - A^T(AA^T)^{-1}A$. \Box