Linear Algebra 2

Lecture \#16

The orthogonal complement of a subspace. Orthogonal projection onto a subspace

Irena Penev

March 13, 2024

- This lecture has three parts:
- This lecture has three parts:
(1) The orthogonal complement of a subspace
- This lecture has three parts:
(1) The orthogonal complement of a subspace (2) Orthogonal projection onto a subspace
- This lecture has three parts:
(1) The orthogonal complement of a subspace
(2) Orthogonal projection onto a subspace (3) Orthogonal projection onto subspaces of \mathbb{R}^{n}
(1) The orthogonal complement of a subspace
(1) The orthogonal complement of a subspace

Definition

Let V be a real or complex vector space V, equipped with a scalar product $\langle\cdot, \cdot\rangle$. For a set $A \subseteq V,{ }^{a}$ the orthogonal complement of A, denoted by A^{\perp}, is the set of all vectors in V that are orthogonal to A.
${ }^{a}$ Here, A may or may not be a subspace of V.

- Thus, we have the following:

$$
\begin{aligned}
A^{\perp} & =\{\mathbf{v} \in V \mid \mathbf{v} \perp A\} \\
& =\{\mathbf{v} \in V \mid \mathbf{v} \perp \mathbf{a} \forall \mathbf{a} \in A\} \\
& =\{\mathbf{v} \in V \mid\langle\mathbf{v}, \mathbf{a}\rangle=0 \quad \forall \mathbf{a} \in A\} .
\end{aligned}
$$

Proposition 6.4.1

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $A, B \subseteq V$. Then
(0) A^{\perp} is a subspace of $V_{;}{ }^{a}$
(b) if $A \subseteq B$, then $A^{\perp} \supseteq B^{\perp}$.
${ }^{a}$ Note that it is possible that $A=\emptyset$. In this case, we simply get that $A^{\perp}=V$. This is because every vector in V is (vacuously) orthogonal to every vector in the empty set.

Proof (outline).

Proposition 6.4.1

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $A, B \subseteq V$. Then
(0) A^{\perp} is a subspace of $V ;{ }^{a}$
(b) if $A \subseteq B$, then $A^{\perp} \supseteq B^{\perp}$.
${ }^{a}$ Note that it is possible that $A=\emptyset$. In this case, we simply get that $A^{\perp}=V$. This is because every vector in V is (vacuously) orthogonal to every vector in the empty set.

Proof (outline). For (a), we simply check that A^{\perp} contains $\mathbf{0}$ and is closed under vector addition and scalar multiplication (details: Lecture Notes).

Proposition 6.4.1

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $A, B \subseteq V$. Then
(a) A^{\perp} is a subspace of $V ;{ }^{a}$
(b) if $A \subseteq B$, then $A^{\perp} \supseteq B^{\perp}$.
${ }^{a}$ Note that it is possible that $A=\emptyset$. In this case, we simply get that $A^{\perp}=V$. This is because every vector in V is (vacuously) orthogonal to every vector in the empty set.

Proof (outline). For (a), we simply check that A^{\perp} contains $\mathbf{0}$ and is closed under vector addition and scalar multiplication (details: Lecture Notes).
Part (b) is "obvious": if $A \subseteq B$, then any vector that is orthogonal to every vector in B is, in particular, orthogonal to every vector in A. \square

Proposition 6.4.2

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in V$. Then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}^{\perp}=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)^{\perp}$.

Proof.

Proposition 6.4.2

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in V$. Then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}^{\perp}=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)^{\perp}$.

Proof. Since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\} \subseteq \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$, Prop. 6.4.1(b) guarantees that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}^{\perp} \supseteq \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)^{\perp}$.

Proposition 6.4.2

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in V$. Then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}^{\perp}=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)^{\perp}$.

Proof. Since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\} \subseteq \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$, Prop. 6.4.1(b) guarantees that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}^{\perp} \supseteq \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)^{\perp}$.
Let us prove the reverse inclusion.

Proposition 6.4.2

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in V$. Then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}^{\perp}=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)^{\perp}$.

Proof. Since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\} \subseteq \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$, Prop. 6.4.1(b) guarantees that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}^{\perp} \supseteq \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)^{\perp}$.
Let us prove the reverse inclusion. Fix $\mathbf{x} \in\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}^{\perp}$. WTS $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)^{\perp}$.

Proposition 6.4.2

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in V$. Then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}^{\perp}=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)^{\perp}$.

Proof. Since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\} \subseteq \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$, Prop. 6.4.1(b) guarantees that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}^{\perp} \supseteq \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)^{\perp}$.
Let us prove the reverse inclusion. Fix $\mathbf{x} \in\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}^{\perp}$. WTS $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)^{\perp}$. Fix $\mathbf{u} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$.

Proposition 6.4.2

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in V$. Then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}^{\perp}=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)^{\perp}$.

Proof. Since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\} \subseteq \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$, Prop. 6.4.1(b) guarantees that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}^{\perp} \supseteq \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)^{\perp}$.
Let us prove the reverse inclusion. Fix $\mathbf{x} \in\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}^{\perp}$. WTS $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)^{\perp}$. Fix $\mathbf{u} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. Then there exist scalars $\alpha_{1}, \ldots, \alpha_{k}$ s.t. $\mathbf{u}=\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}$.

Proposition 6.4.2

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in V$. Then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}^{\perp}=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)^{\perp}$.

Proof. Since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\} \subseteq \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$, Prop. 6.4.1(b) guarantees that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}^{\perp} \supseteq \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)^{\perp}$.
Let us prove the reverse inclusion. Fix $\mathbf{x} \in\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}^{\perp}$. WTS $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)^{\perp}$. Fix $\mathbf{u} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. Then there exist scalars $\alpha_{1}, \ldots, \alpha_{k}$ s.t. $\mathbf{u}=\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}$. But now

$$
\begin{aligned}
\langle\mathbf{u}, \mathbf{x}\rangle & =\left\langle\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}, \mathbf{x}\right\rangle \\
& =\alpha_{1}\left\langle\mathbf{u}_{1}, \mathbf{x}\right\rangle+\cdots+\alpha_{k}\left\langle\mathbf{u}_{k}, \mathbf{x}\right\rangle \\
& \stackrel{(*)}{=} \alpha_{1} 0+\cdots+\alpha_{k} 0=0,
\end{aligned}
$$

where $\left(^{*}\right)$ follows from the fact that $\mathbf{x} \in\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}^{\perp}$. This proves that $\mathbf{x} \perp \mathbf{u}$, and consequently, $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)^{\perp} . \square$

- Recall from subsection 3.1.3 of the Lecture Notes (last semester) that if V is a vector space over a field \mathbb{F}, and U and W are subspaces of V, then

$$
U+W:=\{\mathbf{u}+\mathbf{w} \mid \mathbf{u} \in U, \mathbf{w} \in W\}
$$

is a subspace of V.

- Moreover, recall from subsection 3.2.6 of the Lecture Notes that if $V=U+W$ and $U \cap W=\{\mathbf{0}\}$, then we say that V is the direct sum of U and W, and we write $V=U \oplus W$.

Theorem 6.4.3

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let U be a subspace of V. Then U^{\perp} is a subspace of V, and all the following hold:
(a) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp};
(D) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthonormal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthonormal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthonormal basis of U^{\perp};
(c) $\left(U^{\perp}\right)^{\perp}=U$;
(a) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof. By Proposition 6.4.1(a), U^{\perp} is a subspace of V. It remains to prove (a)-(e).

Proof. By Proposition 6.4.1(a), U^{\perp} is a subspace of V. It remains to prove (a)-(e).

Theorem 6.4.3

(0) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp};

Proof of (a).

Proof. By Proposition 6.4.1(a), U^{\perp} is a subspace of V. It remains to prove (a)-(e).

Theorem 6.4.3

(a) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp};

Proof of (a). Assume that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V. WTS $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp}.

Proof. By Proposition 6.4.1(a), U^{\perp} is a subspace of V. It remains to prove (a)-(e).

Theorem 6.4.3

(a) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp};

Proof of (a). Assume that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V. WTS $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp}. Clearly, $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal set of vectors, and so it suffices to show that $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is in fact a basis of U^{\perp}.

Proof. By Proposition 6.4.1(a), U^{\perp} is a subspace of V. It remains to prove (a)-(e).

Theorem 6.4.3

(0) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp};

Proof of (a). Assume that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V. WTS $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp}. Clearly, $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal set of vectors, and so it suffices to show that $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is in fact a basis of U^{\perp}. We already know that $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is linearly independent (because it is a subset of the basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V), and so we need only show that $\operatorname{Span}\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right)=U^{\perp}$.

Theorem 6.4.3

(0) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp};

Proof of (a) (cont.). Reminder: WTS Span $\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right)=U^{\perp}$.

Theorem 6.4.3

(0) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp};

Proof of (a) (cont.). Reminder: WTS Span $\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right)=U^{\perp}$. We first prove that $\operatorname{Span}\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right) \supseteq U^{\perp}$.

Theorem 6.4.3

(0) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp};

Proof of (a) (cont.). Reminder: WTS Span $\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right)=U^{\perp}$. We first prove that $\operatorname{Span}\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right) \supseteq U^{\perp}$. Fix $\mathbf{x} \in U^{\perp}$.

Theorem 6.4.3

(0) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp};

Proof of (a) (cont.). Reminder: WTS Span $\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right)=U^{\perp}$.
We first prove that $\operatorname{Span}\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right) \supseteq U^{\perp}$. Fix $\mathbf{x} \in U^{\perp}$. Then

$$
\mathbf{x} \stackrel{(*)}{=} \sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} \stackrel{(* *)}{=} \sum_{i=k+1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

where (*) follows from Theorem 6.3.5 (since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of V) and (**) follows from the fact that $\mathbf{x} \in U^{\perp}$ and $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$, we so $\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle=0$ for all $i \in\{1, \ldots, k\}$.

Theorem 6.4.3

(2) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp};

Proof of (a) (cont.). Reminder: WTS Span $\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right)=U^{\perp}$.
We first prove that $\operatorname{Span}\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right) \supseteq U^{\perp}$. Fix $\mathbf{x} \in U^{\perp}$. Then

$$
\mathbf{x} \stackrel{(*)}{=} \sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} \stackrel{(* *)}{=} \sum_{i=k+1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

where (*) follows from Theorem 6.3.5 (since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of V) and (${ }^{* *}$) follows from the fact that $\mathbf{x} \in U^{\perp}$ and $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$, we so $\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle=0$ for all $i \in\{1, \ldots, k\}$.
Thus, \mathbf{x} is a linear combination of the vectors $\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}$, and we deduce that $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right)$.

Theorem 6.4.3

(2) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp};

Proof of (a) (cont.). Reminder: WTS Span $\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right)=U^{\perp}$.
We first prove that $\operatorname{Span}\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right) \supseteq U^{\perp}$. Fix $\mathbf{x} \in U^{\perp}$. Then

$$
\mathbf{x} \stackrel{(*)}{=} \sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} \stackrel{(* *)}{=} \sum_{i=k+1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

where (*) follows from Theorem 6.3.5 (since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of V) and $(* *)$ follows from the fact that $\mathbf{x} \in U^{\perp}$ and $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$, we so $\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle=0$ for all $i \in\{1, \ldots, k\}$.
Thus, \mathbf{x} is a linear combination of the vectors $\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}$, and we deduce that $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right)$. This proves that $\operatorname{Span}\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right) \supseteq U^{\perp}$.

Theorem 6.4.3

(0) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp};

Proof of (a) (cont.). Reminder: WTS Span $\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right)=U^{\perp}$. It remains to show that $\operatorname{Span}\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right) \subseteq U^{\perp}$.

Theorem 6.4.3

(0) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp};

Proof of (a) (cont.). Reminder: WTS Span $\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right)=U^{\perp}$.
It remains to show that $\operatorname{Span}\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right) \subseteq U^{\perp}$. Fix an arbitrary $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right)$. WTS $\mathbf{x} \in U^{\perp}$.

Theorem 6.4.3

(2) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp};

Proof of (a) (cont.). Reminder: WTS Span $\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right)=U^{\perp}$.
It remains to show that $\operatorname{Span}\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right) \subseteq U^{\perp}$. Fix an arbitrary $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right)$. WTS $\mathbf{x} \in U^{\perp}$. Fix scalars $\alpha_{k+1}, \ldots, \alpha_{n}$ such that

$$
\mathbf{x}=\alpha_{k+1} \mathbf{u}_{k+1}+\cdots+\alpha_{n} \mathbf{u}_{n}
$$

Theorem 6.4.3

(2) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp};

Proof of (a) (cont.). Reminder: WTS Span $\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right)=U^{\perp}$. It remains to show that $\operatorname{Span}\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right) \subseteq U^{\perp}$. Fix an arbitrary $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right)$. WTS $\mathbf{x} \in U^{\perp}$. Fix scalars $\alpha_{k+1}, \ldots, \alpha_{n}$ such that

$$
\mathbf{x}=\alpha_{k+1} \mathbf{u}_{k+1}+\cdots+\alpha_{n} \mathbf{u}_{n}
$$

Fix any $\mathbf{u} \in U$; we must show that $\mathbf{x} \perp \mathbf{u}$. Since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a basis of U, we know that there exist scalars $\alpha_{1}, \ldots, \alpha_{k}$ such that

$$
\mathbf{u}=\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}
$$

Theorem 6.4.3

(2) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp};

Proof of (a) (cont.). Reminder: WTS Span $\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right)=U^{\perp}$. It remains to show that $\operatorname{Span}\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right) \subseteq U^{\perp}$. Fix an arbitrary $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right)$. WTS $\mathbf{x} \in U^{\perp}$. Fix scalars $\alpha_{k+1}, \ldots, \alpha_{n}$ such that

$$
\mathbf{x}=\alpha_{k+1} \mathbf{u}_{k+1}+\cdots+\alpha_{n} \mathbf{u}_{n}
$$

Fix any $\mathbf{u} \in U$; we must show that $\mathbf{x} \perp \mathbf{u}$. Since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a basis of U, we know that there exist scalars $\alpha_{1}, \ldots, \alpha_{k}$ such that

$$
\mathbf{u}=\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}
$$

Since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\} \perp\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$, it readily follows that $\mathbf{x} \perp \mathbf{u}$ (details: Lecture Notes), and we deduce that $\operatorname{Span}\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right) \subseteq U^{\perp}$. This proves (a).

Theorem 6.4.3

(a) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp};
(D) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthonormal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthonormal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthonormal basis of U^{\perp};

Proof of (b). Part (b) follows immediately from part (a).

Theorem 6.4.3

(0) $\left(U^{\perp}\right)^{\perp}=U$;
(0) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). It remains to prove (c), (d), and (e).

Theorem 6.4.3

(c) $\left(U^{\perp}\right)^{\perp}=U$;
(a) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). It remains to prove (c), (d), and (e).
First, since V is finite-dimensional, so is U.

Theorem 6.4.3

(0) $\left(U^{\perp}\right)^{\perp}=U$;
(0) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). It remains to prove (c), (d), and (e).
First, since V is finite-dimensional, so is U. So, by
Corollary 6.3.11(a), U has an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$.

Theorem 6.4.3

(0) $\left(U^{\perp}\right)^{\perp}=U$;
(0) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). It remains to prove (c), (d), and (e).
First, since V is finite-dimensional, so is U. So, by
Corollary 6.3.11(a), U has an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$. By Corollary 6.3.11(b), the orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U can be extended to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V.

Theorem 6.4.3

(0) $\left(U^{\perp}\right)^{\perp}=U$;
(0) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). It remains to prove (c), (d), and (e).
First, since V is finite-dimensional, so is U. So, by
Corollary 6.3.11(a), U has an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$. By Corollary 6.3.11(b), the orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U can be extended to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V. By (a), $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp}.

Theorem 6.4.3

(0) $\left(U^{\perp}\right)^{\perp}=U$;
(0) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). It remains to prove (c), (d), and (e).
First, since V is finite-dimensional, so is U. So, by
Corollary 6.3.11(a), U has an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$. By Corollary 6.3.11(b), the orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U can be extended to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V. By (a), $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp}. But then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of V that extends $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$,

Theorem 6.4.3

(0) $\left(U^{\perp}\right)^{\perp}=U$;
(0) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). It remains to prove (c), (d), and (e).
First, since V is finite-dimensional, so is U. So, by
Corollary 6.3.11(a), U has an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$. By Corollary 6.3.11(b), the orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U can be extended to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V. By (a), $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp}. But then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of V that extends $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$, and so by (a) applied to the vector space U^{\perp}, we have that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of $\left(U^{\perp}\right)^{\perp}$.

Theorem 6.4.3

(0) $\left(U^{\perp}\right)^{\perp}=U$;
(0) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). It remains to prove (c), (d), and (e).
First, since V is finite-dimensional, so is U. So, by
Corollary $6.3 .11(\mathrm{a}), \boldsymbol{U}$ has an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$. By Corollary 6.3.11(b), the orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U can be extended to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V. By (a), $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp}. But then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of V that extends $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$, and so by (a) applied to the vector space U^{\perp}, we have that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of $\left(U^{\perp}\right)^{\perp}$. But now $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a basis of both U and $\left(U^{\perp}\right)^{\perp}$, and it follows that $U=\left(U^{\perp}\right)^{\perp}$, i.e. (c) holds.

Theorem 6.4.3

(0) $\left(U^{\perp}\right)^{\perp}=U$;
(0) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). Further, we have the following:

- $\operatorname{dim}(U)=k$, since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a basis of U;
- $\operatorname{dim}\left(U^{\perp}\right)=n-k$, since $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is a basis of U^{\perp};
- $\operatorname{dim}(V)=n$, since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is a basis of V. It now immediately follows that $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$, i.e. (e) holds.

Theorem 6.4.3

$\left(U^{\perp}\right)^{\perp}=U$
(a) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). Finally, we prove (d).

Theorem 6.4.3

$$
\left(U^{\perp}\right)^{\perp}=U
$$

(a) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). Finally, we prove (d).
Let us first show that $U \cap U^{\perp}=\{\mathbf{0}\}$.

Theorem 6.4.3

(c) $\left(U^{\perp}\right)^{\perp}=U$;
(0) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). Finally, we prove (d).
Let us first show that $U \cap U^{\perp}=\{\mathbf{0}\}$. Since U and U^{\perp} are both subspaces of V, they both contain $\mathbf{0}$, and consequently, $\mathbf{0} \in U \cap U^{\perp}$.

Theorem 6.4.3

(c) $\left(U^{\perp}\right)^{\perp}=U$;
(a) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). Finally, we prove (d).
Let us first show that $U \cap U^{\perp}=\{\mathbf{0}\}$. Since U and U^{\perp} are both subspaces of V, they both contain $\mathbf{0}$, and consequently, $\mathbf{0} \in U \cap U^{\perp}$.

Now, fix any $\mathbf{u} \in U \cap U^{\perp}$; we must show that $\mathbf{u}=\mathbf{0}$.

Theorem 6.4.3

(c) $\left(U^{\perp}\right)^{\perp}=U$;
(a) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). Finally, we prove (d).
Let us first show that $U \cap U^{\perp}=\{\mathbf{0}\}$. Since U and U^{\perp} are both subspaces of V, they both contain $\mathbf{0}$, and consequently, $\mathbf{0} \in U \cap U^{\perp}$.

Now, fix any $\mathbf{u} \in U \cap U^{\perp}$; we must show that $\mathbf{u}=\mathbf{0}$. Since $\mathbf{u} \in U$ and $\mathbf{u} \in U^{\perp}$, we have that $\mathbf{u} \perp \mathbf{u}$, i.e. $\langle\mathbf{u}, \mathbf{u}\rangle=0$.

Theorem 6.4.3

(c) $\left(U^{\perp}\right)^{\perp}=U$;
(a) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). Finally, we prove (d).
Let us first show that $U \cap U^{\perp}=\{\mathbf{0}\}$. Since U and U^{\perp} are both subspaces of V, they both contain $\mathbf{0}$, and consequently, $\mathbf{0} \in U \cap U^{\perp}$.

Now, fix any $\mathbf{u} \in U \cap U^{\perp}$; we must show that $\mathbf{u}=\mathbf{0}$. Since $\mathbf{u} \in U$ and $\mathbf{u} \in U^{\perp}$, we have that $\mathbf{u} \perp \mathbf{u}$, i.e. $\langle\mathbf{u}, \mathbf{u}\rangle=0$. But then by the definition of a scalar product, we have that $\mathbf{u}=\mathbf{0}$.

Theorem 6.4.3

(c) $\left(U^{\perp}\right)^{\perp}=U$;
(0) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). Finally, we prove (d).
Let us first show that $U \cap U^{\perp}=\{\mathbf{0}\}$. Since U and U^{\perp} are both subspaces of V, they both contain $\mathbf{0}$, and consequently, $\mathbf{0} \in U \cap U^{\perp}$.

Now, fix any $\mathbf{u} \in U \cap U^{\perp}$; we must show that $\mathbf{u}=\mathbf{0}$. Since $\mathbf{u} \in U$ and $\mathbf{u} \in U^{\perp}$, we have that $\mathbf{u} \perp \mathbf{u}$, i.e. $\langle\mathbf{u}, \mathbf{u}\rangle=0$. But then by the definition of a scalar product, we have that $\mathbf{u}=\mathbf{0}$. This proves that $U \cap U^{\perp}=\{\mathbf{0}\}$.

Theorem 6.4.3

(c) $\left(U^{\perp}\right)^{\perp}=U$;
(0) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$; (0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). It remains to show that $V=U+U^{\perp}$.

Theorem 6.4.3

(c) $\left(U^{\perp}\right)^{\perp}=U$;
(0) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). It remains to show that $V=U+U^{\perp}$.
It is clear that $U+U^{\perp} \subseteq V$, and so we need only show that $V \subseteq U+U^{\perp}$.

Theorem 6.4.3

(c) $\left(U^{\perp}\right)^{\perp}=U$;
(0) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). It remains to show that $V=U+U^{\perp}$.
It is clear that $U+U^{\perp} \subseteq V$, and so we need only show that $V \subseteq U+U^{\perp}$.
Fix any $\mathbf{v} \in V$.

Theorem 6.4.3

(0) $\left(U^{\perp}\right)^{\perp}=U$;
(0) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof (continued). It remains to show that $V=U+U^{\perp}$.
It is clear that $U+U^{\perp} \subseteq V$, and so we need only show that $V \subseteq U+U^{\perp}$.
Fix any $\mathbf{v} \in V$. Since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is a basis of V, we know that there exist scalars $\alpha_{1}, \ldots, \alpha_{n}$ such that $\mathbf{v}=\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{n} \mathbf{u}_{n}$. Set $\mathbf{v}_{1}:=\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}$ and $\mathbf{v}_{2}:=\alpha_{k+1} \mathbf{u}_{k+1}+\cdots+\alpha_{n} \mathbf{u}_{n}$. Then $\mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2}$. Since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a basis of U, we see that $\mathbf{v}_{1} \in U$, and since $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is a basis of U^{\perp}, we see that $\mathbf{v}_{2} \in U^{\perp}$. So, $\mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2}$ belongs to $U+U^{\perp}$, and it follows that $V \subseteq U+U^{\perp}$. This proves (d), and we are done. \square

Theorem 6.4.3

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let U be a subspace of V. Then U^{\perp} is a subspace of V, and all the following hold:
(a) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthogonal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp};
(D) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthonormal basis of U, and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of that basis to an orthonormal basis of V, then $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthonormal basis of U^{\perp};
(c) $\left(U^{\perp}\right)^{\perp}=U$;
(a) $V=U \oplus U^{\perp}$, that is, $V=U+U^{\perp}$ and $U \cap U^{\perp}=\{0\}$;
(0) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

- As a corollary of Theorem 6.4.3(a-b), we obtain the following computationally useful proposition.
- The proposition is long, and we need to slides to state it.

Proposition 6.4.4

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ be any linearly independent set of vectors V, and let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_{n}\right\}$ be an extension of that linearly independent set to a basis of V. Set $U:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.
(2) If the Gram-Schmidt orthogonalization process (version 1) is applied to input vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_{n}$ to produce output vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}$, then both the following hold:

- $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, and $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp};
- $\left\{\frac{u_{1}}{\left\|u_{u}\right\|}, \ldots, \frac{u_{k}}{\left\|u_{k}\right\|}\right\}$ is an orthonormal basis of U, and $\left\{\frac{\mathbf{u}_{k+1}}{\left\|u_{k+1}\right\|}, \ldots, \frac{\mathbf{u}_{n}}{\left\|u_{n}\right\|}\right\}$ is an orthonormal basis of U^{\perp}.

Proposition 6.4.4

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ be any linearly independent set of vectors V, and let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_{n}\right\}$ be an extension of that linearly independent set to a basis of V. Set $U:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.
(b) If the Gram-Schmidt orthogonalization process (version 2) is applied to input vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_{n}$ to produce output vectors $\mathbf{z}_{1}, \ldots, \mathbf{z}_{k}, \mathbf{z}_{k+1}, \ldots, \mathbf{z}_{n}$, then $\left\{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k}\right\}$ is an orthonormal basis of U, and $\left\{\mathbf{z}_{k+1}, \ldots, \mathbf{z}_{n}\right\}$ is an orthonormal basis of U^{\perp}.

Proposition 6.4.4

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ be any linearly independent set of vectors V, and let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_{n}\right\}$ be an extension of that linearly independent set to a basis of V. Set $U:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.
(b) If the Gram-Schmidt orthogonalization process (version 2) is applied to input vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_{n}$ to produce output vectors $\mathbf{z}_{1}, \ldots, \mathbf{z}_{k}, \mathbf{z}_{k+1}, \ldots, \mathbf{z}_{n}$, then $\left\{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k}\right\}$ is an orthonormal basis of U, and $\left\{\mathbf{z}_{k+1}, \ldots, \mathbf{z}_{n}\right\}$ is an orthonormal basis of U^{\perp}.

- This is an easy corollary of Theorem 6.4.3 (details: Lecture Notes).

Example 6.4.5

Consider the following vectors in \mathbb{R}^{4} :

$$
\mathbf{a}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right], \quad \mathbf{a}_{2}=\left[\begin{array}{l}
2 \\
2 \\
2 \\
0
\end{array}\right], \quad \mathbf{a}_{3}=\left[\begin{array}{l}
0 \\
3 \\
3 \\
3
\end{array}\right], \quad \mathbf{a}_{4}=\left[\begin{array}{l}
2 \\
4 \\
4 \\
2
\end{array}\right]
$$

Compute an orthonormal basis of $U:=\operatorname{Span}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right)$ and an orthonormal basis of U^{\perp}.

Solution.

Example 6.4.5

Consider the following vectors in \mathbb{R}^{4} :

$$
\mathbf{a}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right], \quad \mathbf{a}_{2}=\left[\begin{array}{l}
2 \\
2 \\
2 \\
0
\end{array}\right], \quad \mathbf{a}_{3}=\left[\begin{array}{l}
0 \\
3 \\
3 \\
3
\end{array}\right], \quad \mathbf{a}_{4}=\left[\begin{array}{l}
2 \\
4 \\
4 \\
2
\end{array}\right] .
$$

Compute an orthonormal basis of $U:=\operatorname{Span}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right)$ and an orthonormal basis of U^{\perp}.

Solution. First, we need to find a basis of U and extend it to a basis of \mathbb{R}^{4}. For this, we use Proposition 3.3.21. We consider the standard basis $\mathcal{E}_{4}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}\right\}$ of \mathbb{R}^{4}, and we form the matrix

$$
\left.\begin{array}{rl}
C & :=\left[\begin{array}{lll:llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3}
\end{array} \mathbf{e}_{4}\right.
\end{array}\right] .
$$

Solution (continued). Reminder:

$$
C:=\left[\begin{array}{llll:llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} & \mathbf{e}_{4}
\end{array}\right]
$$

Solution (continued). Reminder:
$C:=\left[\begin{array}{llllllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} & \mathbf{e}_{4}\end{array}\right]$.
By row reducing, we obtain

$$
\operatorname{RREF}(C)=\left[\begin{array}{rrrr:rrrr}
1 & 2 & 0 & 2 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 2 / 3 & 0 & 0 & 0 & 1 / 3 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0
\end{array}\right] .
$$

Solution (continued). Reminder:
$C:=\left[\begin{array}{llllllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} & \mathbf{e}_{4}\end{array}\right]$.
By row reducing, we obtain

$$
\operatorname{RREF}(C)=\left[\begin{array}{rrrr:rrrr}
1 & 2 & 0 & 2 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 2 / 3 & 0 & 0 & 0 & 1 / 3 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0
\end{array}\right] .
$$

As we can see, the pivot columns of C are its first, third, fifth, and sixth column.

Solution (continued). Reminder:
$C:=\left[\begin{array}{llllllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} & \mathbf{e}_{4}\end{array}\right]$.
By row reducing, we obtain

$$
\operatorname{RREF}(C)=\left[\begin{array}{rrrr:rrrr}
1 & 2 & 0 & 2 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 2 / 3 & 0 & 0 & 0 & 1 / 3 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0
\end{array}\right] .
$$

As we can see, the pivot columns of C are its first, third, fifth, and sixth column. So, by Proposition 3.3.21, $\left\{\mathbf{a}_{1}, \mathbf{a}_{3}\right\}$ is a basis of U, and $\left\{\mathbf{a}_{1}, \mathbf{a}_{3}, \mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ is a basis of \mathbb{R}^{4} that extends $\left\{\mathbf{a}_{1}, \mathbf{a}_{3}\right\}$.

Solution (continued). Reminder:
$C:=\left[\begin{array}{llllllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4}{ }^{\prime} & \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} & \mathbf{e}_{4}\end{array}\right]$.
By row reducing, we obtain

$$
\operatorname{RREF}(C)=\left[\begin{array}{rrrr:rrrr}
1 & 2 & 0 & 2 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 2 / 3 & 0 & 0 & 0 & 1 / 3 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0
\end{array}\right]
$$

As we can see, the pivot columns of C are its first, third, fifth, and sixth column. So, by Proposition 3.3.21, $\left\{\mathbf{a}_{1}, \mathbf{a}_{3}\right\}$ is a basis of U, and $\left\{\mathbf{a}_{1}, \mathbf{a}_{3}, \mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ is a basis of \mathbb{R}^{4} that extends $\left\{\mathbf{a}_{1}, \mathbf{a}_{3}\right\}$. By applying the Gram-Schmidt orthogonalization process (version 2) to the vectors $\mathbf{a}_{1}, \mathbf{a}_{3}, \mathbf{e}_{1}, \mathbf{e}_{2}$, we obtain the following vectors (next slide):

Solution (continued).

$$
\begin{array}{ll}
z_{1}=\left[\begin{array}{c}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3} \\
0
\end{array}\right], & z_{2}=\left[\begin{array}{r}
-2 / \sqrt{15} \\
1 / \sqrt{15} \\
1 / \sqrt{15} \\
3 / \sqrt{15}
\end{array}\right], \\
z_{3}=\left[\begin{array}{c}
2 / \sqrt{10} \\
-1 / \sqrt{10} \\
-1 / \sqrt{10} \\
2 / \sqrt{10}
\end{array}\right], & z_{4}=\left[\begin{array}{c}
0 \\
1 / \sqrt{2} \\
-1 / \sqrt{2} \\
0
\end{array}\right] .
\end{array}
$$

Solution (continued).

$$
\begin{array}{ll}
z_{1}=\left[\begin{array}{c}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3} \\
0
\end{array}\right], & z_{2}=\left[\begin{array}{r}
-2 / \sqrt{15} \\
1 / \sqrt{15} \\
1 / \sqrt{15} \\
3 / \sqrt{15}
\end{array}\right], \\
z_{3}=\left[\begin{array}{r}
2 / \sqrt{10} \\
-1 / \sqrt{10} \\
-1 / \sqrt{10} \\
2 / \sqrt{10}
\end{array}\right], & z_{4}=\left[\begin{array}{c}
0 \\
1 / \sqrt{2} \\
-1 / \sqrt{2} \\
0
\end{array}\right] .
\end{array}
$$

By Proposition 6.4.4(b), $\left\{\mathbf{z}_{1}, z_{2}\right\}$ is an orthonormal basis of U, whereas $\left\{\mathbf{z}_{3}, \mathbf{z}_{4}\right\}$ is an orthonormal basis of U^{\perp}. \square

Example 6.4.5

Consider the following vectors in \mathbb{R}^{4} :

$$
\mathbf{a}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right], \quad \mathbf{a}_{2}=\left[\begin{array}{l}
2 \\
2 \\
2 \\
0
\end{array}\right], \quad \mathbf{a}_{3}=\left[\begin{array}{l}
0 \\
3 \\
3 \\
3
\end{array}\right], \quad \mathbf{a}_{4}=\left[\begin{array}{l}
2 \\
4 \\
4 \\
2
\end{array}\right] .
$$

Compute an orthonormal basis of $U:=\operatorname{Span}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right)$ and an orthonormal basis of U^{\perp}.

- Remark: We could also have applied the Gram-Schmidt orthogonalization process (version 1) to the vectors $\mathbf{a}_{1}, \mathbf{a}_{3}, \mathbf{e}_{1}, \mathbf{e}_{2}$, and then normalized the output vectors. We would have gotten the same vectors $\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}, \mathbf{z}_{4}$ as above. Proposition 6.4.4(a) would then imply that $\left\{\mathbf{z}_{1}, \mathbf{z}_{2}\right\}$ is an orthonormal basis of U, whereas $\left\{\mathbf{z}_{3}, \mathbf{z}_{4}\right\}$ is an orthonormal basis of U^{\perp}.

(2) Orthogonal projection onto a subspace

(2) Orthogonal projection onto a subspace

Theorem 6.5.1

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then there exists a unique vector $x_{U} \in U$ that has the property that

$$
\left\|\mathbf{x}-\mathbf{x}_{U}\right\|=\min _{\mathbf{u} \in U}\|\mathbf{x}-\mathbf{u}\| .
$$

Moreover, if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, then this vector \mathbf{x}_{U} is given by the formula

$$
\mathbf{x}_{U}=\sum_{i=1}^{k} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{x})=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

- Terminology/Notation: The vector \mathbf{x}_{U} from Theorem 6.5.1 is called the orthogonal projection of x onto U.

Theorem 6.5.1

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then there exists a unique vector $\mathbf{x}_{U} \in U$ that has the property that

$$
\left\|\mathbf{x}-\mathbf{x}_{U}\right\|=\min _{\mathbf{u} \in U}\|\mathbf{x}-\mathbf{u}\| .
$$

Moreover, if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, then this vector \mathbf{x}_{U} is given by the formula

$$
\mathbf{x}_{U}=\sum_{i=1}^{k} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{x})=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} .
$$

- Remarks:

Theorem 6.5.1

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then there exists a unique vector $\mathbf{x}_{U} \in U$ that has the property that

$$
\left\|\mathbf{x}-\mathbf{x}_{U}\right\|=\min _{\mathbf{u} \in U}\|\mathbf{x}-\mathbf{u}\| .
$$

Moreover, if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, then this vector \mathbf{x}_{U} is given by the formula

$$
\mathbf{x}_{U}=\sum_{i=1}^{k} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{x})=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} .
$$

- Remarks:
- If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthonormal basis of U, then

$$
\mathbf{x}_{U}=\sum_{i=1}^{k} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{x})=\sum_{i=1}^{k}\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle \mathbf{u}_{i}
$$

Theorem 6.5.1

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot \cdot\rangle$ and the induced norm $\|\cdot\|$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then there exists a unique vector $\mathbf{x}_{U} \in U$ that has the property that

$$
\left\|\mathbf{x}-\mathbf{x}_{U}\right\|=\min _{\mathbf{u} \in U}\|\mathbf{x}-\mathbf{u}\| .
$$

Moreover, if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, then this vector \mathbf{x}_{U} is given by the formula

$$
\mathbf{x}_{U}=\sum_{i=1}^{k} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{x})=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} .
$$

- Remarks:

- If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthonormal basis of U, then

$$
\mathbf{x}_{U}=\sum_{i=1}^{k} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{x})=\sum_{i=1}^{k}\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle \mathbf{u}_{i}
$$

- If $\mathbf{x} \in U$, then $\mathbf{x}_{U}=\mathbf{x}$, since in this case, the expression $\|\mathbf{x}-\mathbf{u}\|($ for $\mathbf{u} \in U)$ is minimized for $\mathbf{u}=\mathbf{x}$.

Theorem 6.5.1

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then there exists a unique vector $x_{U} \in U$ that has the property that

$$
\left\|\mathbf{x}-\mathbf{x}_{U}\right\|=\min _{\mathbf{u} \in U}\|\mathbf{x}-\mathbf{u}\| .
$$

Moreover, if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, then this vector \mathbf{x}_{U} is given by the formula

$$
\mathbf{x}_{U}=\sum_{i=1}^{k} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{x})=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

- Now let's prove the theorem!

Proof.

Proof. Using Corollary 6.3.11, we fix an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U, and we extend it to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V.

Proof. Using Corollary 6.3.11, we fix an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U, and we extend it to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V. By Theorem 6.4.3(a), $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp}.

Proof. Using Corollary 6.3.11, we fix an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U, and we extend it to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V. By Theorem 6.4.3(a), $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp}. Set

$$
\mathbf{u}^{*}:=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

Proof. Using Corollary 6.3.11, we fix an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U, and we extend it to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V. By Theorem 6.4.3(a), $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp}. Set

$$
\mathbf{u}^{*}:=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

- So, \mathbf{u}^{*} is defined via the formula from the statement of the theorem.

Proof. Using Corollary 6.3.11, we fix an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U, and we extend it to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V. By Theorem 6.4.3(a), $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp}. Set

$$
\mathbf{u}^{*}:=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

- So, \mathbf{u}^{*} is defined via the formula from the statement of the theorem.
- The reason we call it \mathbf{u}^{*} rather than \mathbf{x}_{U} is because we have not proven the existence and uniqueness of \mathbf{x}_{U} yet.

Proof. Using Corollary 6.3.11, we fix an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U, and we extend it to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V. By Theorem 6.4.3(a), $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp}. Set

$$
\mathbf{u}^{*}:=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

- So, \mathbf{u}^{*} is defined via the formula from the statement of the theorem.
- The reason we call it \mathbf{u}^{*} rather than \mathbf{x}_{U} is because we have not proven the existence and uniqueness of \mathbf{x}_{U} yet.
- However, this is just a minor stylistic matter!

Proof. Using Corollary 6.3.11, we fix an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U, and we extend it to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V. By Theorem 6.4.3(a), $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp}. Set

$$
\mathbf{u}^{*}:=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

- So, \mathbf{u}^{*} is defined via the formula from the statement of the theorem.
- The reason we call it \mathbf{u}^{*} rather than \mathbf{x}_{U} is because we have not proven the existence and uniqueness of \mathbf{x}_{U} yet.
- However, this is just a minor stylistic matter!

Since \mathbf{u}^{*} is a linear combination of the vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$, which form a basis of U, we see that $\mathbf{u}^{*} \in U$.

Proof. Using Corollary 6.3.11, we fix an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U, and we extend it to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V. By Theorem 6.4.3(a), $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp}. Set

$$
\mathbf{u}^{*}:=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

- So, \mathbf{u}^{*} is defined via the formula from the statement of the theorem.
- The reason we call it \mathbf{u}^{*} rather than \mathbf{x}_{U} is because we have not proven the existence and uniqueness of \mathbf{x}_{U} yet.
- However, this is just a minor stylistic matter!

Since \mathbf{u}^{*} is a linear combination of the vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$, which form a basis of U, we see that $\mathbf{u}^{*} \in U$.

Now, fix any $\mathbf{u} \in U$. We must show that $\left\|\mathbf{x}-\mathbf{u}^{*}\right\| \leq\|\mathbf{x}-\mathbf{u}\|$, and that equality holds iff $\mathbf{u}^{*}=\mathbf{u}$. Clearly, this is sufficient to prove the theorem.

Proof (continued). Reminder: $\mathbf{u}^{*}:=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} ; \mathbf{u} \in U$; WTS $\left\|\mathbf{x}-\mathbf{u}^{*}\right\| \leq\|\mathbf{x}-\mathbf{u}\|$ and that equality holds iff $\mathbf{u}^{*}=\mathbf{u}$.

Proof (continued). Reminder: $\mathbf{u}^{*}:=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} ; \mathbf{u} \in U$; WTS $\left\|\mathbf{x}-\mathbf{u}^{*}\right\| \leq\|\mathbf{x}-\mathbf{u}\|$ and that equality holds iff $\mathbf{u}^{*}=\mathbf{u}$.
Let us first prove that $\left(\mathbf{u}^{*}-\mathbf{u}\right) \perp\left(\mathbf{x}-\mathbf{u}^{*}\right)$.

Proof (continued). Reminder: $\mathbf{u}^{*}:=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} ; \mathbf{u} \in U$; WTS $\left\|\mathbf{x}-\mathbf{u}^{*}\right\| \leq\|\mathbf{x}-\mathbf{u}\|$ and that equality holds iff $\mathbf{u}^{*}=\mathbf{u}$.
Let us first prove that $\left(\mathbf{u}^{*}-\mathbf{u}\right) \perp\left(\mathbf{x}-\mathbf{u}^{*}\right)$. Since $\mathbf{u}^{*}, \mathbf{u} \in U$, and since U is a subspace of V, it is clear that $\mathbf{u}^{*}-\mathbf{u} \in U$.

Proof (continued). Reminder: $\mathbf{u}^{*}:=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} ; \mathbf{u} \in U$; WTS $\left\|\mathbf{x}-\mathbf{u}^{*}\right\| \leq\|\mathbf{x}-\mathbf{u}\|$ and that equality holds iff $\mathbf{u}^{*}=\mathbf{u}$.
Let us first prove that $\left(\mathbf{u}^{*}-\mathbf{u}\right) \perp\left(\mathbf{x}-\mathbf{u}^{*}\right)$. Since $\mathbf{u}^{*}, \mathbf{u} \in U$, and since U is a subspace of V, it is clear that $\mathbf{u}^{*}-\mathbf{u} \in U$. So, it suffices to show that $\mathbf{x}-\mathbf{u}^{*} \in U^{\perp}$.

Proof (continued). Reminder: $\mathbf{u}^{*}:=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} ; \mathbf{u} \in U$; WTS $\left\|\mathbf{x}-\mathbf{u}^{*}\right\| \leq\|\mathbf{x}-\mathbf{u}\|$ and that equality holds iff $\mathbf{u}^{*}=\mathbf{u}$.
Let us first prove that $\left(\mathbf{u}^{*}-\mathbf{u}\right) \perp\left(\mathbf{x}-\mathbf{u}^{*}\right)$. Since $\mathbf{u}^{*}, \mathbf{u} \in U$, and since U is a subspace of V, it is clear that $\mathbf{u}^{*}-\mathbf{u} \in U$. So, it suffices to show that $\mathbf{x}-\mathbf{u}^{*} \in U^{\perp}$.

By Theorem 6.3.5, we have that

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

Proof (continued). Reminder: $\mathbf{u}^{*}:=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} ; \mathbf{u} \in U$; WTS $\left\|\mathbf{x}-\mathbf{u}^{*}\right\| \leq\|\mathbf{x}-\mathbf{u}\|$ and that equality holds iff $\mathbf{u}^{*}=\mathbf{u}$.
Let us first prove that $\left(\mathbf{u}^{*}-\mathbf{u}\right) \perp\left(\mathbf{x}-\mathbf{u}^{*}\right)$. Since $\mathbf{u}^{*}, \mathbf{u} \in U$, and since U is a subspace of V, it is clear that $\mathbf{u}^{*}-\mathbf{u} \in U$. So, it suffices to show that $\mathbf{x}-\mathbf{u}^{*} \in U^{\perp}$.

By Theorem 6.3.5, we have that

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

and it follows that

$$
\mathbf{x}-\mathbf{u}^{*}=\sum_{i=k+1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

Proof (continued). Reminder: $\mathbf{u}^{*}:=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} ; \mathbf{u} \in U ;$ WTS $\left\|\mathbf{x}-\mathbf{u}^{*}\right\| \leq\|\mathbf{x}-\mathbf{u}\|$ and that equality holds iff $\mathbf{u}^{*}=\mathbf{u}$.
Let us first prove that $\left(\mathbf{u}^{*}-\mathbf{u}\right) \perp\left(\mathbf{x}-\mathbf{u}^{*}\right)$. Since $\mathbf{u}^{*}, \mathbf{u} \in U$, and since U is a subspace of V, it is clear that $\mathbf{u}^{*}-\mathbf{u} \in U$. So, it suffices to show that $\mathbf{x}-\mathbf{u}^{*} \in U^{\perp}$.

By Theorem 6.3.5, we have that

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

and it follows that

$$
\mathbf{x}-\mathbf{u}^{*}=\sum_{i=k+1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

So, $\mathbf{x}-\mathbf{u}^{*}$ is a linear combination of the vectors $\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}$; since those $n-k$ vectors form a basis of U^{\perp}, it follows that $\mathbf{x}-\mathbf{u}^{*} \in U^{\perp}$.

Proof (continued). Reminder: $\mathbf{u}^{*}:=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} ; \mathbf{u} \in U ;$ WTS $\left\|\mathbf{x}-\mathbf{u}^{*}\right\| \leq\|\mathbf{x}-\mathbf{u}\|$ and that equality holds iff $\mathbf{u}^{*}=\mathbf{u}$.
Let us first prove that $\left(\mathbf{u}^{*}-\mathbf{u}\right) \perp\left(\mathbf{x}-\mathbf{u}^{*}\right)$. Since $\mathbf{u}^{*}, \mathbf{u} \in U$, and since U is a subspace of V, it is clear that $\mathbf{u}^{*}-\mathbf{u} \in U$. So, it suffices to show that $\mathbf{x}-\mathbf{u}^{*} \in U^{\perp}$.

By Theorem 6.3.5, we have that

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

and it follows that

$$
\mathbf{x}-\mathbf{u}^{*}=\sum_{i=k+1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

So, $\mathbf{x}-\mathbf{u}^{*}$ is a linear combination of the vectors $\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}$; since those $n-k$ vectors form a basis of U^{\perp}, it follows that $\mathbf{x}-\mathbf{u}^{*} \in U^{\perp}$. This proves that $\left(\mathbf{u}^{*}-\mathbf{u}\right) \perp\left(\mathbf{x}-\mathbf{u}^{*}\right)$.

Proof (continued). Reminder: $\mathbf{u}^{*}:=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} ; \mathbf{u} \in U$; WTS $\left\|\mathbf{x}-\mathbf{u}^{*}\right\| \leq\|\mathbf{x}-\mathbf{u}\|$ and that equality holds iff $\mathbf{u}^{*}=\mathbf{u}$.

Now that we have shown that vectors $\mathbf{u}^{*}-\mathbf{u}$ and $\mathbf{x}-\mathbf{u}^{*}$ are orthogonal to each other, we can apply the Pythagorean theorem to them, as follows:

$$
\begin{aligned}
\|\mathbf{x}-\mathbf{u}\|^{2} & =\left\|\left(\mathbf{x}-\mathbf{u}^{*}\right)+\left(\mathbf{u}^{*}-\mathbf{u}\right)\right\|^{2} \\
& \stackrel{(*)}{=}\left\|\mathbf{x}-\mathbf{u}^{*}\right\|^{2}+\left\|\mathbf{u}^{*}-\mathbf{u}\right\|^{2} \\
& \geq\left\|\mathbf{x}-\mathbf{u}^{*}\right\|^{2}
\end{aligned}
$$

where $\left(^{*}\right)$ follows from the Pythagorean theorem.

Proof (continued). Reminder: $\mathbf{u}^{*}:=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} ; \mathbf{u} \in U ;$ WTS $\left\|\mathbf{x}-\mathbf{u}^{*}\right\| \leq\|\mathbf{x}-\mathbf{u}\|$ and that equality holds iff $\mathbf{u}^{*}=\mathbf{u}$.

Now that we have shown that vectors $\mathbf{u}^{*}-\mathbf{u}$ and $\mathbf{x}-\mathbf{u}^{*}$ are orthogonal to each other, we can apply the Pythagorean theorem to them, as follows:

$$
\begin{aligned}
\|\mathbf{x}-\mathbf{u}\|^{2} & =\left\|\left(\mathbf{x}-\mathbf{u}^{*}\right)+\left(\mathbf{u}^{*}-\mathbf{u}\right)\right\|^{2} \\
& \stackrel{(*)}{=}\left\|\mathbf{x}-\mathbf{u}^{*}\right\|^{2}+\left\|\mathbf{u}^{*}-\mathbf{u}\right\|^{2} \\
& \geq\left\|\mathbf{x}-\mathbf{u}^{*}\right\|^{2}
\end{aligned}
$$

where (*) follows from the Pythagorean theorem. Consequently, we have that $\left\|\mathbf{x}-\mathbf{u}^{*}\right\| \leq\|\mathbf{x}-\mathbf{u}\|$. Moreover, the inequality above is an equality iff $\left\|\mathbf{u}^{*}-\mathbf{u}\right\|=0$, i.e. iff $\mathbf{u}^{*}=\mathbf{u}$. This completes the argument. \square

Theorem 6.5.1

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then there exists a unique vector $x_{U} \in U$ that has the property that

$$
\left\|\mathbf{x}-\mathbf{x}_{U}\right\|=\min _{\mathbf{u} \in U}\|\mathbf{x}-\mathbf{u}\| .
$$

Moreover, if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of U, then this vector \mathbf{x}_{U} is given by the formula

$$
\mathbf{x}_{U}=\sum_{i=1}^{k} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{x})=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

- Terminology/Notation: The vector \mathbf{x}_{U} from Theorem 6.5.1 is called the orthogonal projection of \mathbf{x} onto U.

Corollary 6.5.2

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let \mathbf{u} be any non-zero vector in V, and set $U:=\operatorname{Span}(\mathbf{u}) .^{a}$ Then for every $\mathbf{x} \in V$, we have that

$$
\mathbf{x}_{U}=\operatorname{proj}_{\mathbf{u}}(\mathbf{x})=\frac{\langle\mathbf{x}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u} .
$$

${ }^{2}$ So, U is a one-dimensional subspace of V.
Proof.

Corollary 6.5.2

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let \mathbf{u} be any non-zero vector in V, and set $U:=\operatorname{Span}(\mathbf{u}) .^{a}$ Then for every $x \in V$, we have that

$$
\mathbf{x}_{U}=\operatorname{proj}_{\mathbf{u}}(\mathbf{x})=\frac{\langle\mathbf{x}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u} .
$$

${ }^{2}$ So, U is a one-dimensional subspace of V.
Proof. Clearly, $\{\mathbf{u}\}$ is an orthogonal basis of U. So, the result follows immediately from Theorem 6.5.1. \square

Corollary 6.5.3

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then

$$
\mathbf{x}=\mathbf{x}_{U}+\mathbf{x}_{U^{\perp}} .
$$

Moreover, this is the unique way of expressing \mathbf{x} as a sum of a vector in U and a vector in U^{\perp}.a
${ }^{\text {a }}$ This means that for all $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$, if $\mathbf{x}=\mathbf{y}+\mathbf{z}$, then $\mathbf{y}=\mathbf{x} U$ and $\mathbf{z}=\mathbf{x}_{U \perp}$.

Corollary 6.5.3

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let U be a subspace of V, and let $x \in V$. Then

$$
\mathbf{x}=\mathbf{x}_{U}+\mathbf{x}_{U^{\perp}}
$$

Moreover, this is the unique way of expressing \mathbf{x} as a sum of a vector in U and a vector in U^{\perp}.a
${ }^{\text {a }}$ This means that for all $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$, if $\mathbf{x}=\mathbf{y}+\mathbf{z}$, then $\mathbf{y}=\mathbf{x}_{U}$ and $\mathbf{z}=\mathbf{x}_{U \perp}$.

Proof.

Corollary 6.5.3

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then

$$
\mathbf{x}=\mathbf{x}_{U}+\mathbf{x}_{U^{\perp}}
$$

Moreover, this is the unique way of expressing \mathbf{x} as a sum of a vector in U and a vector in U^{\perp}.a
${ }^{\text {a }}$ This means that for all $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$, if $\mathbf{x}=\mathbf{y}+\mathbf{z}$, then $\mathbf{y}=\mathbf{x}_{U}$ and $\mathbf{z}=\mathbf{x}_{U \perp}$.

Proof. By Corollary 6.3.11, U has an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$, and moreover, this basis can be extended to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V. By Theorem 6.4.3(a), we have that $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp}.

Corollary 6.5.3

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let U be a subspace of V, and let $x \in V$. Then

$$
\mathbf{x}=\mathbf{x}_{U}+\mathbf{x}_{U^{\perp}}
$$

Moreover, this is the unique way of expressing \mathbf{x} as a sum of a vector in U and a vector in U^{\perp}.a
${ }^{a}$ This means that for all $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$, if $\mathbf{x}=\mathbf{y}+\mathbf{z}$, then $\mathbf{y}=\mathbf{x}_{U}$ and $\mathbf{z}=\mathbf{x}_{U \perp}$.

Proof. By Corollary 6.3.11, U has an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$, and moreover, this basis can be extended to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V. By
Theorem 6.4.3(a), we have that $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of U^{\perp}. Now, by Theorem 6.3.5, we have that

$$
\mathbf{x}_{U}=\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} \quad \text { and } \quad \mathbf{x}_{U^{\perp}}=\sum_{i=k+1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

Solution (continued). On the other hand, by Theorem 6.3.5, we have that

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

Solution (continued). On the other hand, by Theorem 6.3.5, we have that

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

Consequently,
$\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}=\left(\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}\right)+\left(\sum_{i=k+1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}\right)=\mathbf{x}_{U}+\mathbf{x}_{U \perp}$.

Solution (continued). On the other hand, by Theorem 6.3.5, we have that

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

Consequently,
$\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}=\left(\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}\right)+\left(\sum_{i=k+1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}\right)=\mathbf{x}_{U}+\mathbf{x}_{U^{\perp}}$.
It remains to prove the uniqueness part of the corollary.

Solution (continued). On the other hand, by Theorem 6.3.5, we have that

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

Consequently,

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}=\left(\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}\right)+\left(\sum_{i=k+1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}\right)=\mathbf{x}_{U}+\mathbf{x}_{U \perp} .
$$

It remains to prove the uniqueness part of the corollary. So, suppose that $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$ are such that $\mathbf{x}=\mathbf{y}+\mathbf{z}$. WTS $\mathbf{y}=\mathbf{x}_{U}$ and $\mathbf{z}=\mathbf{x}_{U \perp}$.

Solution (continued). On the other hand, by Theorem 6.3.5, we have that

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

Consequently,

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}=\left(\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}\right)+\left(\sum_{i=k+1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}\right)=\mathbf{x}_{U}+\mathbf{x}_{U \perp} .
$$

It remains to prove the uniqueness part of the corollary. So, suppose that $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$ are such that $\mathbf{x}=\mathbf{y}+\mathbf{z}$. WTS $\mathbf{y}=\mathbf{x}_{U}$ and $\mathbf{z}=\mathbf{x}_{U \perp}$. We have that

$$
\mathbf{x}_{U}+\mathbf{x}_{U \perp}=\mathbf{x}=\mathbf{y}+\mathbf{z}
$$

and consequently,

$$
\mathbf{x}_{U}-\mathbf{y}=\mathbf{z}-\mathbf{x}_{U^{\perp}}
$$

Solution (continued). On the other hand, by Theorem 6.3.5, we have that

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

Consequently,

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}=\left(\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}\right)+\left(\sum_{i=k+1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}\right)=\mathbf{x}_{U}+\mathbf{x}_{U^{\perp}} .
$$

It remains to prove the uniqueness part of the corollary. So, suppose that $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$ are such that $\mathbf{x}=\mathbf{y}+\mathbf{z}$. WTS $\mathbf{y}=\mathrm{x}_{U}$ and $\mathbf{z}=\mathrm{x}_{U \perp}$. We have that

$$
\mathbf{x}_{U}+\mathbf{x}_{U \perp}=\mathbf{x}=\mathbf{y}+\mathbf{z}
$$

and consequently,

$$
\mathbf{x}_{U}-\mathbf{y}=\mathbf{z}-\mathbf{x}_{U^{\perp}}
$$

But $x_{U}-\mathbf{y} \in U$ and $\mathbf{z}-\mathbf{x}_{U \perp} \in U^{\perp}$.

Solution (continued). On the other hand, by Theorem 6.3.5, we have that

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

Consequently,

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}=\left(\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}\right)+\left(\sum_{i=k+1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}\right)=\mathbf{x}_{U}+\mathbf{x}_{U \perp} .
$$

It remains to prove the uniqueness part of the corollary. So, suppose that $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$ are such that $\mathbf{x}=\mathbf{y}+\mathbf{z}$. WTS $\mathbf{y}=\mathrm{x}_{U}$ and $\mathbf{z}=\mathrm{x}_{U \perp}$. We have that

$$
\mathbf{x}_{U}+\mathbf{x}_{U \perp}=\mathbf{x}=\mathbf{y}+\mathbf{z}
$$

and consequently,

$$
\mathbf{x}_{U}-\mathbf{y}=\mathbf{z}-\mathbf{x}_{U \perp} .
$$

But $\mathbf{x}_{U}-\mathbf{y} \in U$ and $\mathbf{z}-\mathbf{x}_{U \perp} \in U^{\perp}$. Since $U \cap U^{\perp}=\{\mathbf{0}\}$ (by
Theorem 6.4.3(d)), it follows that $\mathbf{x}_{U}-\mathbf{y}=\mathbf{z}-\mathbf{x}_{U \perp}=\mathbf{0}$,

Solution (continued). On the other hand, by Theorem 6.3.5, we have that

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

Consequently,

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}=\left(\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}\right)+\left(\sum_{i=k+1}^{n} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}\right)=\mathbf{x}_{U}+\mathbf{x}_{U \perp} .
$$

It remains to prove the uniqueness part of the corollary. So, suppose that $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$ are such that $\mathbf{x}=\mathbf{y}+\mathbf{z}$. WTS $\mathbf{y}=\mathrm{x}_{U}$ and $\mathbf{z}=\mathrm{x}_{U \perp}$. We have that

$$
\mathbf{x}_{U}+\mathbf{x}_{U \perp}=\mathbf{x}=\mathbf{y}+\mathbf{z}
$$

and consequently,

$$
\mathbf{x}_{U}-\mathbf{y}=\mathbf{z}-\mathbf{x}_{U \perp} .
$$

But $\mathbf{x}_{U}-\mathbf{y} \in U$ and $\mathbf{z}-\mathbf{x}_{U \perp} \in U^{\perp}$. Since $U \cap U^{\perp}=\{\mathbf{0}\}$ (by Theorem 6.4.3(d)), it follows that $\mathbf{x}_{U}-\mathbf{y}=\mathbf{z}-\mathbf{x}_{U \perp}=\mathbf{0}$, and consequently, $\mathbf{y}=\mathbf{x}_{U}$ and $\mathbf{z}=\mathbf{x}_{U^{\perp}} . \square$

Corollary 6.5.3

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let U be a subspace of V, and let $\mathbf{x} \in V$. Then

$$
\mathbf{x}=\mathbf{x}_{U}+\mathbf{x}_{U^{\perp}} .
$$

Moreover, this is the unique way of expressing \mathbf{x} as a sum of a vector in U and a vector in U^{\perp}.a
${ }^{\text {a }}$ This means that for all $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$, if $\mathbf{x}=\mathbf{y}+\mathbf{z}$, then $\mathbf{y}=\mathbf{x} U$ and $\mathbf{z}=\mathbf{x}_{U \perp}$.

- Suppose that V is a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$, and suppose that U is a subspace of V.
- Suppose that V is a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$, and suppose that U is a subspace of V.
- We can then define the function $\operatorname{proj}_{U}: V \rightarrow V$ by setting $\operatorname{proj}_{U}(\mathbf{x})=\mathbf{x}_{U}$ for all $\mathbf{x} \in V$ (where \mathbf{x}_{U} is the orthogonal projection of \mathbf{x} onto U, as in Theorem 6.5.1).
- Suppose that V is a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$, and suppose that U is a subspace of V.
- We can then define the function $\operatorname{proj}_{U}: V \rightarrow V$ by setting $\operatorname{proj}_{U}(\mathbf{x})=\mathbf{x}_{U}$ for all $\mathbf{x} \in V$ (where \mathbf{x}_{U} is the orthogonal projection of \mathbf{x} onto U, as in Theorem 6.5.1).
- Clearly, $\operatorname{proj}_{U}(\mathbf{u})=\mathbf{u}$ for all $\mathbf{u} \in U$.
- Suppose that V is a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$, and suppose that U is a subspace of V.
- We can then define the function $\operatorname{proj}_{U}: V \rightarrow V$ by setting $\operatorname{proj}_{U}(\mathbf{x})=\mathbf{x}_{U}$ for all $\mathbf{x} \in V$ (where \mathbf{x}_{U} is the orthogonal projection of \mathbf{x} onto U, as in Theorem 6.5.1).
- Clearly, $\operatorname{proj}_{U}(\mathbf{u})=\mathbf{u}$ for all $\mathbf{u} \in U$.
- Moreover, we have that $\operatorname{Im}\left(\operatorname{proj}_{U}\right)=U$ and $\operatorname{proj}_{U}[U]=U$.
- Suppose that V is a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$, and suppose that U is a subspace of V.
- We can then define the function $\operatorname{proj}_{U}: V \rightarrow V$ by setting $\operatorname{proj}_{U}(\mathbf{x})=\mathbf{x}_{U}$ for all $\mathbf{x} \in V$ (where \mathbf{x}_{U} is the orthogonal projection of \mathbf{x} onto U, as in Theorem 6.5.1).
- Clearly, $\operatorname{proj}_{U}(\mathbf{u})=\mathbf{u}$ for all $\mathbf{u} \in U$.
- Moreover, we have that $\operatorname{Im}\left(\operatorname{proj}_{U}\right)=U$ and $\operatorname{proj}_{U}[U]=U$.
- Using the formula from Theorem 6.5.1, we can easily see that the function proj_{U} is linear.
- Suppose that V is a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$, and suppose that U is a subspace of V.
- We can then define the function $\operatorname{proj}_{U}: V \rightarrow V$ by setting $\operatorname{proj}_{U}(\mathbf{x})=\mathbf{x}_{U}$ for all $\mathbf{x} \in V$ (where \mathbf{x}_{U} is the orthogonal projection of \mathbf{x} onto U, as in Theorem 6.5.1).
- Clearly, $\operatorname{proj}_{U}(\mathbf{u})=\mathbf{u}$ for all $\mathbf{u} \in U$.
- Moreover, we have that $\operatorname{Im}\left(\operatorname{proj}_{U}\right)=U$ and $\operatorname{proj}_{U}[U]=U$.
- Using the formula from Theorem 6.5.1, we can easily see that the function proj_{U} is linear.
- Indeed, if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is any orthogonal basis of U (such a basis exists by Corollary 6.3.11), then the following hold (next two slides):
- for all $\mathbf{x}, \mathbf{y} \in V$, we have that

$$
\begin{aligned}
\operatorname{proj}_{U}(\mathbf{x}+\mathbf{y}) & \stackrel{(*)}{=} \sum_{i=1}^{k} \frac{\left\langle\mathbf{x}+\mathbf{y}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} \\
& \stackrel{(* *)}{=} \sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle+\left\langle\mathbf{y}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} \\
& =\left(\sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}\right)+\left(\sum_{i=1}^{k} \frac{\left\langle\mathbf{y}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}\right) \\
& \stackrel{(*)}{=} \operatorname{proj}_{U}(\mathbf{x})+\operatorname{proj}_{U}(\mathbf{y})
\end{aligned}
$$

where both instances of $\left({ }^{*}\right)$ follow from Theorem 6.5.1, and $\left.{ }^{* *}\right)$ follows from r. 2 or c.2;

- for all $\mathbf{x} \in V$ and scalars α, we have that

$$
\begin{aligned}
\operatorname{proj}_{U}(\alpha \mathbf{x}) & \stackrel{(*)}{=} \quad \sum_{i=1}^{k} \frac{\left\langle\alpha \mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} \\
& \stackrel{(* *)}{=} \sum_{i=1}^{k} \frac{\alpha\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} \\
& =\alpha \sum_{i=1}^{k} \frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} \\
& \stackrel{(*)}{=} \\
& \alpha \operatorname{proj}_{U}(\mathbf{x})
\end{aligned}
$$

where both instances of $(*)$ follow from Theorem 6.5.1, and $\left.{ }^{* *}\right)$ follows from r. 3 or c. 3 .
(3) Orthogonal projection onto subspaces of \mathbb{R}^{n}
(3) Orthogonal projection onto subspaces of \mathbb{R}^{n}

- In the remainder of this lecture, we assume that \mathbb{R}^{n} is equipped with the standard scalar product • and the induced norm || $\cdot \|$.
(3) Orthogonal projection onto subspaces of \mathbb{R}^{n}
- In the remainder of this lecture, we assume that \mathbb{R}^{n} is equipped with the standard scalar product • and the induced norm || $\cdot \|$.
- Now, suppose that U is a subspace of \mathbb{R}^{n}.
(3) Orthogonal projection onto subspaces of \mathbb{R}^{n}
- In the remainder of this lecture, we assume that \mathbb{R}^{n} is equipped with the standard scalar product • and the induced norm || $\cdot \|$.
- Now, suppose that U is a subspace of \mathbb{R}^{n}.
- As we saw, $\operatorname{proj}_{U}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is linear (and its image is U).
(3) Orthogonal projection onto subspaces of \mathbb{R}^{n}
- In the remainder of this lecture, we assume that \mathbb{R}^{n} is equipped with the standard scalar product • and the induced norm || $\cdot \|$.
- Now, suppose that U is a subspace of \mathbb{R}^{n}.
- As we saw, $\operatorname{proj}_{U}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is linear (and its image is U).
- Since proj_{U} is linear, it has a standard matrix.
(3) Orthogonal projection onto subspaces of \mathbb{R}^{n}
- In the remainder of this lecture, we assume that \mathbb{R}^{n} is equipped with the standard scalar product • and the induced norm || $\cdot \|$.
- Now, suppose that U is a subspace of \mathbb{R}^{n}.
- As we saw, $\operatorname{proj}_{U}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is linear (and its image is U).
- Since proj_{U} is linear, it has a standard matrix.
- Note that this matrix belongs to $\mathbb{R}^{n \times n}$.
(3) Orthogonal projection onto subspaces of \mathbb{R}^{n}
- In the remainder of this lecture, we assume that \mathbb{R}^{n} is equipped with the standard scalar product • and the induced norm || $\cdot \|$.
- Now, suppose that U is a subspace of \mathbb{R}^{n}.
- As we saw, $\operatorname{proj}_{U}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is linear (and its image is U).
- Since proj_{u} is linear, it has a standard matrix.
- Note that this matrix belongs to $\mathbb{R}^{n \times n}$.
- Our goal is to we give formulas for the standard matrices of orthogonal projections onto various subspaces of \mathbb{R}^{n}.
- In section 3.3 of the Lecture Notes (last semester), we defined the row space of a matrix A to be the span of the rows of A.
- In section 3.3 of the Lecture Notes (last semester), we defined the row space of a matrix A to be the span of the rows of A.
- Proposition 3.3.1(b) states that

$$
\operatorname{Row}(A)=\left\{\mathbf{u}^{T} \mid \mathbf{u} \in \operatorname{Col}\left(A^{T}\right)\right\}
$$

- In section 3.3 of the Lecture Notes (last semester), we defined the row space of a matrix A to be the span of the rows of A.
- Proposition 3.3.1(b) states that

$$
\operatorname{Row}(A)=\left\{\mathbf{u}^{T} \mid \mathbf{u} \in \operatorname{Col}\left(A^{T}\right)\right\}
$$

- In what follows, it will be convenient to slightly modify the definition of the row space, as follows:

$$
\operatorname{Row}(A):=\operatorname{Col}\left(A^{T}\right)
$$

- In section 3.3 of the Lecture Notes (last semester), we defined the row space of a matrix A to be the span of the rows of A.
- Proposition 3.3.1(b) states that

$$
\operatorname{Row}(A)=\left\{\mathbf{u}^{T} \mid \mathbf{u} \in \operatorname{Col}\left(A^{T}\right)\right\}
$$

- In what follows, it will be convenient to slightly modify the definition of the row space, as follows:

$$
\operatorname{Row}(A):=\operatorname{Col}\left(A^{T}\right)
$$

- So, we (re)defined the row space of a matrix to be the span of the transposes of its rows.
- For example, for the matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 3 & 2 & 3 \\
3 & 4 & 3 & 4
\end{array}\right]
$$

we have that

$$
A^{T}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
1 & 2 & 3 \\
2 & 3 & 4
\end{array}\right]
$$

and consequently,

$$
\operatorname{Row}(A)=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
4 \\
3 \\
4
\end{array}\right]\right)
$$

- For example, for the matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 3 & 2 & 3 \\
3 & 4 & 3 & 4
\end{array}\right]
$$

we have that

$$
A^{T}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
1 & 2 & 3 \\
2 & 3 & 4
\end{array}\right]
$$

and consequently,

$$
\operatorname{Row}(A)=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
4 \\
3 \\
4
\end{array}\right]\right)
$$

- If this change of definition bothers you, then every time you see $\operatorname{Row}(\square)$, mentally replace it with $\operatorname{Col}\left(\square^{T}\right)$.

Theorem 6.6.1
Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$ and $\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}$.
Proof.

Theorem 6.6.1

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$ and $\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}$.
Proof. In view of Theorem 6.4.3(c), it suffices to show that $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$.

- Indeed, by Theorem 6.4.3(c), we have that

$$
\left(\operatorname{Row}(A)^{\perp}\right)^{\perp}=\operatorname{Row}(A)
$$

- So, if $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$, then

$$
\operatorname{Nul}(A)^{\perp}=\left(\operatorname{Row}(A)^{\perp}\right)^{\perp}=\operatorname{Row}(A)
$$

Theorem 6.6.1

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$ and $\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}$.
Proof. In view of Theorem 6.4.3(c), it suffices to show that $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$.

- Indeed, by Theorem 6.4.3(c), we have that

$$
\left(\operatorname{Row}(A)^{\perp}\right)^{\perp}=\operatorname{Row}(A)
$$

- So, if $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$, then

$$
\operatorname{Nul}(A)^{\perp}=\left(\operatorname{Row}(A)^{\perp}\right)^{\perp}=\operatorname{Row}(A)
$$

Set

$$
A=\left[\begin{array}{c}
\mathbf{a}_{1}^{T} \\
\vdots \\
\mathbf{a}_{n}^{T}
\end{array}\right]
$$

so that $\operatorname{Row}(A)=\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)$.

Proof (continued). Now, for all vectors $\mathbf{x} \in \mathbb{R}^{m}$:

$$
\begin{aligned}
\mathbf{x} \in \operatorname{Nul}(A) & \Longleftrightarrow A \mathbf{x}=\mathbf{0} \\
& \Longleftrightarrow\left[\begin{array}{c}
\mathbf{a}_{1}^{T} \\
\vdots \\
\mathbf{a}_{n}^{T}
\end{array}\right] \mathbf{x}=\mathbf{0} \\
& \Longleftrightarrow\left[\begin{array}{c}
\mathbf{a}_{1} \cdot \mathbf{x} \\
\vdots \\
\mathbf{a}_{n} \cdot \mathbf{x}
\end{array}\right]=\mathbf{0} \\
& \Longleftrightarrow \mathbf{a}_{i} \cdot \mathbf{x}=0 \forall i \in\{1, \ldots, n\} \\
& \Longleftrightarrow \mathbf{a}_{i} \perp \mathbf{x} \forall i \in\{1, \ldots, n\} \\
& \Longleftrightarrow \mathbf{x} \in\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}^{\perp} \\
& \Longleftrightarrow \mathbf{x} \in \operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)^{\perp} \\
& \Longleftrightarrow \mathbf{x} \in \operatorname{Row}(A)^{\perp},
\end{aligned}
$$

where $\left(^{*}\right)$ follows from the fact that $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right\}^{\perp}=\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)^{\perp}$ (by Proposition 6.4.2). This proves that $\operatorname{NuI}(A)=\operatorname{Row}(A)^{\perp}$, and we are done. \square

Theorem 6.6.1
Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$ and $\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}$.

Theorem 6.6.1

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$ and $\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:
(0) $\operatorname{Nul}\left(A^{T} A\right)=\operatorname{Nul}(A)$;
(D) $\operatorname{Row}\left(A^{T} A\right)=\operatorname{Row}(A)$;
(c) $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)$.

Proof.

Theorem 6.6.1

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$ and $\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:
(0) $\operatorname{Nul}\left(A^{T} A\right)=\operatorname{Nul}(A)$;
(D) $\operatorname{Row}\left(A^{T} A\right)=\operatorname{Row}(A)$;
(0) $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)$.

Proof. We first prove (a).

Theorem 6.6.1

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$ and $\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:
(๑) $\operatorname{Nul}\left(A^{T} A\right)=\operatorname{Nul}(A)$;
(b) $\operatorname{Row}\left(A^{T} A\right)=\operatorname{Row}(A)$;
(0) $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)$.

Proof. We first prove (a). Note that $A^{T} A \in \mathbb{R}^{m \times m}$, and that both $\operatorname{Nul}(A)$ and $\operatorname{Nul}\left(A^{T} A\right)$ are subspaces of \mathbb{R}^{m}.

Theorem 6.6.1

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$ and $\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:
(a) $\operatorname{Nul}\left(A^{T} A\right)=\operatorname{Nul}(A)$;
(b) $\operatorname{Row}\left(A^{T} A\right)=\operatorname{Row}(A)$;
(©) $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)$.
Proof. We first prove (a). Note that $A^{T} A \in \mathbb{R}^{m \times m}$, and that both $\operatorname{Nul}(A)$ and $\operatorname{Nul}\left(A^{T} A\right)$ are subspaces of \mathbb{R}^{m}. Now, fix any $\mathbf{x} \in \mathbb{R}^{m}$. WTS $\mathrm{x} \in \operatorname{Nul}\left(A^{T} A\right)$ iff $\mathrm{x} \in \operatorname{Nul}(A)$.

Theorem 6.6.1

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$ and $\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:
(a) $\operatorname{Nul}\left(A^{T} A\right)=\operatorname{Nul}(A)$;
(D) $\operatorname{Row}\left(A^{T} A\right)=\operatorname{Row}(A)$;
(©) $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)$.
Proof. We first prove (a). Note that $A^{T} A \in \mathbb{R}^{m \times m}$, and that both $\operatorname{Nul}(A)$ and $\operatorname{Nul}\left(A^{T} A\right)$ are subspaces of \mathbb{R}^{m}. Now, fix any $\mathbf{x} \in \mathbb{R}^{m}$. WTS $\mathrm{x} \in \operatorname{Nul}\left(A^{T} A\right)$ iff $\mathrm{x} \in \operatorname{Nul}(A)$.

Suppose first that $\mathbf{x} \in \operatorname{Nul}(A)$.

Theorem 6.6.1

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$ and $\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:
(a) $\operatorname{Nul}\left(A^{T} A\right)=\operatorname{Nul}(A)$;
(b) $\operatorname{Row}\left(A^{T} A\right)=\operatorname{Row}(A)$;
(©) $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)$.
Proof. We first prove (a). Note that $A^{T} A \in \mathbb{R}^{m \times m}$, and that both $\operatorname{Nul}(A)$ and $\operatorname{Nul}\left(A^{T} A\right)$ are subspaces of \mathbb{R}^{m}. Now, fix any $\mathbf{x} \in \mathbb{R}^{m}$. WTS $\mathrm{x} \in \operatorname{Nul}\left(A^{T} A\right)$ iff $\mathrm{x} \in \operatorname{Nul}(A)$.

Suppose first that $\mathbf{x} \in \operatorname{Nul}(A)$. Then $A \mathbf{x}=\mathbf{0}$, and consequently, $A^{T} A \mathbf{x}=\mathbf{0}$. So, $\mathbf{x} \in \operatorname{Nul}\left(A^{T} A\right)$.

Theorem 6.6.1

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$ and $\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:
(3) $\operatorname{Nul}\left(A^{T} A\right)=\operatorname{Nul}(A)$;
(D) $\operatorname{Row}\left(A^{T} A\right)=\operatorname{Row}(A)$;
(0) $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)$.

Proof (continued). Suppose, conversely, that $\mathbf{x} \in \operatorname{Nul}\left(A^{T} A\right)$.

Theorem 6.6.1

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$ and $\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:
(3) $\operatorname{Nul}\left(A^{T} A\right)=\operatorname{Nul}(A)$;
(D) $\operatorname{Row}\left(A^{T} A\right)=\operatorname{Row}(A)$;
(0) $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)$.

Proof (continued). Suppose, conversely, that $\mathbf{x} \in \operatorname{Nul}\left(A^{T} A\right)$. Then $A^{T} A \mathbf{x}=\mathbf{0}$, and it follows that $\mathbf{x}^{T} A^{T} A \mathbf{x}=\mathbf{0}$.

Theorem 6.6.1

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$ and $\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:
(0) $\operatorname{Nul}\left(A^{T} A\right)=\operatorname{Nul}(A)$;
(b) $\operatorname{Row}\left(A^{T} A\right)=\operatorname{Row}(A)$;
(0) $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)$.

Proof (continued). Suppose, conversely, that $\mathbf{x} \in \operatorname{Nul}\left(A^{T} A\right)$. Then $A^{T} A \mathbf{x}=\mathbf{0}$, and it follows that $\mathbf{x}^{T} A^{T} A \mathbf{x}=\mathbf{0}$. But note that

$$
\mathbf{x}^{T} A^{T} A \mathbf{x}=(A \mathbf{x})^{T}(A \mathbf{x})=(A \mathbf{x}) \cdot(A \mathbf{x})=\|A \mathbf{x}\|^{2}
$$

Theorem 6.6.1

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$ and $\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:
(0) $\operatorname{Nul}\left(A^{T} A\right)=\operatorname{Nul}(A)$;
(b) $\operatorname{Row}\left(A^{T} A\right)=\operatorname{Row}(A)$;
(0) $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)$.

Proof (continued). Suppose, conversely, that $\mathbf{x} \in \operatorname{Nul}\left(A^{T} A\right)$. Then $A^{T} A \mathbf{x}=\mathbf{0}$, and it follows that $\mathbf{x}^{T} A^{T} A \mathbf{x}=\mathbf{0}$. But note that

$$
\mathbf{x}^{T} A^{T} A \mathbf{x}=(A \mathbf{x})^{T}(A \mathbf{x})=(A \mathbf{x}) \cdot(A \mathbf{x})=\|A \mathbf{x}\|^{2}
$$

consequently, $\|A \mathbf{x}\|^{2}=0$.

Theorem 6.6.1

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$ and $\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:
(0) $\operatorname{Nul}\left(A^{T} A\right)=\operatorname{Nul}(A)$;
(b) $\operatorname{Row}\left(A^{T} A\right)=\operatorname{Row}(A)$;
(0) $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)$.

Proof (continued). Suppose, conversely, that $\mathbf{x} \in \operatorname{Nul}\left(A^{T} A\right)$. Then $A^{T} A \mathbf{x}=\mathbf{0}$, and it follows that $\mathbf{x}^{T} A^{T} A \mathbf{x}=\mathbf{0}$. But note that

$$
\mathbf{x}^{T} A^{T} A \mathbf{x}=(A \mathbf{x})^{T}(A \mathbf{x})=(A \mathbf{x}) \cdot(A \mathbf{x})=\|A \mathbf{x}\|^{2}
$$

consequently, $\|A \mathbf{x}\|^{2}=0$. It follows that $\|A \mathbf{x}\|=0$, and therefore, $A \mathbf{x}=\mathbf{0}$, i.e. $\mathbf{x} \in \operatorname{Nul}(A)$. This proves (a).

Theorem 6.6.1

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$ and $\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:
(a) $\operatorname{Nul}\left(A^{T} A\right)=\operatorname{Nul}(A)$;
(D) $\operatorname{Row}\left(A^{T} A\right)=\operatorname{Row}(A)$;
(c) $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)$.

Proof (continued). For (b), we observe that

$$
\begin{aligned}
\operatorname{Row}\left(A^{T} A\right) & =\operatorname{Nul}\left(A^{T} A\right)^{\perp} & & \text { by Theorem 6.6.1 } \\
& =\operatorname{Nul}(A)^{\perp} & & \text { by }(\mathrm{a}) \\
& =\operatorname{Row}(A) & & \text { by Theorem 6.6.1. }
\end{aligned}
$$

Theorem 6.6.1

Let $A \in \mathbb{R}^{n \times m}$. Then $\operatorname{Row}(A)^{\perp}=\operatorname{Nul}(A)$ and $\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}$.

Corollary 6.6.2

Let $A \in \mathbb{R}^{n \times m}$. Then all the following hold:
(2) $\operatorname{Nul}\left(A^{T} A\right)=\operatorname{Nul}(A)$;
(D) $\operatorname{Row}\left(A^{T} A\right)=\operatorname{Row}(A)$;
(c) $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)$.

Proof (continued). Finally, for (c), we have the following:

$$
\begin{aligned}
\operatorname{rank}\left(A^{T} A\right) & =\operatorname{dim}\left(\operatorname{Row}\left(A^{T} A\right)\right) & & \text { by Theorem 3.3.9 } \\
& =\operatorname{dim}(\operatorname{Row}(A)) & & \text { by }(b) \\
& =\operatorname{rank}(A) & & \text { by Theorem 3.3.9. }
\end{aligned}
$$

This completes the argument. \square

Theorem 6.6.3

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is the standard matrix of orthogonal projection onto $\operatorname{Col}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{n}$, the orthogonal projection of x onto $C:=\operatorname{Col}(A)$ is given by

$$
\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}
$$

Proof.

Theorem 6.6.3

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is the standard matrix of orthogonal projection onto $\operatorname{Col}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{n}$, the orthogonal projection of x onto $C:=\operatorname{Col}(A)$ is given by

$$
\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}
$$

Proof. Fix $\mathbf{x} \in \mathbb{R}^{n}$. We must first check that the expression $A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}$ is defined and belongs to $C=\operatorname{Col}(A)$.

Theorem 6.6.3

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is the standard matrix of orthogonal projection onto $\operatorname{Col}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{n}$, the orthogonal projection of x onto $C:=\operatorname{Col}(A)$ is given by

$$
\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}
$$

Proof. Fix $\mathbf{x} \in \mathbb{R}^{n}$. We must first check that the expression $A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}$ is defined and belongs to $C=\operatorname{Col}(A)$.
First, note that $A^{T} A \in \mathbb{R}^{m \times m}$, and that by Corollary 6.6.2(a), we have that $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)=m$.

Theorem 6.6.3

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is the standard matrix of orthogonal projection onto $\operatorname{Col}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{n}$, the orthogonal projection of x onto $C:=\operatorname{Col}(A)$ is given by

$$
\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}
$$

Proof. Fix $\mathbf{x} \in \mathbb{R}^{n}$. We must first check that the expression $A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}$ is defined and belongs to $C=\operatorname{Col}(A)$.
First, note that $A^{T} A \in \mathbb{R}^{m \times m}$, and that by Corollary 6.6.2(a), we have that $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)=m$. So, by the Invertible Matrix Theorem, $A^{T} A$ is invertible, and we see that $\left(A^{T} A\right)^{-1}$ is defined and belongs to $\mathbb{R}^{m \times m}$.

Theorem 6.6.3

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is the standard matrix of orthogonal projection onto $\operatorname{Col}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{n}$, the orthogonal projection of x onto $C:=\operatorname{Col}(A)$ is given by

$$
\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}
$$

Proof. Fix $\mathbf{x} \in \mathbb{R}^{n}$. We must first check that the expression $A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}$ is defined and belongs to $C=\operatorname{Col}(A)$.
First, note that $A^{T} A \in \mathbb{R}^{m \times m}$, and that by Corollary 6.6.2(a), we have that $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)=m$. So, by the Invertible Matrix Theorem, $A^{T} A$ is invertible, and we see that $\left(A^{T} A\right)^{-1}$ is defined and belongs to $\mathbb{R}^{m \times m}$. Since $A \in \mathbb{R}^{n \times m},\left(A^{T} A\right)^{-1} \in \mathbb{R}^{m \times m}$, and $A^{T} \in \mathbb{R}^{m \times n}$, we see that $A\left(A^{T} A\right)^{-1} A^{T} \in \mathbb{R}^{n \times n}$;

Theorem 6.6.3

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is the standard matrix of orthogonal projection onto $\operatorname{Col}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{n}$, the orthogonal projection of x onto $C:=\operatorname{Col}(A)$ is given by

$$
\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}
$$

Proof. Fix $\mathbf{x} \in \mathbb{R}^{n}$. We must first check that the expression $A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}$ is defined and belongs to $C=\operatorname{Col}(A)$.
First, note that $A^{T} A \in \mathbb{R}^{m \times m}$, and that by Corollary 6.6.2(a), we have that $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)=m$. So, by the Invertible Matrix Theorem, $A^{T} A$ is invertible, and we see that $\left(A^{T} A\right)^{-1}$ is defined and belongs to $\mathbb{R}^{m \times m}$. Since $A \in \mathbb{R}^{n \times m},\left(A^{T} A\right)^{-1} \in \mathbb{R}^{m \times m}$, and $A^{T} \in \mathbb{R}^{m \times n}$, we see that $A\left(A^{T} A\right)^{-1} A^{T} \in \mathbb{R}^{n \times n}$; since $\mathbf{x} \in \mathbb{R}^{n}$, we see that $A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}$ is defined and belongs to \mathbb{R}^{n}.

Theorem 6.6.3

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is the standard matrix of orthogonal projection onto $\operatorname{Col}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{n}$, the orthogonal projection of x onto $C:=\operatorname{Col}(A)$ is given by

$$
\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}
$$

Proof. Fix $\mathbf{x} \in \mathbb{R}^{n}$. We must first check that the expression $A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}$ is defined and belongs to $C=\operatorname{Col}(A)$.
First, note that $A^{T} A \in \mathbb{R}^{m \times m}$, and that by Corollary 6.6.2(a), we have that $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)=m$. So, by the Invertible Matrix Theorem, $A^{T} A$ is invertible, and we see that $\left(A^{T} A\right)^{-1}$ is defined and belongs to $\mathbb{R}^{m \times m}$. Since $A \in \mathbb{R}^{n \times m},\left(A^{T} A\right)^{-1} \in \mathbb{R}^{m \times m}$, and $A^{T} \in \mathbb{R}^{m \times n}$, we see that $A\left(A^{T} A\right)^{-1} A^{T} \in \mathbb{R}^{n \times n}$; since $\mathbf{x} \in \mathbb{R}^{n}$, we see that $A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}$ is defined and belongs to \mathbb{R}^{n}. Meanwhile, $\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}$ is a vector in \mathbb{R}^{m}, and so (next slide):

Theorem 6.6.3

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is the standard matrix of orthogonal projection onto $\operatorname{Col}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{n}$, the orthogonal projection of x onto $C:=\operatorname{Col}(A)$ is given by

$$
\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}
$$

Proof (continued).

$$
A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}=\underbrace{A}_{\in \mathbb{R}^{n \times m}}(\underbrace{\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}}_{\in \mathbb{R}^{m}})
$$

is a linear combination of the columns of A. By definition, this means that $A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x} \in \operatorname{Col}(A)=C$.

Theorem 6.6.3

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is the standard matrix of orthogonal projection onto $\operatorname{Col}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{n}$, the orthogonal projection of x onto $C:=\operatorname{Col}(A)$ is given by

$$
\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}
$$

Proof (continued). In view of Corollary 6.5.3, it is now enough to prove that $\left(\mathbf{x}-A\left(A^{\top} A\right)^{-1} A^{T} \mathbf{x}\right) \in C^{\perp}$, for it will then follow that $\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}$, which is what we need to show.

Theorem 6.6.3

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is the standard matrix of orthogonal projection onto $\operatorname{Col}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{n}$, the orthogonal projection of x onto $C:=\operatorname{Col}(A)$ is given by

$$
\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}
$$

Proof (continued). In view of Corollary 6.5.3, it is now enough to prove that $\left(\mathbf{x}-A\left(A^{\top} A\right)^{-1} A^{T} \mathbf{x}\right) \in C^{\perp}$, for it will then follow that $\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}$, which is what we need to show.

- Indeed, if we can show that $\left(\mathbf{x}-A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}\right) \in C^{\perp}$, then we get that

$$
\mathbf{x}=\underbrace{A\left(A^{\top} A\right)^{-1} A^{T} \mathbf{x}}_{\in C}+(\underbrace{\mathbf{x}-A\left(A^{\top} A\right)^{-1} A^{T} \mathbf{x}}_{\in C^{\perp}})
$$

which (by Corollary 6.5.3) implies that $\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}$ and $\mathbf{x}_{C \perp}=\mathbf{x}-A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}$.

Theorem 6.6.3

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is the standard matrix of orthogonal projection onto $\operatorname{Col}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{n}$, the orthogonal projection of x onto $C:=\operatorname{Col}(A)$ is given by

$$
\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}
$$

Proof (continued). But note that

$$
C^{\perp}=\operatorname{Col}(A)^{\perp}=\operatorname{Row}\left(A^{T}\right)^{\perp} \stackrel{(*)}{=} \operatorname{Nul}\left(A^{T}\right)
$$

where $\left(^{*}\right)$ follows from Theorem 6.6.1.

Theorem 6.6.3

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is the standard matrix of orthogonal projection onto $\operatorname{Col}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{n}$, the orthogonal projection of x onto $C:=\operatorname{Col}(A)$ is given by

$$
\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}
$$

Proof (continued). But note that

$$
C^{\perp}=\operatorname{Col}(A)^{\perp}=\operatorname{Row}\left(A^{T}\right)^{\perp} \stackrel{(*)}{=} \operatorname{Nul}\left(A^{T}\right)
$$

where $\left(^{*}\right)$ follows from Theorem 6.6.1. So, it in fact suffices to show that the vector $\mathbf{x}-A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}$ belongs to $\operatorname{Nul}\left(A^{T}\right)$.

Theorem 6.6.3

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is the standard matrix of orthogonal projection onto $\operatorname{Col}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{n}$, the orthogonal projection of x onto $C:=\operatorname{Col}(A)$ is given by

$$
\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}
$$

Proof (continued). But note that

$$
C^{\perp}=\operatorname{Col}(A)^{\perp}=\operatorname{Row}\left(A^{T}\right)^{\perp} \stackrel{(*)}{=} \operatorname{Nul}\left(A^{T}\right)
$$

where $\left(^{*}\right)$ follows from Theorem 6.6.1. So, it in fact suffices to show that the vector $\mathbf{x}-A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}$ belongs to $\operatorname{Nul}\left(A^{T}\right)$. For this, we compute:

$$
A^{T}\left(\mathbf{x}-A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}\right)=A^{T} \mathbf{x}-\underbrace{A^{T} A\left(A^{T} A\right)^{-1}}_{=I_{m}} A^{T} \mathbf{x}=\mathbf{0}
$$

Theorem 6.6.3

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is the standard matrix of orthogonal projection onto $\operatorname{Col}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{n}$, the orthogonal projection of x onto $C:=\operatorname{Col}(A)$ is given by

$$
\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}
$$

Proof (continued). But note that

$$
C^{\perp}=\operatorname{Col}(A)^{\perp}=\operatorname{Row}\left(A^{T}\right)^{\perp} \stackrel{(*)}{=} \operatorname{Nul}\left(A^{T}\right)
$$

where $\left(^{*}\right)$ follows from Theorem 6.6.1. So, it in fact suffices to show that the vector $\mathbf{x}-A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}$ belongs to $\operatorname{Nul}\left(A^{T}\right)$. For this, we compute:

$$
A^{T}\left(\mathbf{x}-A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}\right)=A^{T} \mathbf{x}-\underbrace{A^{T} A\left(A^{T} A\right)^{-1}}_{=I_{m}} A^{T} \mathbf{x}=\mathbf{0}
$$

This proves that $\mathbf{x}-A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x} \in \operatorname{Nul}\left(A^{T}\right)$, and we are done.

Theorem 6.6.3

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is the standard matrix of orthogonal projection onto $\operatorname{Col}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{n}$, the orthogonal projection of x onto $C:=\operatorname{Col}(A)$ is given by

$$
\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}
$$

Theorem 6.6.3

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is the standard matrix of orthogonal projection onto $\operatorname{Col}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{n}$, the orthogonal projection of x onto $C:=\operatorname{Col}(A)$ is given by

$$
\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}
$$

Corollary 6.6.4

Let a be a non-zero vector in \mathbb{R}^{n}. Then the standard matrix of projection onto the line $L:=\operatorname{Span}(\mathbf{a})$ is the matrix

$$
\mathbf{a}\left(\mathbf{a}^{T} \mathbf{a}\right)^{-1} \mathbf{a}^{T}=\mathbf{a}(\mathbf{a} \cdot \mathbf{a})^{-1} \mathbf{a}^{T}=\frac{1}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}^{T}
$$

Consequently, for every vector $\mathbf{x} \in \mathbb{R}^{n}$, we have that

$$
\mathbf{x}_{L}=\operatorname{proj}_{L}(\mathbf{x})=\frac{1}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a a}^{T} \mathbf{x}
$$

Proof. This is a special case of Theorem 6.6.3 for $A=[\mathbf{a}] . \square$

Theorem 6.6.5

Let U be a subspace of \mathbb{R}^{n}, and let $P \in \mathbb{R}^{n \times n}$ be the standard matrix of proj_{U}. Then $I_{n}-P$ is the standard matrix of $\operatorname{proj}_{U \perp}$, that is, for all $\mathbf{x} \in \mathbb{R}^{n}$, the orthogonal projection of \mathbf{x} onto U^{\perp} is given by $\mathbf{x}_{U \perp}=\left(I_{n}-P\right) \mathbf{x}$.

Proof.

Theorem 6.6.5

Let U be a subspace of \mathbb{R}^{n}, and let $P \in \mathbb{R}^{n \times n}$ be the standard matrix of proj_{U}. Then $I_{n}-P$ is the standard matrix of $\operatorname{proj}_{U^{\perp}}$, that is, for all $\mathbf{x} \in \mathbb{R}^{n}$, the orthogonal projection of \mathbf{x} onto U^{\perp} is given by $\mathbf{x}_{U \perp}=\left(I_{n}-P\right) \mathbf{x}$.

Proof. We observe that for all $\mathbf{x} \in \mathbb{R}^{n}$, we have that

$$
\left(I_{n}-P\right) \mathbf{x}=I_{n} \mathbf{x}-P \mathbf{x} \stackrel{(*)}{=} \mathbf{x}-\mathbf{x}_{U} \stackrel{(* *)}{=} \mathbf{x}_{U^{\perp}}
$$

where $\left(^{*}\right)$ follows from the fact that P is the standard matrix of proj_{U}, and $\left({ }^{* *}\right)$ follows from Corollary 6.5.3. So, $I_{n}-P$ is indeed the standard matrix of $\operatorname{proj}_{U^{\perp}} . \square$

- Theorem 6.6.5: if $P \in \mathbb{R}^{n \times n}$ is the standard matrix of proj_{U}, then $I_{n}-P$ is the standard matrix of $\operatorname{proj}_{U \perp}$.
- Theorem 6.6.5: if $P \in \mathbb{R}^{n \times n}$ is the standard matrix of proj_{U}, then $I_{n}-P$ is the standard matrix of $\operatorname{proj}_{U^{\perp}}$.

Corollary 6.6.6

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank n (i.e. A is a matrix of full row rank). Then the matrix $I_{m}-A^{T}\left(A A^{T}\right)^{-1} A$ is the standard matrix of orthogonal projection onto $N:=\operatorname{Nul}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{m}$, the orthogonal projection of \mathbf{x} onto N is given by
$\mathbf{x}_{N}=\left(I_{m}-A^{T}\left(A A^{T}\right)^{-1} A\right) \mathbf{x}$.
Proof.

- Theorem 6.6.5: if $P \in \mathbb{R}^{n \times n}$ is the standard matrix of proj_{U}, then $I_{n}-P$ is the standard matrix of $\operatorname{proj}_{U^{\perp}}$.

Corollary 6.6.6

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank n (i.e. A is a matrix of full row rank). Then the matrix $I_{m}-A^{T}\left(A A^{T}\right)^{-1} A$ is the standard matrix of orthogonal projection onto $N:=\operatorname{Nul}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{m}$, the orthogonal projection of \mathbf{x} onto N is given by
$\mathbf{x}_{N}=\left(I_{m}-A^{T}\left(A A^{T}\right)^{-1} A\right) \mathbf{x}$.
Proof. First, note that
$\operatorname{Nul}(A) \stackrel{(*)}{=} \operatorname{Row}(A)^{\perp}=\operatorname{Col}\left(A^{T}\right)^{\perp}$.
where $\left(^{*}\right)$ follows from Theorem 6.6.1.

- Theorem 6.6.5: if $P \in \mathbb{R}^{n \times n}$ is the standard matrix of proj_{U}, then $I_{n}-P$ is the standard matrix of $\operatorname{proj}_{U^{\perp}}$.

Corollary 6.6.6

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank n (i.e. A is a matrix of full row rank). Then the matrix $I_{m}-A^{T}\left(A A^{T}\right)^{-1} A$ is the standard matrix of orthogonal projection onto $N:=\operatorname{Nul}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{m}$, the orthogonal projection of \mathbf{x} onto N is given by
$\mathbf{x}_{N}=\left(I_{m}-A^{T}\left(A A^{T}\right)^{-1} A\right) \mathbf{x}$.
Proof. First, note that

$$
\operatorname{Nul}(A) \stackrel{(*)}{=} \operatorname{Row}(A)^{\perp}=\operatorname{Col}\left(A^{T}\right)^{\perp}
$$

where $\left(^{*}\right)$ follows from Theorem 6.6.1. Note further that $A^{T} \in \mathbb{R}^{m \times n}$ and that $\operatorname{rank}\left(A^{T}\right)=\operatorname{rank}(A)=n$, i.e. A^{T} has full column rank.

- Theorem 6.6.5: if $P \in \mathbb{R}^{n \times n}$ is the standard matrix of proj_{U}, then $I_{n}-P$ is the standard matrix of $\operatorname{proj}_{U^{\perp}}$.

Corollary 6.6.6

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank n (i.e. A is a matrix of full row rank). Then the matrix $I_{m}-A^{T}\left(A A^{T}\right)^{-1} A$ is the standard matrix of orthogonal projection onto $N:=\operatorname{Nul}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{m}$, the orthogonal projection of \mathbf{x} onto N is given by
$\mathbf{x}_{N}=\left(I_{m}-A^{T}\left(A A^{T}\right)^{-1} A\right) \mathbf{x}$.
Proof. First, note that

$$
\operatorname{Nul}(A) \stackrel{(*)}{=} \operatorname{Row}(A)^{\perp}=\operatorname{Col}\left(A^{T}\right)^{\perp}
$$

where $\left(^{*}\right)$ follows from Theorem 6.6.1. Note further that $A^{T} \in \mathbb{R}^{m \times n}$ and that $\operatorname{rank}\left(A^{T}\right)=\operatorname{rank}(A)=n$, i.e. A^{T} has full column rank. So, by Theorem 6.6.3, the standard matrix of orthogonal projection onto $\operatorname{Col}\left(A^{T}\right)$ is $A^{T}\left(A A^{T}\right)^{-1} A$.

- Theorem 6.6.5: if $P \in \mathbb{R}^{n \times n}$ is the standard matrix of proj_{U}, then $I_{n}-P$ is the standard matrix of $\operatorname{proj}_{U^{\perp}}$.

Corollary 6.6.6

Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank n (i.e. A is a matrix of full row rank). Then the matrix $I_{m}-A^{T}\left(A A^{T}\right)^{-1} A$ is the standard matrix of orthogonal projection onto $N:=\operatorname{Nul}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{m}$, the orthogonal projection of \mathbf{x} onto N is given by
$\mathbf{x}_{N}=\left(I_{m}-A^{T}\left(A A^{T}\right)^{-1} A\right) \mathbf{x}$.
Proof. First, note that

$$
\operatorname{Nul}(A) \stackrel{(*)}{=} \operatorname{Row}(A)^{\perp}=\operatorname{Col}\left(A^{T}\right)^{\perp}
$$

where $\left(^{*}\right)$ follows from Theorem 6.6.1. Note further that $A^{T} \in \mathbb{R}^{m \times n}$ and that $\operatorname{rank}\left(A^{T}\right)=\operatorname{rank}(A)=n$, i.e. A^{T} has full column rank. So, by Theorem 6.6.3, the standard matrix of orthogonal projection onto $\operatorname{Col}\left(A^{T}\right)$ is $A^{T}\left(A A^{T}\right)^{-1} A$. Finally, by Theorem 6.6.5, the standard matrix of orthogonal projection onto $\operatorname{Col}\left(A^{T}\right)^{\perp}=\operatorname{Nul}(A)$ is $I_{m}-A^{T}\left(A A^{T}\right)^{-1} A . \square$

