Linear Algebra 2

Lecture #15

Orthogonal and orthonormal bases. Gram-Schmidt orthogonalization

Irena Penev

March 6, 2024

• This lecture has four parts:

- This lecture has four parts:
 - Vector projection

- This lecture has four parts:
 - Vector projection
 - Orthogonal and orthonormal sets. Orthogonal and orthonormal bases

- This lecture has four parts:
 - Vector projection
 - Orthogonal and orthonormal sets. Orthogonal and orthonormal bases
 - Coordinate vectors w.r.t. orthogonal and orthonormal bases. Fourier coefficients

- This lecture has four parts:
 - Vector projection
 - Orthogonal and orthonormal sets. Orthogonal and orthonormal bases
 - Coordinate vectors w.r.t. orthogonal and orthonormal bases. Fourier coefficients
 - Gram-Schmidt orthogonalization

Vector projection

Definition

Suppose we are given a real or complex vector space V, equipped with a scalar product $\langle \cdot, \cdot \rangle$. For a **non-zero** vector $\mathbf{u} \in V$ and any vector $\mathbf{v} \in V$, the *orthogonal projection* of \mathbf{v} onto \mathbf{u} is the vector

$$\mathsf{proj}_{\mathbf{u}}(\mathbf{v}) \;\; := \;\; rac{\langle \mathbf{v}, \mathbf{u}
angle}{\langle \mathbf{u}, \mathbf{u}
angle} \mathbf{u}.$$

• Remarks:

Vector projection

Definition

Suppose we are given a real or complex vector space V, equipped with a scalar product $\langle \cdot, \cdot \rangle$. For a **non-zero** vector $\mathbf{u} \in V$ and any vector $\mathbf{v} \in V$, the *orthogonal projection* of \mathbf{v} onto \mathbf{u} is the vector

$$\operatorname{proj}_{\mathbf{u}}(\mathbf{v}) := \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}.$$

• Remarks:

• Since $\mathbf{u} \neq \mathbf{0}$, r.1 or c.1 guarantees that $\langle \mathbf{u}, \mathbf{u} \rangle > 0$, and so the expression above is well-defined (that is, we are not dividing by zero).

Vector projection

Definition

Suppose we are given a real or complex vector space V, equipped with a scalar product $\langle \cdot, \cdot \rangle$. For a **non-zero** vector $\mathbf{u} \in V$ and any vector $\mathbf{v} \in V$, the *orthogonal projection* of \mathbf{v} onto \mathbf{u} is the vector

$$\operatorname{proj}_{\mathbf{u}}(\mathbf{v}) := \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}.$$

• Remarks:

- Since $\mathbf{u} \neq \mathbf{0}$, r.1 or c.1 guarantees that $\langle \mathbf{u}, \mathbf{u} \rangle > 0$, and so the expression above is well-defined (that is, we are not dividing by zero).
- $\text{proj}_{u}(v)$ is a scalar multiple of u.

As the picture suggests, for any scalar α ≠ 0, the projection of v onto αu is the same as the projection of v onto u.

- As the picture suggests, for any scalar α ≠ 0, the projection of v onto αu is the same as the projection of v onto u.
- Indeed, if V is a complex vector space, then we have that

$$\operatorname{proj}_{\alpha \mathbf{u}}(\mathbf{v}) = \frac{\langle \mathbf{v}, \alpha \mathbf{u} \rangle}{\langle \alpha \mathbf{u}, \alpha \mathbf{u} \rangle} (\alpha \mathbf{u}) \quad \text{by definition}$$
$$= \frac{\langle \mathbf{v}, \alpha \mathbf{u} \rangle}{\alpha \langle \mathbf{u}, \alpha \mathbf{u} \rangle} (\alpha \mathbf{u}) \quad \text{by c.3}$$
$$= \frac{\overline{\alpha} \langle \mathbf{v}, \mathbf{u} \rangle}{\alpha \overline{\alpha} \langle \mathbf{u}, \mathbf{u} \rangle} (\alpha \mathbf{u}) \quad \text{by c.3'}$$
$$= \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}$$
$$= \operatorname{proi}(\mathbf{v}) \quad \text{by definition}$$

- As the picture suggests, for any scalar α ≠ 0, the projection of v onto αu is the same as the projection of v onto u.
- Indeed, if V is a complex vector space, then we have that

$$proj_{\alpha \mathbf{u}}(\mathbf{v}) = \frac{\langle \mathbf{v}, \alpha \mathbf{u} \rangle}{\langle \alpha \mathbf{u}, \alpha \mathbf{u} \rangle} (\alpha \mathbf{u}) \qquad \text{by definition}$$
$$= \frac{\langle \mathbf{v}, \alpha \mathbf{u} \rangle}{\alpha \langle \mathbf{u}, \alpha \mathbf{u} \rangle} (\alpha \mathbf{u}) \qquad \text{by c.3}$$
$$= \frac{\overline{\alpha} \langle \mathbf{v}, \mathbf{u} \rangle}{\alpha \overline{\alpha} \langle \mathbf{u}, \mathbf{u} \rangle} (\alpha \mathbf{u}) \qquad \text{by c.3'}$$
$$= \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}$$
$$= proj_{\mathbf{u}}(\mathbf{v}) \qquad \text{by definition}$$

• The real case is similar, only without complex conjugates.

Let *V* be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let **u** be a non-zero vector in *V*, let **v** be any vector in *V*, and set $\mathbf{z} := \mathbf{v} - \operatorname{proj}_{\mathbf{u}}(\mathbf{v})$. Then $\mathbf{z} \perp \mathbf{u}$.

Proof.

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let **u** be a non-zero vector in V, let **v** be any vector in V, and set $\mathbf{z} := \mathbf{v} - \operatorname{proj}_{\mathbf{u}}(\mathbf{v})$. Then $\mathbf{z} \perp \mathbf{u}$.

Proof. We compute

where (*) follows from r.2 and r.3 (in the real case) or from c.2 and c.3 (in the complex case). This proves that $z \perp u$. \Box

Orthogonal and orthonormal sets. Orthogonal and orthonormal bases

Orthogonal and orthonormal sets. Orthogonal and orthonormal bases

Definition

Suppose we are given a real or complex vector space V, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$.

- An *orthogonal set of vectors* in V is a set of pairwise orthogonal vectors in V.
- An *orthonormal set of vectors* is an orthogonal set of unit vectors (i.e. vectors of length 1).
- An orthogonal basis (resp. orthonormal basis) of V is an orthogonal (resp. orthonormal) set in V that is also a basis of V.

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||.$ Then both the following hold:

- any orthogonal set of non-zero vectors in V is linearly independent;
- **any orthonormal** set of vectors in V is linearly independent.

Proof.

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||.$ Then both the following hold:

- any orthogonal set of non-zero vectors in V is linearly independent;
- any **orthonormal** set of vectors in V is linearly independent.

Proof. Any orthonormal set of vectors is an orthogonal set of non-zero vectors (because $\mathbf{0}$ is not a unit vector). So, (a) immediately implies (b).

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||.$ Then both the following hold:

- any orthogonal set of non-zero vectors in V is linearly independent;
- **)** any **orthonormal** set of vectors in V is linearly independent.

Proof. Any orthonormal set of vectors is an orthogonal set of non-zero vectors (because $\mathbf{0}$ is not a unit vector). So, (a) immediately implies (b).

It remains to prove (a).

 any orthogonal set of non-zero vectors in V is linearly independent;

Proof (continued).

any orthogonal set of non-zero vectors in V is linearly independent;

Proof (continued). Fix an orthogonal set $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ of non-zero vectors in V. WTS this set is linearly independent.

any orthogonal set of non-zero vectors in V is linearly independent;

Proof (continued). Fix an orthogonal set $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ of non-zero vectors in V. WTS this set is linearly independent. Fix scalars $\alpha_1, \ldots, \alpha_k$ s.t.

$$\alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k = \mathbf{0}.$$

WTS $\alpha_1 = \cdots = \alpha_k = 0.$

any orthogonal set of non-zero vectors in V is linearly independent;

Proof (continued). Fix an orthogonal set $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ of non-zero vectors in V. WTS this set is linearly independent. Fix scalars $\alpha_1, \ldots, \alpha_k$ s.t.

$$\alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k = \mathbf{0}.$$

WTS $\alpha_1 = \cdots = \alpha_k = 0$. Fix any $i \in \{1, \ldots, k\}$. Then

$$\langle \underbrace{\alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k}_{=\mathbf{0}}, \mathbf{u}_i \rangle = \langle \mathbf{0}, \mathbf{u}_i \rangle \stackrel{(*)}{=} \mathbf{0},$$

where (*) follows from Proposition 6.1.4(c).

 any orthogonal set of non-zero vectors in V is linearly independent;

Proof (continued). Reminder: $\langle \alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k, \mathbf{u}_i \rangle = 0.$

any orthogonal set of non-zero vectors in V is linearly independent;

Proof (continued). Reminder: $\langle \alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k, \mathbf{u}_i \rangle = 0$. On the other hand, note that

$$\langle \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k, \mathbf{u}_i \rangle \stackrel{(*)}{=} \alpha_1 \langle \mathbf{u}_1, \mathbf{u}_i \rangle + \dots + \alpha_k \langle \mathbf{u}_k, \mathbf{u}_i \rangle \stackrel{(**)}{=} \alpha_i \langle \mathbf{u}_i, \mathbf{u}_i \rangle,$$

where (*) follows from r.2 and r.3 (in the real case) or from c.2 and c.3 (in the complex case), and (**) follows from the fact that $\{u_1, \ldots, u_k\}$ is an orthogonal set.

any orthogonal set of non-zero vectors in V is linearly independent;

Proof (continued). Reminder: $\langle \alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k, \mathbf{u}_i \rangle = 0$. On the other hand, note that

$$\langle \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k, \mathbf{u}_i \rangle \stackrel{(*)}{=} \alpha_1 \langle \mathbf{u}_1, \mathbf{u}_i \rangle + \dots + \alpha_k \langle \mathbf{u}_k, \mathbf{u}_i \rangle \stackrel{(**)}{=} \alpha_i \langle \mathbf{u}_i, \mathbf{u}_i \rangle,$$

where (*) follows from r.2 and r.3 (in the real case) or from c.2 and c.3 (in the complex case), and (**) follows from the fact that $\{u_1, \ldots, u_k\}$ is an orthogonal set.

So,

$$\alpha_i \langle \mathbf{u}_i, \mathbf{u}_i \rangle = 0.$$

any orthogonal set of non-zero vectors in V is linearly independent;

Proof (continued). Reminder: $\langle \alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k, \mathbf{u}_i \rangle = 0$. On the other hand, note that

/ . . . **(*)** / . . . / .

$$\langle \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k, \mathbf{u}_i \rangle \stackrel{(*)}{=} \alpha_1 \langle \mathbf{u}_1, \mathbf{u}_i \rangle + \dots + \alpha_k \langle \mathbf{u}_k, \mathbf{u}_i \rangle \stackrel{(**)}{=} \alpha_i \langle \mathbf{u}_i, \mathbf{u}_i \rangle,$$

where (*) follows from r.2 and r.3 (in the real case) or from c.2 and c.3 (in the complex case), and (**) follows from the fact that $\{u_1, \ldots, u_k\}$ is an orthogonal set.

So,

$$\alpha_i \langle \mathbf{u}_i, \mathbf{u}_i \rangle = \mathbf{0}.$$

Since $\mathbf{u}_i \neq \mathbf{0}$, r.1 or c.1 guarantees that $\langle \mathbf{u}_i, \mathbf{u}_i \rangle \neq 0$; consequently, $\alpha_i = 0$.

any orthogonal set of non-zero vectors in V is linearly independent;

Proof (continued). Reminder: $\langle \alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k, \mathbf{u}_i \rangle = 0.$

On the other hand, note that

$$\langle \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k, \mathbf{u}_i \rangle \stackrel{(*)}{=} \alpha_1 \langle \mathbf{u}_1, \mathbf{u}_i \rangle + \dots + \alpha_k \langle \mathbf{u}_k, \mathbf{u}_i \rangle \stackrel{(**)}{=} \alpha_i \langle \mathbf{u}_i, \mathbf{u}_i \rangle,$$

where (*) follows from r.2 and r.3 (in the real case) or from c.2 and c.3 (in the complex case), and (**) follows from the fact that $\{u_1, \ldots, u_k\}$ is an orthogonal set.

So,

$$\alpha_i \langle \mathbf{u}_i, \mathbf{u}_i \rangle = \mathbf{0}.$$

Since $\mathbf{u}_i \neq \mathbf{0}$, r.1 or c.1 guarantees that $\langle \mathbf{u}_i, \mathbf{u}_i \rangle \neq 0$; consequently, $\alpha_i = 0$. Since $i \in \{1, \dots, k\}$ was chosen arbitrarily, it follows that $\alpha_1 = \cdots = \alpha_k = 0$, and we are done. \Box

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||$. Then both the following hold:

- any orthogonal set of non-zero vectors in V is linearly independent;
- any orthonormal set of vectors in V is linearly independent.

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ be an **orthogonal** set of vectors in V. Then all the following hold:

- for all scalars $\alpha_1, \ldots, \alpha_k$, we have that $\{\alpha_1 \mathbf{u}_1, \ldots, \alpha_k \mathbf{u}_k\}$ is an **orthogonal** set of vectors;
- (a) if vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ are all non-zero, then $\left\{ \frac{\mathbf{u}_1}{||\mathbf{u}_1||}, \ldots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||} \right\}$ is an **orthonormal** set of vectors, and consequently, an orthonormal basis of Span $(\mathbf{u}_1, \ldots, \mathbf{u}_k)$;
- (a) if $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is an orthogonal basis of V, then $\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||}, \dots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||}\right\}$ is an orthonormal basis of V.
 - Proof: Lecture Notes.

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Set $n := \dim(V)$. Then both the following hold:

- any orthogonal set of n non-zero vectors in V is an orthogonal basis of V;
- (any orthonormal set of n vectors in V is an orthonormal basis of V.

Proof.

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Set $n := \dim(V)$. Then both the following hold:

- any orthogonal set of n non-zero vectors in V is an orthogonal basis of V;
- (any orthonormal set of n vectors in V is an orthonormal basis of V.

Proof. By Proposition 6.3.2, any orthogonal set of non-zero vectors is linearly independent, and by Corollary 3.2.20(a), any linearly independent set of size n in an n-dimensional vector space is a basis of that vector space. This proves (a).

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Set $n := \dim(V)$. Then both the following hold:

- any orthogonal set of n non-zero vectors in V is an orthogonal basis of V;
- (any orthonormal set of n vectors in V is an orthonormal basis of V.

Proof. By Proposition 6.3.2, any orthogonal set of non-zero vectors is linearly independent, and by Corollary 3.2.20(a), any linearly independent set of size n in an n-dimensional vector space is a basis of that vector space. This proves (a).

Part (b) follows from (a), since any orthonormal set of vectors is, in particular, an orthogonal set of non-zero vectors (because $\mathbf{0}$ is not a unit vector). \Box

Coordinate vectors w.r.t. orthogonal and orthonormal bases.
 Fourier coefficients

- Coordinate vectors w.r.t. orthogonal and orthonormal bases.
 Fourier coefficients
 - If we have an orthogonal basis of a real or complex vector space (equipped with a scalar product and the norm induced by it), then every vector in that vector space can be expressed as a linear combination of those basis vectors in a particularly nice way, that is, we have a convenient formula for the coefficients in front of the basis vectors (see Theorem 6.3.5, next slide).
- Coordinate vectors w.r.t. orthogonal and orthonormal bases.
 Fourier coefficients
 - If we have an orthogonal basis of a real or complex vector space (equipped with a scalar product and the norm induced by it), then every vector in that vector space can be expressed as a linear combination of those basis vectors in a particularly nice way, that is, we have a convenient formula for the coefficients in front of the basis vectors (see Theorem 6.3.5, next slide).
 - If our basis is orthonormal, then we get an even nicer formula for the coefficients (see Corollary 6.3.6, next slide).
 - The formula from Corollary 6.3.6 follows immediately from the one for Theorem 6.3.5.
 - The coefficients from Corollary 6.3.6 are called the "Fourier coefficients."

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ be an **orthogonal** basis of V. Then for all $\mathbf{v} \in V$, we have that

$$\mathbf{v} = \sum_{i=1}^{n} \text{proj}_{\mathbf{u}_{i}}(\mathbf{v}) = \sum_{i=1}^{n} \frac{\langle \mathbf{v}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i},$$

and consequently, $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \frac{\langle \mathbf{v}, \mathbf{u}_{1} \rangle}{\langle \mathbf{u}_{1}, \mathbf{u}_{1} \rangle} & \dots & \frac{\langle \mathbf{v}, \mathbf{u}_{n} \rangle}{\langle \mathbf{u}_{n}, \mathbf{u}_{n} \rangle} \end{bmatrix}^{T}.$

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ be an **orthogonal** basis of V. Then for all $\mathbf{v} \in V$, we have that

$$\mathbf{v} = \sum_{i=1}^{n} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v}) = \sum_{i=1}^{n} \frac{\langle \mathbf{v}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i},$$

and consequently, $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \frac{\langle \mathbf{v}, \mathbf{u}_{1} \rangle}{\langle \mathbf{u}_{1}, \mathbf{u}_{1} \rangle} & \dots & \frac{\langle \mathbf{v}, \mathbf{u}_{n} \rangle}{\langle \mathbf{u}_{n}, \mathbf{u}_{n} \rangle} \end{bmatrix}^{T}.$

Corollary 6.3.6

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let $\mathcal{B} = \{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ be an **orthonormal** basis of V. Then for all $\mathbf{v} \in V$, we have that

$$\mathbf{v} = \sum_{i=1}^n \langle \mathbf{v}, \mathbf{u}_i \rangle \mathbf{u}_i,$$

and consequently, $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \langle \mathbf{v}, \mathbf{u}_1 \rangle & \dots & \langle \mathbf{v}, \mathbf{u}_n \rangle \end{bmatrix}^T$.

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ be an **orthogonal** basis of V. Then for all $\mathbf{v} \in V$, we have that

$$\mathbf{v} = \sum_{i=1}^{n} \text{proj}_{\mathbf{u}_{i}}(\mathbf{v}) = \sum_{i=1}^{n} \frac{\langle \mathbf{v}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i},$$

and consequently, $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \frac{\langle \mathbf{v}, \mathbf{u}_{1} \rangle}{\langle \mathbf{u}_{1}, \mathbf{u}_{1} \rangle} & \dots & \frac{\langle \mathbf{v}, \mathbf{u}_{n} \rangle}{\langle \mathbf{u}_{n}, \mathbf{u}_{n} \rangle} \end{bmatrix}^{T}.$

Proof.

and

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ be an **orthogonal** basis of V. Then for all $\mathbf{v} \in V$, we have that

$$\mathbf{v} = \sum_{i=1}^{n} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v}) = \sum_{i=1}^{n} \frac{\langle \mathbf{v}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i},$$

consequently, $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \frac{\langle \mathbf{v}, \mathbf{u}_{1} \rangle}{\langle \mathbf{u}_{1}, \mathbf{u}_{1} \rangle} & \dots & \frac{\langle \mathbf{v}, \mathbf{u}_{n} \rangle}{\langle \mathbf{u}_{n}, \mathbf{u}_{n} \rangle} \end{bmatrix}^{T}.$

Proof. The second statement follows from the first and from the definition of a coordinate vector.

and

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ be an **orthogonal** basis of V. Then for all $\mathbf{v} \in V$, we have that

$$\mathbf{v} = \sum_{i=1}^{n} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v}) = \sum_{i=1}^{n} \frac{\langle \mathbf{v}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i},$$

consequently, $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \frac{\langle \mathbf{v}, \mathbf{u}_{1} \rangle}{\langle \mathbf{u}_{1}, \mathbf{u}_{1} \rangle} & \dots & \frac{\langle \mathbf{v}, \mathbf{u}_{n} \rangle}{\langle \mathbf{u}_{n}, \mathbf{u}_{n} \rangle} \end{bmatrix}^{T}.$

Proof. The second statement follows from the first and from the definition of a coordinate vector. It remains to prove the first statement.

and

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ be an **orthogonal** basis of V. Then for all $\mathbf{v} \in V$, we have that

$$\mathbf{v} = \sum_{i=1}^{n} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v}) = \sum_{i=1}^{n} \frac{\langle \mathbf{v}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i},$$

consequently, $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \frac{\langle \mathbf{v}, \mathbf{u}_{1} \rangle}{\langle \mathbf{u}_{1}, \mathbf{u}_{1} \rangle} & \dots & \frac{\langle \mathbf{v}, \mathbf{u}_{n} \rangle}{\langle \mathbf{u}_{n}, \mathbf{u}_{n} \rangle} \end{bmatrix}^{T}.$

Proof. The second statement follows from the first and from the definition of a coordinate vector. It remains to prove the first statement.

Fix a vector $\mathbf{v} \in V$.

and

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ be an **orthogonal** basis of V. Then for all $\mathbf{v} \in V$, we have that

$$\mathbf{v} = \sum_{i=1}^{n} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v}) = \sum_{i=1}^{n} \frac{\langle \mathbf{v}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i},$$

consequently, $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \frac{\langle \mathbf{v}, \mathbf{u}_{1} \rangle}{\langle \mathbf{u}_{1}, \mathbf{u}_{1} \rangle} & \dots & \frac{\langle \mathbf{v}, \mathbf{u}_{n} \rangle}{\langle \mathbf{u}_{n}, \mathbf{u}_{n} \rangle} \end{bmatrix}^{T}.$

Proof. The second statement follows from the first and from the definition of a coordinate vector. It remains to prove the first statement.

Fix a vector $\mathbf{v} \in V$. By definition, for all $i \in \{1, \ldots, n\}$, we have that $\operatorname{proj}_{\mathbf{u}_i}(\mathbf{v}) = \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$. So, it suffices to show that

$$\mathbf{v} = \sum_{i=1}^{n} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Proof (continued). Reminder: WTS $\mathbf{v} = \sum_{i=1}^{n} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$.

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{u}_i.$$

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{u}_i.$$

Now, fix any index $j \in \{1, \ldots, n\}$. We then have that

$$\langle \mathbf{v}, \mathbf{u}_j \rangle = \left\langle \sum_{i=1}^n \alpha_i \mathbf{u}_i, \mathbf{u}_j \right\rangle \stackrel{(*)}{=} \sum_{i=1}^n \alpha_i \langle \mathbf{u}_i, \mathbf{u}_j \rangle \stackrel{(**)}{=} \alpha_j \langle \mathbf{u}_j, \mathbf{u}_j \rangle,$$

where (*) follows from r.2 and r.3 (in the real case) or from c.2 and c.3 (in the complex case), and (**) follows from the fact that $\mathbf{u}_1, \ldots, \mathbf{u}_n$ are pairwise orthogonal.

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{u}_i.$$

Now, fix any index $j \in \{1, \ldots, n\}$. We then have that

$$\langle \mathbf{v}, \mathbf{u}_j \rangle = \left\langle \sum_{i=1}^n \alpha_i \mathbf{u}_i, \mathbf{u}_j \right\rangle \stackrel{(*)}{=} \sum_{i=1}^n \alpha_i \langle \mathbf{u}_i, \mathbf{u}_j \rangle \stackrel{(**)}{=} \alpha_j \langle \mathbf{u}_j, \mathbf{u}_j \rangle,$$

where (*) follows from r.2 and r.3 (in the real case) or from c.2 and c.3 (in the complex case), and (**) follows from the fact that $\mathbf{u}_1, \ldots, \mathbf{u}_n$ are pairwise orthogonal. Since $\mathbf{u}_j \neq \mathbf{0}$ (because $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ is a basis of V), r.1 or c.1 guarantees that $\langle \mathbf{u}_j, \mathbf{u}_j \rangle \neq 0$, and we deduce that

$$\alpha_j = \frac{\langle \mathbf{v}, \mathbf{u}_j \rangle}{\langle \mathbf{u}_j, \mathbf{u}_j \rangle}.$$

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{u}_i.$$

Now, fix any index $j \in \{1, \ldots, n\}$. We then have that

$$\langle \mathbf{v}, \mathbf{u}_j \rangle = \left\langle \sum_{i=1}^n \alpha_i \mathbf{u}_i, \mathbf{u}_j \right\rangle \stackrel{(*)}{=} \sum_{i=1}^n \alpha_i \langle \mathbf{u}_i, \mathbf{u}_j \rangle \stackrel{(**)}{=} \alpha_j \langle \mathbf{u}_j, \mathbf{u}_j \rangle,$$

where (*) follows from r.2 and r.3 (in the real case) or from c.2 and c.3 (in the complex case), and (**) follows from the fact that $\mathbf{u}_1, \ldots, \mathbf{u}_n$ are pairwise orthogonal. Since $\mathbf{u}_j \neq \mathbf{0}$ (because $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ is a basis of V), r.1 or c.1 guarantees that $\langle \mathbf{u}_j, \mathbf{u}_j \rangle \neq 0$, and we deduce that

$$\alpha_j = \frac{\langle \mathbf{v}, \mathbf{u}_j \rangle}{\langle \mathbf{u}_j, \mathbf{u}_j \rangle}.$$

Since $j \in \{1, \ldots, n\}$ was chosen arbitrarily, we now deduce that

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{u}_i = \sum_{i=1}^{n} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ be an **orthogonal** basis of V. Then for all $\mathbf{v} \in V$, we have that

$$\mathbf{v} = \sum_{i=1}^{n} \text{proj}_{\mathbf{u}_{i}}(\mathbf{v}) = \sum_{i=1}^{n} \frac{\langle \mathbf{v}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i},$$

and consequently, $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \frac{\langle \mathbf{v}, \mathbf{u}_{1} \rangle}{\langle \mathbf{u}_{1}, \mathbf{u}_{1} \rangle} & \dots & \frac{\langle \mathbf{v}, \mathbf{u}_{n} \rangle}{\langle \mathbf{u}_{n}, \mathbf{u}_{n} \rangle} \end{bmatrix}^{T}.$

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ be an **orthogonal** basis of V. Then for all $\mathbf{v} \in V$, we have that

$$\mathbf{v} = \sum_{i=1}^{n} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v}) = \sum_{i=1}^{n} \frac{\langle \mathbf{v}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i},$$

and consequently, $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \frac{\langle \mathbf{v}, \mathbf{u}_{1} \rangle}{\langle \mathbf{u}_{1}, \mathbf{u}_{1} \rangle} & \dots & \frac{\langle \mathbf{v}, \mathbf{u}_{n} \rangle}{\langle \mathbf{u}_{n}, \mathbf{u}_{n} \rangle} \end{bmatrix}^{T}.$

Corollary 6.3.6

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let $\mathcal{B} = \{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ be an **orthonormal** basis of V. Then for all $\mathbf{v} \in V$, we have that

$$\mathbf{v} = \sum_{i=1}^n \langle \mathbf{v}, \mathbf{u}_i \rangle \mathbf{u}_i,$$

and consequently, $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \langle \mathbf{v}, \mathbf{u}_1 \rangle & \dots & \langle \mathbf{v}, \mathbf{u}_n \rangle \end{bmatrix}^T$.

Gram-Schmidt orthogonalization

- Gram-Schmidt orthogonalization
 - Our goal is to describe the "Gram-Schmidt orthogonalization process," which gives a recipe for transforming an arbitrary basis of a real or complex vector space (equipped with a scalar product and the norm induced by it) into an orthogonal (and even orthonormal) basis.

- Gram-Schmidt orthogonalization
 - Our goal is to describe the "Gram-Schmidt orthogonalization process," which gives a recipe for transforming an arbitrary basis of a real or complex vector space (equipped with a scalar product and the norm induced by it) into an orthogonal (and even orthonormal) basis.
 - There are in fact two different (but similar) versions of the Gram-Schmidt orthogonalization process.

- Gram-Schmidt orthogonalization
 - Our goal is to describe the "Gram-Schmidt orthogonalization process," which gives a recipe for transforming an arbitrary basis of a real or complex vector space (equipped with a scalar product and the norm induced by it) into an orthogonal (and even orthonormal) basis.
 - There are in fact two different (but similar) versions of the Gram-Schmidt orthogonalization process.
 - The first version first produces an orthogonal basis, and then (optionally) produces an orthonormal basis.

- Gram-Schmidt orthogonalization
 - Our goal is to describe the "Gram-Schmidt orthogonalization process," which gives a recipe for transforming an arbitrary basis of a real or complex vector space (equipped with a scalar product and the norm induced by it) into an orthogonal (and even orthonormal) basis.
 - There are in fact two different (but similar) versions of the Gram-Schmidt orthogonalization process.
 - The first version first produces an orthogonal basis, and then (optionally) produces an orthonormal basis.
 - The second version produces an orthonormal basis directly.

- Gram-Schmidt orthogonalization
 - Our goal is to describe the "Gram-Schmidt orthogonalization process," which gives a recipe for transforming an arbitrary basis of a real or complex vector space (equipped with a scalar product and the norm induced by it) into an orthogonal (and even orthonormal) basis.
 - There are in fact two different (but similar) versions of the Gram-Schmidt orthogonalization process.
 - The first version first produces an orthogonal basis, and then (optionally) produces an orthonormal basis.
 - The second version produces an orthonormal basis directly.
 - We first describe the first version, we give a numerical example, and we prove the correctness of the process.

- Gram-Schmidt orthogonalization
 - Our goal is to describe the "Gram-Schmidt orthogonalization process," which gives a recipe for transforming an arbitrary basis of a real or complex vector space (equipped with a scalar product and the norm induced by it) into an orthogonal (and even orthonormal) basis.
 - There are in fact two different (but similar) versions of the Gram-Schmidt orthogonalization process.
 - The first version first produces an orthogonal basis, and then (optionally) produces an orthonormal basis.
 - The second version produces an orthonormal basis directly.
 - We first describe the first version, we give a numerical example, and we prove the correctness of the process.
 - Then we describe the second version.
 - The proof of correctness is similar to the proof of the first, and we omit it.
 - A numerical example is given in the Lecture Notes.

Gram-Schmidt orthogonalization process (version 1)

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$, and let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be linearly independent vectors in V. For all $\ell \in \{1, \ldots, k\}$, set

$$\mathbf{u}_\ell \ := \ \mathbf{v}_\ell - \sum_{i=1}^{\ell-1} \text{proj}_{\mathbf{u}_i}(\mathbf{v}_\ell) \ = \ \mathbf{v}_\ell - \sum_{i=1}^{\ell-1} \frac{\langle \mathbf{v}_\ell, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Then $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$, and $\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||}, \ldots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||}\right\}$ is an orthonormal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

• The sequence $\mathbf{u}_1, \ldots, \mathbf{u}_k$ is obtained (recursively) as follows:

•
$$\mathbf{u}_1 := \mathbf{v}_1;$$

• $\mathbf{u}_2 := \mathbf{v}_2 - \operatorname{proj}_{\mathbf{u}_1}(\mathbf{v}_2);$
• $\mathbf{u}_3 := \mathbf{v}_3 - \left(\operatorname{proj}_{\mathbf{u}_1}(\mathbf{v}_3) + \operatorname{proj}_{\mathbf{u}_2}(\mathbf{v}_3)\right);$
:
• $\mathbf{u}_k := \mathbf{v}_k - \left(\operatorname{proj}_{\mathbf{u}_1}(\mathbf{v}_k) + \operatorname{proj}_{\mathbf{u}_2}(\mathbf{v}_k) + \dots + \operatorname{proj}_{\mathbf{u}_{k-1}}(\mathbf{v}_k)\right).$

Example 6.3.8

Consider the following linearly independent vectors in \mathbb{R}^4 :

$$\mathbf{v}_{1} = \begin{bmatrix} 3\\ 4\\ -4\\ 3 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} -5\\ 10\\ 2\\ 11 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} 8\\ 19\\ 11\\ -2 \end{bmatrix}$$

Set $U := \text{Span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$. Using the Gram-Schmidt orthogonalization process (version 1):

- compute an orthogonal basis of U (w.r.t. the standard scalar product • in R⁴).
- **(**) compute an orthonormal basis of U (w.r.t. the standard scalar product \cdot in \mathbb{R}^4 and the norm $|| \cdot ||$ induced by it).

 Remark: To see that v₁, v₂, v₃ really are linearly independent, we compute

$$\mathsf{RREF}\Big(\Big[\begin{array}{cccc} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{array}\Big]\Big) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

and we deduce that rank $(\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}) = 3$, i.e. $\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$ has full column rank. So, by Theorem 3.3.12(a), vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent.

Example 6.3.8

Consider the following linearly independent vectors in \mathbb{R}^4 :

$$\mathbf{v}_{1} = \begin{bmatrix} 3\\ 4\\ -4\\ 3 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} -5\\ 10\\ 2\\ 11 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} 8\\ 19\\ 11\\ -2 \end{bmatrix}$$

Set $U := \text{Span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$. Using the Gram-Schmidt orthogonalization process (version 1):

- compute an orthogonal basis of U (w.r.t. the standard scalar product \cdot in \mathbb{R}^4).
- **(**) compute an orthonormal basis of U (w.r.t. the standard scalar product \cdot in \mathbb{R}^4 and the norm $|| \cdot ||$ induced by it).
 - Solution: On the board.

• Let's now prove the correctness of the Gram-Schmidt orthogonalization process!

- Let's now prove the correctness of the Gram-Schmidt orthogonalization process!
- We begin with a technical proposition.

- Let's now prove the correctness of the Gram-Schmidt orthogonalization process!
- We begin with a technical proposition.

Proposition 6.3.7

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ be an orthogonal set of non-zero vectors in V. Let $\mathbf{v} \in V$, and set $\mathbf{y} := \sum_{i=1}^k \operatorname{proj}_{\mathbf{u}_i}(\mathbf{v}) = \sum_{i=1}^k \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$ and $\mathbf{z} := \mathbf{v} - \mathbf{y}$. Then all the following hold: (a) $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{z}\}$ is an orthogonal set of vectors; (b) $\mathbf{z} = \mathbf{0}$ iff $\mathbf{v} \in \operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$; (c) $\operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{v}) = \operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{z})$.

Proof.

- Let's now prove the correctness of the Gram-Schmidt orthogonalization process!
- We begin with a technical proposition.

Proposition 6.3.7

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ be an orthogonal set of non-zero vectors in V. Let $\mathbf{v} \in V$, and set $\mathbf{y} := \sum_{i=1}^k \operatorname{proj}_{\mathbf{u}_i}(\mathbf{v}) = \sum_{i=1}^k \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$ and $\mathbf{z} := \mathbf{v} - \mathbf{y}$. Then all the following hold: (a) $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{z}\}$ is an orthogonal set of vectors; (b) $\mathbf{z} = \mathbf{0}$ iff $\mathbf{v} \in \operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$; (c) $\operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{v}) = \operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{z})$.

Proof. First of all, Proposition 6.3.2 guarantees that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a linearly independent set, and we deduce that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of Span $(\mathbf{u}_1, \ldots, \mathbf{u}_k)$.

Proof (continued). Let us first prove (a).

Proof (continued). Let us first prove (a). By hypothesis, vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ are pairwise orthogonal.

Proof (continued). Let us first prove (a). By hypothesis, vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ are pairwise orthogonal. On the other hand, for each $j \in \{1, \ldots, k\}$, we have the following:

$$\begin{array}{lll} \langle \mathbf{z}, \mathbf{u}_j \rangle &=& \langle \mathbf{v} - \sum\limits_{i=1}^k \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i, \mathbf{u}_j \rangle \\ &\stackrel{(*)}{=} & \langle \mathbf{v}, \mathbf{u}_j \rangle - \sum\limits_{i=1}^k \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \langle \mathbf{u}_i, \mathbf{u}_j \rangle \\ &\stackrel{(**)}{=} & \langle \mathbf{v}, \mathbf{u}_j \rangle - \frac{\langle \mathbf{v}, \mathbf{u}_j \rangle}{\langle \mathbf{u}_j, \mathbf{u}_j \rangle} \langle \mathbf{u}_j, \mathbf{u}_j \rangle \\ &= & \langle \mathbf{v}, \mathbf{u}_j \rangle - \langle \mathbf{v}, \mathbf{u}_j \rangle = \mathbf{0}, \end{array}$$

where (*) follows from r.2 and r.3 (in the real case) or from c.2 and c.3 (in the complex case), and (**) follows from the fact that $\{u_1, \ldots, u_k\}$ is an orthogonal set.

Proof (continued). Let us first prove (a). By hypothesis, vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ are pairwise orthogonal. On the other hand, for each $j \in \{1, \ldots, k\}$, we have the following:

$$\begin{array}{lll} \langle \mathbf{z}, \mathbf{u}_j \rangle &=& \langle \mathbf{v} - \sum\limits_{i=1}^k \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i, \mathbf{u}_j \rangle \\ &\stackrel{(*)}{=} & \langle \mathbf{v}, \mathbf{u}_j \rangle - \sum\limits_{i=1}^k \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \langle \mathbf{u}_i, \mathbf{u}_j \rangle \\ &\stackrel{(**)}{=} & \langle \mathbf{v}, \mathbf{u}_j \rangle - \frac{\langle \mathbf{v}, \mathbf{u}_j \rangle}{\langle \mathbf{u}_j, \mathbf{u}_j \rangle} \langle \mathbf{u}_j, \mathbf{u}_j \rangle \\ &= & \langle \mathbf{v}, \mathbf{u}_j \rangle - \langle \mathbf{v}, \mathbf{u}_j \rangle = \mathbf{0}, \end{array}$$

where (*) follows from r.2 and r.3 (in the real case) or from c.2 and c.3 (in the complex case), and (**) follows from the fact that $\{u_1, \ldots, u_k\}$ is an orthogonal set. Thus, $\{u_1, \ldots, u_k, z\}$ is an orthogonal set of vectors. This proves (a).

Proof (continued). Next, we prove (b).

Proof (continued). Next, we prove (b). Clearly, z = 0 iff $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$.
Proof (continued). Next, we prove (b). Clearly, $\mathbf{z} = \mathbf{0}$ iff $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$.

So, we need to show that $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$ iff $\mathbf{v} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$.

Proof (continued). Next, we prove (b). Clearly, z = 0 iff $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$

So, we need to show that $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$ iff $\mathbf{v} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$.

If $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$, then \mathbf{v} is a linear combination of the vectors $\mathbf{u}_1, \dots, \mathbf{u}_k$, and consequently, $\mathbf{v} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$.

Proof (continued). Next, we prove (b). Clearly, $\mathbf{z} = \mathbf{0}$ iff $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$.

So, we need to show that $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$ iff $\mathbf{v} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$.

If $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$, then \mathbf{v} is a linear combination of the vectors $\mathbf{u}_1, \dots, \mathbf{u}_k$, and consequently, $\mathbf{v} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$. On the other hand, if $\mathbf{v} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$, then Theorem 6.3.5 guarantees $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$ (because $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is an orthogonal basis of $\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$). This proves (b).

Proof (continued).

Suppose first that $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v})$.

Suppose first that $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v})$. Then there exist scalars $\alpha_1, \dots, \alpha_k, \beta$ s.t. $\mathbf{x} = \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k + \beta \mathbf{v}$.

Suppose first that $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v})$. Then there exist scalars $\alpha_1, \dots, \alpha_k, \beta$ s.t. $\mathbf{x} = \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k + \beta \mathbf{v}$. But now

$$\mathbf{x} = \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k + \beta \mathbf{v}$$

$$= \left(\sum_{i=1}^{k} \alpha_i \mathbf{u}_i\right) + \beta(\mathbf{y} + \mathbf{z})$$

$$= \left(\sum_{i=1}^{k} \alpha_{i} \mathbf{u}_{i}\right) + \beta\left(\left(\sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i}\right) + \mathbf{z}\right)$$

$$= \left(\sum_{i=1}^{\infty} \left(\alpha_i + \beta \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle}\right) \mathbf{u}_i\right) + \beta \mathbf{z},$$

and we deduce that $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{z})$.

Proof (continued). Suppose, conversely, that $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{z}).$

Proof (continued). Suppose, conversely, that $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{z})$. Then there exist scalars $\alpha_1, \dots, \alpha_k, \beta$ s.t. $\mathbf{x} = \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k + \beta \mathbf{z}$.

Proof (continued). Suppose, conversely, that $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{z})$. Then there exist scalars $\alpha_1, \dots, \alpha_k, \beta$ s.t. $\mathbf{x} = \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k + \beta \mathbf{z}$. But now

 $\mathbf{x} = \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k + \beta \mathbf{z}$

$$= \left(\sum_{i=1}^{k} \alpha_i \mathbf{u}_i\right) + \beta(\mathbf{v} - \mathbf{y})$$

$$= \left(\sum_{i=1}^{k} \alpha_{i} \mathbf{u}_{i}\right) + \beta \left(\mathbf{v} - \left(\sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i}\right)\right)$$

$$= \left(\sum_{i=1}^{k} \left(\alpha_{i} - \beta \frac{\langle \mathbf{v}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle}\right) \mathbf{u}_{i}\right) + \beta \mathbf{v},$$

and we deduce that $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v})$. This proves (c). \Box

Proposition 6.3.7

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ be an orthogonal set of non-zero vectors in V. Let $\mathbf{v} \in V$, and set $\mathbf{y} := \sum_{i=1}^k \operatorname{proj}_{\mathbf{u}_i}(\mathbf{v}) = \sum_{i=1}^k \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$ and $\mathbf{z} := \mathbf{v} - \mathbf{y}$. Then all the following hold: (a) $\{\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{z}\}$ is an orthogonal set of vectors; (b) $\mathbf{z} = \mathbf{0}$ iff $\mathbf{v} \in \operatorname{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$; (c) $\operatorname{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}) = \operatorname{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{z})$.

Proposition 6.3.7

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ be an orthogonal set of non-zero vectors in V. Let $\mathbf{v} \in V$, and set $\mathbf{y} := \sum_{i=1}^k \operatorname{proj}_{\mathbf{u}_i}(\mathbf{v}) = \sum_{i=1}^k \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$ and $\mathbf{z} := \mathbf{v} - \mathbf{y}$. Then all the following hold: (a) $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{z}\}$ is an orthogonal set of vectors; (b) $\mathbf{z} = \mathbf{0}$ iff $\mathbf{v} \in \operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$; (c) $\operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{v}) = \operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{z})$.

• Using Proposition 6.3.7, we can now prove the correctness of the Gram-Schmidt orthogonalization process (version 1).

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$, and let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be linearly independent vectors in V. For all $\ell \in \{1, \ldots, k\}$, set

$$\mathbf{u}_{\boldsymbol{\ell}} := \mathbf{v}_{\boldsymbol{\ell}} - \sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{u}_i}(\mathbf{v}_{\boldsymbol{\ell}}) = \mathbf{v}_{\boldsymbol{\ell}} - \sum_{i=1}^{\ell-1} \frac{\langle \mathbf{v}_{\boldsymbol{\ell}}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Then $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$, and $\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||}, \ldots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||}\right\}$ is an orthonormal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

Proof.

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$, and let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be linearly independent vectors in V. For all $\ell \in \{1, \ldots, k\}$, set

$$\mathbf{u}_{\boldsymbol{\ell}} := \mathbf{v}_{\boldsymbol{\ell}} - \sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{u}_i}(\mathbf{v}_{\boldsymbol{\ell}}) = \mathbf{v}_{\boldsymbol{\ell}} - \sum_{i=1}^{\ell-1} \frac{\langle \mathbf{v}_{\boldsymbol{\ell}}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Then $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$, and $\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||}, \ldots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||}\right\}$ is an orthonormal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

Proof. We first prove that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of Span $(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$, and let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be linearly independent vectors in V. For all $\ell \in \{1, \ldots, k\}$, set

$$\mathbf{u}_{\boldsymbol{\ell}} := \mathbf{v}_{\boldsymbol{\ell}} - \sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{u}_i}(\mathbf{v}_{\boldsymbol{\ell}}) = \mathbf{v}_{\boldsymbol{\ell}} - \sum_{i=1}^{\ell-1} \frac{\langle \mathbf{v}_{\boldsymbol{\ell}}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Then $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$, and $\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||}, \ldots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||}\right\}$ is an orthonormal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

Proof. We first prove that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$. For each $\ell \in \{1, \ldots, k\}$, we set $U_\ell := \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_\ell)$, and we prove (inductively) that $\{\mathbf{u}_1, \ldots, \mathbf{u}_\ell\}$ is an orthogonal basis of U_ℓ .

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$, and let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be linearly independent vectors in V. For all $\ell \in \{1, \ldots, k\}$, set

$$\mathbf{u}_{\boldsymbol{\ell}} := \mathbf{v}_{\boldsymbol{\ell}} - \sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{u}_i}(\mathbf{v}_{\boldsymbol{\ell}}) = \mathbf{v}_{\boldsymbol{\ell}} - \sum_{i=1}^{\ell-1} \frac{\langle \mathbf{v}_{\boldsymbol{\ell}}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Then $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$, and $\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||}, \ldots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||}\right\}$ is an orthonormal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

Proof. We first prove that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$. For each $\ell \in \{1, \ldots, k\}$, we set $U_\ell := \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_\ell)$, and we prove (inductively) that $\{\mathbf{u}_1, \ldots, \mathbf{u}_\ell\}$ is an orthogonal basis of U_ℓ . Obviously, this is enough, because for $k = \ell$, we get that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of $U_k = \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

Since $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is linearly independent, we see that $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are all non-zero, and in particular, $\{\mathbf{v}_1\}$ is linearly independent.

Since $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is linearly independent, we see that $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are all non-zero, and in particular, $\{\mathbf{v}_1\}$ is linearly independent. Since $U_1 = \text{Span}(\mathbf{v}_1)$ and $\mathbf{u}_1 = \mathbf{v}_1$, we deduce that $\{\mathbf{u}_1\}$ is a basis of U_1 , and this basis is obviously orthogonal (since it contains only one vector).

Now, fix $\ell \in \{1, \ldots, k-1\}$, and assume inductively that $\{\mathbf{u}_1, \ldots, \mathbf{u}_\ell\}$ is an orthogonal basis of U_ℓ .

Since $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is linearly independent, we see that $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are all non-zero, and in particular, $\{\mathbf{v}_1\}$ is linearly independent. Since $U_1 = \text{Span}(\mathbf{v}_1)$ and $\mathbf{u}_1 = \mathbf{v}_1$, we deduce that $\{\mathbf{u}_1\}$ is a basis of U_1 , and this basis is obviously orthogonal (since it contains only one vector).

Now, fix $\ell \in \{1, \ldots, k-1\}$, and assume inductively that $\{\mathbf{u}_1, \ldots, \mathbf{u}_\ell\}$ is an orthogonal basis of U_ℓ . WTS $\{\mathbf{u}_1, \ldots, \mathbf{u}_\ell, \mathbf{u}_{\ell+1}\}$ is an orthogonal basis of $U_{\ell+1}$.

Since $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is linearly independent, we see that $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are all non-zero, and in particular, $\{\mathbf{v}_1\}$ is linearly independent. Since $U_1 = \text{Span}(\mathbf{v}_1)$ and $\mathbf{u}_1 = \mathbf{v}_1$, we deduce that $\{\mathbf{u}_1\}$ is a basis of U_1 , and this basis is obviously orthogonal (since it contains only one vector).

Now, fix $\ell \in \{1, \ldots, k-1\}$, and assume inductively that $\{\mathbf{u}_1, \ldots, \mathbf{u}_\ell\}$ is an orthogonal basis of U_ℓ . WTS $\{\mathbf{u}_1, \ldots, \mathbf{u}_\ell, \mathbf{u}_{\ell+1}\}$ is an orthogonal basis of $U_{\ell+1}$.

We first prove that $\{\mathbf{u}_1, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\}$ is a basis of $U_{\ell+1}$, and then that it is an orthogonal set of vectors.

Since $\{\mathbf{u}_1, \ldots, \mathbf{u}_{\ell}\}$ and $\{\mathbf{v}_1, \ldots, \mathbf{v}_{\ell}\}$ are two bases of U_{ℓ} , it is clear that $\text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_{\ell}, \mathbf{v}_{\ell+1}) = \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_{\ell}, \mathbf{v}_{\ell+1}) = U_{\ell+1}$.

Details?

Since $\{\mathbf{u}_1, \ldots, \mathbf{u}_\ell\}$ and $\{\mathbf{v}_1, \ldots, \mathbf{v}_\ell\}$ are two bases of U_ℓ , it is clear that $\text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_\ell, \mathbf{v}_{\ell+1}) = \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_\ell, \mathbf{v}_{\ell+1}) = U_{\ell+1}$.

Details?

On the other hand, by the construction of $u_{\ell+1}$ and by Proposition 6.3.7(c), we have that

$$\mathsf{Span}(\mathbf{u}_1,\ldots,\mathbf{u}_\ell,\mathbf{v}_{\ell+1}) = \mathsf{Span}(\mathbf{u}_1,\ldots,\mathbf{u}_\ell,\mathbf{u}_{\ell+1}).$$

Since $\{\mathbf{u}_1, \ldots, \mathbf{u}_\ell\}$ and $\{\mathbf{v}_1, \ldots, \mathbf{v}_\ell\}$ are two bases of U_ℓ , it is clear that $\text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_\ell, \mathbf{v}_{\ell+1}) = \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_\ell, \mathbf{v}_{\ell+1}) = U_{\ell+1}$.

Details?

On the other hand, by the construction of $u_{\ell+1}$ and by Proposition 6.3.7(c), we have that

$$\mathsf{Span}(\mathbf{u}_1,\ldots,\mathbf{u}_\ell,\mathbf{v}_{\ell+1})=\mathsf{Span}(\mathbf{u}_1,\ldots,\mathbf{u}_\ell,\mathbf{u}_{\ell+1}).$$

So, $\text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}) = U_{\ell+1}$.

Since $\{\mathbf{u}_1, \ldots, \mathbf{u}_\ell\}$ and $\{\mathbf{v}_1, \ldots, \mathbf{v}_\ell\}$ are two bases of U_ℓ , it is clear that $\text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_\ell, \mathbf{v}_{\ell+1}) = \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_\ell, \mathbf{v}_{\ell+1}) = U_{\ell+1}$.

Details?

On the other hand, by the construction of $u_{\ell+1}$ and by Proposition 6.3.7(c), we have that

$$\mathsf{Span}(\mathsf{u}_1,\ldots,\mathsf{u}_\ell,\mathsf{v}_{\ell+1}) = \mathsf{Span}(\mathsf{u}_1,\ldots,\mathsf{u}_\ell,\mathsf{u}_{\ell+1})$$

So, $\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}) = U_{\ell+1}$.

Since dim $(U_{\ell+1}) = \ell + 1$ (because $\{\mathbf{v}_1, \ldots, \mathbf{v}_{\ell}, \mathbf{v}_{\ell+1}\}$ is a basis of $U_{\ell+1}$), the fact that $\{\mathbf{u}_1, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\}$ spans $U_{\ell+1}$ implies that $\{\mathbf{u}_1, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\}$ is in fact a basis of $U_{\ell+1}$ (this follows from Corollary 3.2.20).

So far, we have shown that $\{\mathbf{u}_1, \dots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\}$ is a basis of $U_{\ell+1}$.

So far, we have shown that $\{\mathbf{u}_1, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\}$ is a basis of $U_{\ell+1}$. It remains to show that $\{\mathbf{u}_1, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\}$ is an orthogonal set.

So far, we have shown that $\{\mathbf{u}_1, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\}$ is a basis of $U_{\ell+1}$. It remains to show that $\{\mathbf{u}_1, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\}$ is an orthogonal set.

So far, we have shown that $\{\mathbf{u}_1, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\}$ is a basis of $U_{\ell+1}$. It remains to show that $\{\mathbf{u}_1, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\}$ is an orthogonal set.

So far, we have shown that $\{\mathbf{u}_1, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\}$ is a basis of $U_{\ell+1}$. It remains to show that $\{\mathbf{u}_1, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\}$ is an orthogonal set.

So far, we have shown that $\{\mathbf{u}_1, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\}$ is a basis of $U_{\ell+1}$. It remains to show that $\{\mathbf{u}_1, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\}$ is an orthogonal set.

By the induction hypothesis, vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{\ell}$ are pairwise orthogonal non-zero vectors, and so by the construction of $\mathbf{u}_{\ell+1}$ and by Proposition 6.3.7(a), we have that $\mathbf{u}_1, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}$ are pairwise orthogonal.

So, $\{\mathbf{u}_1, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\}$ is an orthogonal basis of $U_{\ell+1}$. This completes the induction.

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$, and let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be linearly independent vectors in V. For all $\ell \in \{1, \ldots, k\}$, set

$$\mathbf{u}_{\boldsymbol{\ell}} := \mathbf{v}_{\boldsymbol{\ell}} - \sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{u}_i}(\mathbf{v}_{\boldsymbol{\ell}}) = \mathbf{v}_{\boldsymbol{\ell}} - \sum_{i=1}^{\ell-1} \frac{\langle \mathbf{v}_{\boldsymbol{\ell}}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Then $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$, and $\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||}, \ldots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||}\right\}$ is an orthonormal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

Proof (continued). We have now shown that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$, and let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be linearly independent vectors in V. For all $\ell \in \{1, \ldots, k\}$, set

$$\mathbf{u}_{\boldsymbol{\ell}} := \mathbf{v}_{\boldsymbol{\ell}} - \sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{u}_i}(\mathbf{v}_{\boldsymbol{\ell}}) = \mathbf{v}_{\boldsymbol{\ell}} - \sum_{i=1}^{\ell-1} \frac{\langle \mathbf{v}_{\boldsymbol{\ell}}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Then $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$, and $\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||}, \ldots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||}\right\}$ is an orthonormal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

Proof (continued). We have now shown that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

By Proposition 6.3.3(b), this implies that $\left\{ \frac{\mathbf{u}_1}{||\mathbf{u}_1||}, \ldots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||} \right\}$ is an orthonormal basis of Span $(\mathbf{v}_1, \ldots, \mathbf{v}_k)$. This completes the argument. \Box

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$, and let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be linearly independent vectors in V. For all $\ell \in \{1, \ldots, k\}$, set

$$\begin{aligned} \mathbf{u}_{\ell} &= \mathbf{v}_{\ell} - \sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{z}_{i}}(\mathbf{v}_{\ell}) &= \mathbf{v}_{\ell} - \sum_{i=1}^{\ell-1} \langle \mathbf{v}_{\ell}, \mathbf{z}_{i} \rangle \mathbf{z}_{i}; \\ \mathbf{z}_{\ell} &= \frac{\mathbf{u}_{\ell}}{||\mathbf{u}_{\ell}||}. \end{aligned}$$

Then $\{z_1, \ldots, z_k\}$ is an orthonormal basis of $\text{Span}(v_1, \ldots, v_k)$.

The Gram-Schmidt orthogonalization process (version 2) recursively constructs two sequences of vectors, namely, u₁,..., u_k and z₁,..., z_k, as follows:

•
$$\mathbf{u}_{1} = \mathbf{v}_{1};$$

• $\mathbf{z}_{1} = \frac{\mathbf{u}_{1}}{||\mathbf{u}_{1}||};$
• $\mathbf{u}_{2} = \mathbf{v}_{2} - \operatorname{proj}_{z_{1}}(\mathbf{v}_{2});$
• $\mathbf{z}_{2} = \frac{\mathbf{u}_{2}}{||\mathbf{u}_{2}||};$
• $\mathbf{u}_{3} = \mathbf{v}_{3} - \left(\operatorname{proj}_{z_{1}}(\mathbf{v}_{3}) + \operatorname{proj}_{z_{2}}(\mathbf{v}_{3})\right);$
• $\mathbf{z}_{3} = \frac{\mathbf{u}_{3}}{||\mathbf{u}_{3}||};$
:
• $\mathbf{u}_{k} = \mathbf{v}_{k} - \left(\operatorname{proj}_{z_{1}}(\mathbf{v}_{k}) + \operatorname{proj}_{z_{2}}(\mathbf{v}_{k}) + \cdots + \operatorname{proj}_{z_{k-1}}(\mathbf{v}_{k})\right);$
• $\mathbf{z}_{k} = \frac{\mathbf{u}_{k}}{||\mathbf{u}_{k}||}.$
The Gram-Schmidt orthogonalization process (version 2) recursively constructs two sequences of vectors, namely, u₁,..., u_k and z₁,..., z_k, as follows:

•
$$\mathbf{u}_{1} = \mathbf{v}_{1};$$

• $\mathbf{z}_{1} = \frac{\mathbf{u}_{1}}{||\mathbf{u}_{1}||};$
• $\mathbf{u}_{2} = \mathbf{v}_{2} - \operatorname{proj}_{z_{1}}(\mathbf{v}_{2});$
• $\mathbf{z}_{2} = \frac{\mathbf{u}_{2}}{||\mathbf{u}_{2}||};$
• $\mathbf{u}_{3} = \mathbf{v}_{3} - \left(\operatorname{proj}_{z_{1}}(\mathbf{v}_{3}) + \operatorname{proj}_{z_{2}}(\mathbf{v}_{3})\right);$
• $\mathbf{z}_{3} = \frac{\mathbf{u}_{3}}{||\mathbf{u}_{3}||};$
 \vdots
• $\mathbf{u}_{k} = \mathbf{v}_{k} - \left(\operatorname{proj}_{z_{1}}(\mathbf{v}_{k}) + \operatorname{proj}_{z_{2}}(\mathbf{v}_{k}) + \cdots + \operatorname{proj}_{z_{k-1}}(\mathbf{v}_{k})\right);$
• $\mathbf{z}_{k} = \frac{\mathbf{u}_{k}}{||\mathbf{u}_{k}||}.$

• So, at each step, we obtain a vector \mathbf{u}_{ℓ} that is orthogonal to the previously constructed vectors $\mathbf{z}_1, \ldots, \mathbf{z}_{\ell-1}$, and then we normalize \mathbf{u}_{ℓ} to obtain the unit vector \mathbf{z}_{ℓ} that points in the same direction as \mathbf{u}_{ℓ} .

Gram-Schmidt orthogonalization process (version 2)

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$, and let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be linearly independent vectors in V. For all $\ell \in \{1, \ldots, k\}$, set

$$\mathbf{u}_{\ell} = \mathbf{v}_{\ell} - \sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{z}_i}(\mathbf{v}_{\ell}) = \mathbf{v}_{\ell} - \sum_{i=1}^{\ell-1} \langle \mathbf{v}_{\ell}, \mathbf{z}_i \rangle \mathbf{z}_i;$$

 $\mathbf{z}_{\ell} = \frac{\mathbf{u}_{\ell}}{||\mathbf{u}_{\ell}||}.$

Then $\{z_1, \ldots, z_k\}$ is an orthonormal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

- The proof of correctness is similar to that of version 1.
- A numerical example is given in the Lecture Notes.

Corollary 6.3.11

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let U be a subspace of V. Then all the following hold:

- U has an orthogonal basis;
- any orthogonal basis of U can be extended to an orthogonal basis of V;^a
- U has an orthonormal basis;
- any orthonormal basis of U can be extended to an orthonormal basis of V.^b

^aThis means that for any orthogonal basis \mathcal{B} of U, there exists an orthogonal basis \mathcal{C} of V s.t. $\mathcal{B} \subseteq \mathcal{C}$.

^bThis means that for any orthonormal basis \mathcal{B} of U, there exists an orthonormal basis \mathcal{C} of V s.t. $\mathcal{B} \subseteq \mathcal{C}$.

Proof. We first prove (a) and (c).

Proof. We first prove (a) and (c). Since V is finite-dimensional, Theorem 3.2.21 guarantees that the subspace U of V is also finite-dimensional.

Proof. We first prove (a) and (c). Since V is finite-dimensional, Theorem 3.2.21 guarantees that the subspace U of V is also finite-dimensional. Consider any basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ of U.

Proof. We first prove (a) and (c). Since *V* is finite-dimensional, Theorem 3.2.21 guarantees that the subspace *U* of *V* is also finite-dimensional. Consider any basis {**v**₁,...,**v**_k} of *U*. Then the Gram-Schmidt orthogonalization process (version 1) applied to the vectors **v**₁,...,**v**_k yields a sequence of vectors **u**₁,...,**u**_k s.t. {**u**₁,...,**u**_k} is an orthogonal and { $\frac{\mathbf{u}_1}{||\mathbf{u}_1||},...,\frac{\mathbf{u}_k}{||\mathbf{u}_k||}$ } an orthonormal basis of $U = \text{Span}(\mathbf{v}_1,...,\mathbf{v}_k)$. *Proof.* We first prove (a) and (c). Since *V* is finite-dimensional, Theorem 3.2.21 guarantees that the subspace *U* of *V* is also finite-dimensional. Consider any basis {**v**₁,...,**v**_k} of *U*. Then the Gram-Schmidt orthogonalization process (version 1) applied to the vectors **v**₁,...,**v**_k yields a sequence of vectors **u**₁,...,**u**_k s.t. {**u**₁,...,**u**_k} is an orthogonal and { $\frac{\mathbf{u}_1}{||\mathbf{u}_1||},...,\frac{\mathbf{u}_k}{||\mathbf{u}_k||}$ } an orthonormal basis of *U* = Span(**v**₁,...,**v**_k). This proves (a) and (c).

We apply the Gram-Schmidt orthogonalization process (version 1) to the sequence $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_n$, and we obtain a sequence $\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$ s.t. $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an orthogonal basis of V.

We apply the Gram-Schmidt orthogonalization process (version 1) to the sequence $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_n$, and we obtain a sequence $\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$ s.t. $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an orthogonal basis of V.

However, since $\mathbf{v}_1, \ldots, \mathbf{v}_k$ were pairwise orthogonal to begin with, we see from the description of the Gram-Schmidt orthogonalization process that $\mathbf{u}_1 = \mathbf{v}_1, \ldots, \mathbf{u}_k = \mathbf{v}_k$.

We apply the Gram-Schmidt orthogonalization process (version 1) to the sequence $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_n$, and we obtain a sequence $\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$ s.t. $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an orthogonal basis of V.

However, since $\mathbf{v}_1, \ldots, \mathbf{v}_k$ were pairwise orthogonal to begin with, we see from the description of the Gram-Schmidt orthogonalization process that $\mathbf{u}_1 = \mathbf{v}_1, \ldots, \mathbf{u}_k = \mathbf{v}_k$.

So, the orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ of V extends the orthogonal basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ of U. This proves (b).

Proof (continued). For (d), consider any orthonormal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ of U.

Then by Proposition 6.3.3(c),

$$\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||},\ldots,\frac{\mathbf{u}_k}{||\mathbf{u}_k||},\frac{\mathbf{u}_{k+1}}{||\mathbf{u}_{k+1}||},\ldots,\frac{\mathbf{u}_n}{||\mathbf{u}_n||}\right\}$$

is an orthonormal basis of V.

Then by Proposition 6.3.3(c),

$$\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||},\ldots,\frac{\mathbf{u}_k}{||\mathbf{u}_k||},\frac{\mathbf{u}_{k+1}}{||\mathbf{u}_{k+1}||},\ldots,\frac{\mathbf{u}_n}{||\mathbf{u}_n||}\right\}$$

is an orthonormal basis of V.

But since the basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ of U is orthonormal, we know that $||\mathbf{u}_1|| = \cdots = ||\mathbf{u}_k|| = 1$,

Then by Proposition 6.3.3(c),

$$\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||},\ldots,\frac{\mathbf{u}_k}{||\mathbf{u}_k||},\frac{\mathbf{u}_{k+1}}{||\mathbf{u}_{k+1}||},\ldots,\frac{\mathbf{u}_n}{||\mathbf{u}_n||}\right\}$$

is an orthonormal basis of V.

But since the basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ of U is orthonormal, we know that $||\mathbf{u}_1|| = \cdots = ||\mathbf{u}_k|| = 1$, and it follows that $\frac{\mathbf{u}_1}{||\mathbf{u}_1||} = \mathbf{u}_1, \ldots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||} = \mathbf{u}_k$.

Then by Proposition 6.3.3(c),

$$\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||},\ldots,\frac{\mathbf{u}_k}{||\mathbf{u}_k||},\frac{\mathbf{u}_{k+1}}{||\mathbf{u}_{k+1}||},\ldots,\frac{\mathbf{u}_n}{||\mathbf{u}_n||}\right\}$$

is an orthonormal basis of V.

But since the basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ of U is orthonormal, we know that $||\mathbf{u}_1|| = \cdots = ||\mathbf{u}_k|| = 1$, and it follows that $\frac{\mathbf{u}_1}{||\mathbf{u}_1||} = \mathbf{u}_1, \ldots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||} = \mathbf{u}_k$.

So, our orthonormal basis $\left\{ \frac{\mathbf{u}_1}{||\mathbf{u}_1||}, \dots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||}, \frac{\mathbf{u}_{k+1}}{||\mathbf{u}_{k+1}||}, \dots, \frac{\mathbf{u}_n}{||\mathbf{u}_n||} \right\}$ of V in fact extends the orthonormal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ of U. This proves (d). \Box

Corollary 6.3.11

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let U be a subspace of V. Then all the following hold:

- U has an orthogonal basis;
- any orthogonal basis of U can be extended to an orthogonal basis of V;^a
- U has an orthonormal basis;
- any orthonormal basis of U can be extended to an orthonormal basis of V.^b

^aThis means that for any orthogonal basis \mathcal{B} of U, there exists an orthogonal basis \mathcal{C} of V s.t. $\mathcal{B} \subseteq \mathcal{C}$.

^bThis means that for any orthonormal basis \mathcal{B} of U, there exists an orthonormal basis \mathcal{C} of V s.t. $\mathcal{B} \subseteq \mathcal{C}$.