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1 Vector projection

Definition
Suppose we are given a real or complex vector space V , equipped
with a scalar product ⟨·, ·⟩. For a non-zero vector u ∈ V and any
vector v ∈ V , the orthogonal projection of v onto u is the vector

proju(v) := ⟨v,u⟩
⟨u,u⟩u.

v

proju(v) u

Remarks:

Since u ̸= 0, r.1 or c.1 guarantees that ⟨u, u⟩ > 0, and so the
expression above is well-defined (that is, we are not dividing by
zero).
proju(v) is a scalar multiple of u.
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proju(v) u

proju(v) =
⟨v,u⟩
⟨u,u⟩u

As the picture suggests, for any scalar α ̸= 0, the projection of
v onto αu is the same as the projection of v onto u.

Indeed, if V is a complex vector space, then we have that

projαu(v) = ⟨v,αu⟩
⟨αu,αu⟩ (αu) by definition

= ⟨v,αu⟩
α⟨u,αu⟩ (αu) by c.3

= α⟨v,u⟩
αα⟨u,u⟩ (αu) by c.3’

= ⟨v,u⟩
⟨u,u⟩ u

= proju(v) by definition.

The real case is similar, only without complex conjugates.
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Proposition 6.3.1
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩. Let u be a non-zero vector in V , let v be any vector
in V , and set z := v − proju(v). Then z ⊥ u.

v

proju(v) u

z = v−proju(v)

Proof.

We compute

⟨z, u⟩ =
〈
v − proju(v), u

〉
=

〈
v − ⟨v,u⟩

⟨u,u⟩ u, u
〉

(∗)= ⟨v, u⟩ − ⟨v,u⟩
⟨u,u⟩ ⟨u, u⟩

= ⟨v, u⟩ − ⟨v, u⟩ = 0,

where (*) follows from r.2 and r.3 (in the real case) or from c.2
and c.3 (in the complex case). This proves that z ⊥ u. □
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2 Orthogonal and orthonormal sets. Orthogonal and
orthonormal bases

Definition
Suppose we are given a real or complex vector space V , equipped
with a scalar product ⟨·, ·⟩ and the induced norm || · ||.

An orthogonal set of vectors in V is a set of pairwise
orthogonal vectors in V .
An orthonormal set of vectors is an orthogonal set of unit
vectors (i.e. vectors of length 1).
An orthogonal basis (resp. orthonormal basis) of V is an
orthogonal (resp. orthonormal) set in V that is also a basis of
V .
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Proposition 6.3.2
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩ and the induced norm || · ||. Then both the following
hold:

(a) any orthogonal set of non-zero vectors in V is linearly
independent;

(b) any orthonormal set of vectors in V is linearly independent.

Proof.

Any orthonormal set of vectors is an orthogonal set of
non-zero vectors (because 0 is not a unit vector). So, (a)
immediately implies (b).

It remains to prove (a).
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Proposition 6.3.2
(a) any orthogonal set of non-zero vectors in V is linearly

independent;

Proof (continued).

Fix an orthogonal set {u1, . . . , uk} of non-zero
vectors in V . WTS this set is linearly independent. Fix scalars
α1, . . . , αk s.t.

α1u1 + · · · + αkuk = 0.

WTS α1 = · · · = αk = 0. Fix any i ∈ {1, . . . , k}. Then

⟨α1u1 + · · · + αkuk︸ ︷︷ ︸
=0

, ui⟩ = ⟨0, ui⟩
(∗)= 0,

where (*) follows from Proposition 6.1.4(c).
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Proposition 6.3.2
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Proof (continued). Reminder: ⟨α1u1 + · · · + αkuk , ui⟩ = 0.

On the other hand, note that

⟨α1u1 + · · · + αkuk , ui⟩
(∗)= α1⟨u1, ui⟩ + · · · + αk⟨uk , ui⟩

(∗∗)= αi⟨ui , ui⟩,

where (*) follows from r.2 and r.3 (in the real case) or from c.2
and c.3 (in the complex case), and (**) follows from the fact that
{u1, . . . , uk} is an orthogonal set.

So,
αi⟨ui , ui⟩ = 0.

Since ui ̸= 0, r.1 or c.1 guarantees that ⟨ui , ui⟩ ≠ 0; consequently,
αi = 0. Since i ∈ {1, . . . , k} was chosen arbitrarily, it follows that
α1 = · · · = αk = 0, and we are done. □
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Proposition 6.3.2
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩ and the induced norm || · ||. Then both the following
hold:

(a) any orthogonal set of non-zero vectors in V is linearly
independent;

(b) any orthonormal set of vectors in V is linearly independent.



Proposition 6.3.3
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩ and the induced norm || · ||. Let {u1, . . . , uk} be an
orthogonal set of vectors in V . Then all the following hold:

(a) for all scalars α1, . . . , αk , we have that {α1u1, . . . , αkuk} is
an orthogonal set of vectors;

(b) if vectors u1, . . . , uk are all non-zero, then
{

u1
||u1|| , . . . , uk

||uk ||

}
is

an orthonormal set of vectors, and consequently, an
orthonormal basis of Span(u1, . . . , uk);

(c) if {u1, . . . , uk} is an orthogonal basis of V , then{
u1

||u1|| , . . . , uk
||uk ||

}
is an orthonormal basis of V .

Proof: Lecture Notes.



Proposition 6.3.4
Let V be a finite-dimensional real or complex vector space,
equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||.
Set n := dim(V ). Then both the following hold:

(a) any orthogonal set of n non-zero vectors in V is an orthogonal
basis of V ;

(b) any orthonormal set of n vectors in V is an orthonormal basis
of V .

Proof.

By Proposition 6.3.2, any orthogonal set of non-zero
vectors is linearly independent, and by Corollary 3.2.20(a), any
linearly independent set of size n in an n-dimensional vector space
is a basis of that vector space. This proves (a).

Part (b) follows from (a), since any orthonormal set of vectors is,
in particular, an orthogonal set of non-zero vectors (because 0 is
not a unit vector). □
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3 Coordinate vectors w.r.t. orthogonal and orthonormal bases.
Fourier coefficients

If we have an orthogonal basis of a real or complex vector
space (equipped with a scalar product and the norm induced
by it), then every vector in that vector space can be expressed
as a linear combination of those basis vectors in a particularly
nice way, that is, we have a convenient formula for the
coefficients in front of the basis vectors (see Theorem 6.3.5,
next slide).
If our basis is orthonormal, then we get an even nicer formula
for the coefficients (see Corollary 6.3.6, next slide).

The formula from Corollary 6.3.6 follows immediately from the
one for Theorem 6.3.5.
The coefficients from Corollary 6.3.6 are called the “Fourier
coefficients.”
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Theorem 6.3.5
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩. Let B = {u1, . . . , un} be an orthogonal basis of V .
Then for all v ∈ V , we have that

v =
n∑

i=1
projui (v) =

n∑
i=1

⟨v,ui ⟩
⟨ui ,ui ⟩ui ,

and consequently,
[

v
]

B =
[

⟨v,u1⟩
⟨u1,u1⟩ . . . ⟨v,un⟩

⟨un,un⟩

]T
.

Corollary 6.3.6
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩ and the induced norm || · ||. Let B = {u1, . . . , un} be
an orthonormal basis of V . Then for all v ∈ V , we have that

v =
n∑

i=1
⟨v, ui⟩ ui ,
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B =
[

⟨v, u1⟩ . . . ⟨v, un⟩
]T .
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Proof.

The second statement follows from the first and from the
definition of a coordinate vector. It remains to prove the first
statement.
Fix a vector v ∈ V . By definition, for all i ∈ {1, . . . , n}, we have
that projui (v) = ⟨v,ui ⟩

⟨ui ,ui ⟩ui . So, it suffices to show that

v =
n∑

i=1

⟨v,ui ⟩
⟨ui ,ui ⟩ui .
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Proof (continued). Reminder: WTS v =
∑n

i=1
⟨v,ui ⟩
⟨ui ,ui ⟩ui .

Since v ∈ V and {u1, . . . , un} is a basis of V , there exist scalars
α1, . . . , αn s.t.

v =
∑n

i=1 αiui .

Now, fix any index j ∈ {1, . . . , n}. We then have that

⟨v, uj⟩ =
〈 ∑n

i=1 αiui , uj
〉 (∗)=

∑n
i=1 αi⟨ui , uj⟩

(∗∗)= αj⟨uj , uj⟩,

where (*) follows from r.2 and r.3 (in the real case) or from c.2
and c.3 (in the complex case), and (**) follows from the fact that
u1, . . . , un are pairwise orthogonal. Since uj ̸= 0 (because
{u1, . . . , un} is a basis of V ), r.1 or c.1 guarantees that
⟨uj , uj⟩ ≠ 0, and we deduce that

αj = ⟨v,uj ⟩
⟨uj ,uj ⟩ .

Since j ∈ {1, . . . , n} was chosen arbitrarily, we now deduce that
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i=1
⟨v,ui ⟩
⟨ui ,ui ⟩ui .

□
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⟨uj , uj⟩ ≠ 0, and we deduce that

αj = ⟨v,uj ⟩
⟨uj ,uj ⟩ .

Since j ∈ {1, . . . , n} was chosen arbitrarily, we now deduce that

v =
∑n

i=1 αiui =
∑n

i=1
⟨v,ui ⟩
⟨ui ,ui ⟩ui .

□



Proof (continued). Reminder: WTS v =
∑n

i=1
⟨v,ui ⟩
⟨ui ,ui ⟩ui .

Since v ∈ V and {u1, . . . , un} is a basis of V , there exist scalars
α1, . . . , αn s.t.

v =
∑n

i=1 αiui .

Now, fix any index j ∈ {1, . . . , n}. We then have that

⟨v, uj⟩ =
〈 ∑n

i=1 αiui , uj
〉 (∗)=

∑n
i=1 αi⟨ui , uj⟩

(∗∗)= αj⟨uj , uj⟩,

where (*) follows from r.2 and r.3 (in the real case) or from c.2
and c.3 (in the complex case), and (**) follows from the fact that
u1, . . . , un are pairwise orthogonal.

Since uj ̸= 0 (because
{u1, . . . , un} is a basis of V ), r.1 or c.1 guarantees that
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Theorem 6.3.5
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩. Let B = {u1, . . . , un} be an orthogonal basis of V .
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v
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Corollary 6.3.6
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩ and the induced norm || · ||. Let B = {u1, . . . , un} be
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4 Gram-Schmidt orthogonalization

Our goal is to describe the “Gram-Schmidt orthogonalization
process,” which gives a recipe for transforming an arbitrary
basis of a real or complex vector space (equipped with a scalar
product and the norm induced by it) into an orthogonal (and
even orthonormal) basis.
There are in fact two different (but similar) versions of the
Gram-Schmidt orthogonalization process.

The first version first produces an orthogonal basis, and then
(optionally) produces an orthonormal basis.
The second version produces an orthonormal basis directly.

We first describe the first version, we give a numerical
example, and we prove the correctness of the process.
Then we describe the second version.

The proof of correctness is similar to the proof of the first, and
we omit it.
A numerical example is given in the Lecture Notes.
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Gram-Schmidt orthogonalization process (version 1)
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩ and the induced norm || · ||, and let v1, . . . , vk be
linearly independent vectors in V . For all ℓ ∈ {1, . . . , k}, set

uℓ := vℓ −
ℓ−1∑
i=1

projui (vℓ) = vℓ −
ℓ−1∑
i=1

⟨vℓ,ui ⟩
⟨ui ,ui ⟩ ui .

Then {u1, . . . , uk} is an orthogonal basis of Span(v1, . . . , vk), and{
u1

||u1|| , . . . , uk
||uk ||

}
is an orthonormal basis of Span(v1, . . . , vk).

The sequence u1, . . . , uk is obtained (recursively) as follows:
u1 := v1;
u2 := v2 − proju1(v2);
u3 := v3 −

(
proju1(v3) + proju2(v3)

)
;

...
uk := vk −

(
proju1(vk) + proju2(vk) + · · · + projuk−1

(vk)
)

.



Example 6.3.8
Consider the following linearly independent vectors in R4:

v1 =


3
4

−4
3

 , v2 =


−5
10
2

11

 , v3 =


8

19
11
−2

 .

Set U := Span(v1, v2, v3). Using the Gram-Schmidt
orthogonalization process (version 1):

(a) compute an orthogonal basis of U (w.r.t. the standard scalar
product · in R4).

(b) compute an orthonormal basis of U (w.r.t. the standard scalar
product · in R4 and the norm || · || induced by it).



Remark: To see that v1, v2, v3 really are linearly independent,
we compute

RREF
( [

v1 v2 v3
] )

=


1 0 0
0 1 0
0 0 1
0 0 0

 ,

and we deduce that rank
( [

v1 v2 v3
] )

= 3, i.e.[
v1 v2 v3

]
has full column rank. So, by

Theorem 3.3.12(a), vectors v1, v2, v3 are linearly independent.



Example 6.3.8
Consider the following linearly independent vectors in R4:

v1 =


3
4

−4
3

 , v2 =


−5
10
2

11

 , v3 =


8

19
11
−2

 .

Set U := Span(v1, v2, v3). Using the Gram-Schmidt
orthogonalization process (version 1):

(a) compute an orthogonal basis of U (w.r.t. the standard scalar
product · in R4).

(b) compute an orthonormal basis of U (w.r.t. the standard scalar
product · in R4 and the norm || · || induced by it).

Solution: On the board.



Let’s now prove the correctness of the Gram-Schmidt
orthogonalization process!

We begin with a technical proposition.

Proposition 6.3.7
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩. Let {u1, . . . , uk} be an orthogonal set of non-zero

vectors in V . Let v ∈ V , and set y :=
k∑

i=1
projui (v) =

k∑
i=1

⟨v,ui ⟩
⟨ui ,ui ⟩ui

and z := v − y. Then all the following hold:
(a) {u1, . . . , uk , z} is an orthogonal set of vectors;
(b) z = 0 iff v ∈ Span(u1, . . . , uk);
(c) Span(u1, . . . , uk , v) = Span(u1, . . . , uk , z).

Proof. First of all, Proposition 6.3.2 guarantees that {u1, . . . , uk}
is a linearly independent set, and we deduce that {u1, . . . , uk} is
an orthogonal basis of Span(u1, . . . , uk).
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Proof (continued). Let us first prove (a).

By hypothesis, vectors
u1, . . . , uk are pairwise orthogonal. On the other hand, for each
j ∈ {1, . . . , k}, we have the following:

⟨z, uj⟩ = ⟨v −
k∑

i=1

⟨v,ui ⟩
⟨ui ,ui ⟩ui , uj⟩

(∗)= ⟨v, uj⟩ −
k∑

i=1

⟨v,ui ⟩
⟨ui ,ui ⟩⟨ui , uj⟩

(∗∗)= ⟨v, uj⟩ − ⟨v,uj ⟩
⟨uj ,uj ⟩⟨uj , uj⟩

= ⟨v, uj⟩ − ⟨v, uj⟩ = 0,

where (*) follows from r.2 and r.3 (in the real case) or from c.2
and c.3 (in the complex case), and (**) follows from the fact that
{u1, . . . , uk} is an orthogonal set. Thus, {u1, . . . , uk , z} is an
orthogonal set of vectors. This proves (a).
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Proof (continued).

Finally, we prove (c). Fix any vector x ∈ V .
WTS x ∈ Span(u1, . . . , uk , v) iff x ∈ Span(u1, . . . , uk , z). We
prove both directions (they are very similar).

Suppose first that x ∈ Span(u1, . . . , uk , v). Then there exist scalars
α1, . . . , αk , β s.t. x = α1u1 + · · · + αkuk + βv. But now

x = α1u1 + · · · + αkuk + βv

=
( k∑

i=1
αiui

)
+ β(y + z)

=
( k∑

i=1
αiui

)
+ β

(( k∑
i=1

⟨v,ui ⟩
⟨ui ,ui ⟩ui

)
+ z

)

=
( k∑

i=1

(
αi + β ⟨v,ui ⟩

⟨ui ,ui ⟩
)
ui

)
+ βz,

and we deduce that x ∈ Span(u1, . . . , uk , z).
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Proposition 6.3.7
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩. Let {u1, . . . , uk} be an orthogonal set of non-zero

vectors in V . Let v ∈ V , and set y :=
k∑

i=1
projui (v) =

k∑
i=1

⟨v,ui ⟩
⟨ui ,ui ⟩ui

and z := v − y. Then all the following hold:
(a) {u1, . . . , uk , z} is an orthogonal set of vectors;
(b) z = 0 iff v ∈ Span(u1, . . . , uk);
(c) Span(u1, . . . , uk , v) = Span(u1, . . . , uk , z).

Using Proposition 6.3.7, we can now prove the correctness of
the Gram-Schmidt orthogonalization process (version 1).
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Gram-Schmidt orthogonalization process (version 1)
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩ and the induced norm || · ||, and let v1, . . . , vk be
linearly independent vectors in V . For all ℓ ∈ {1, . . . , k}, set

uℓ := vℓ −
ℓ−1∑
i=1

projui (vℓ) = vℓ −
ℓ−1∑
i=1

⟨vℓ,ui ⟩
⟨ui ,ui ⟩ ui .

Then {u1, . . . , uk} is an orthogonal basis of Span(v1, . . . , vk), and{
u1

||u1|| , . . . , uk
||uk ||

}
is an orthonormal basis of Span(v1, . . . , vk).

Proof.

We first prove that {u1, . . . , uk} is an orthogonal basis of
Span(v1, . . . , vk). For each ℓ ∈ {1, . . . , k}, we set
Uℓ := Span(v1, . . . , vℓ), and we prove (inductively) that
{u1, . . . , uℓ} is an orthogonal basis of Uℓ. Obviously, this is
enough, because for k = ℓ, we get that {u1, . . . , uk} is an
orthogonal basis of Uk = Span(v1, . . . , vk).
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Proof (continued). Reminder: WTS ∀ℓ ∈ {1, . . . , k}: {u1, . . . , uℓ}
is an orthogonal basis of Uℓ := Span(v1, . . . , vℓ).

Since {v1, . . . , vk} is linearly independent, we see that v1, . . . , vk
are all non-zero, and in particular, {v1} is linearly independent.
Since U1 = Span(v1) and u1 = v1, we deduce that {u1} is a basis
of U1, and this basis is obviously orthogonal (since it contains only
one vector).

Now, fix ℓ ∈ {1, . . . , k − 1}, and assume inductively that
{u1, . . . , uℓ} is an orthogonal basis of Uℓ. WTS {u1, . . . , uℓ, uℓ+1}
is an orthogonal basis of Uℓ+1.

We first prove that {u1, . . . , uℓ, uℓ+1} is a basis of Uℓ+1, and then
that it is an orthogonal set of vectors.
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Proof (continued). Reminder: WTS ∀ℓ ∈ {1, . . . , k}: {u1, . . . , uℓ}
is an orthogonal basis of Uℓ := Span(v1, . . . , vℓ).

Since {u1, . . . , uℓ} and {v1, . . . , vℓ} are two bases of Uℓ, it is clear
that Span(u1, . . . , uℓ, vℓ+1) = Span(v1, . . . , vℓ, vℓ+1) = Uℓ+1.

Details?

On the other hand, by the construction of uℓ+1 and by
Proposition 6.3.7(c), we have that

Span(u1, . . . , uℓ, vℓ+1) = Span(u1, . . . , uℓ, uℓ+1).

So, Span(u1, . . . , uℓ, uℓ+1) = Uℓ+1.

Since dim(Uℓ+1) = ℓ + 1 (because {v1, . . . , vℓ, vℓ+1} is a basis of
Uℓ+1), the fact that {u1, . . . , uℓ, uℓ+1} spans Uℓ+1 implies that
{u1, . . . , uℓ, uℓ+1} is in fact a basis of Uℓ+1 (this follows from
Corollary 3.2.20).
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It
remains to show that {u1, . . . , uℓ, uℓ+1} is an orthogonal set.

By the induction hypothesis, vectors u1, . . . , uℓ are pairwise
orthogonal non-zero vectors, and so by the construction of uℓ+1
and by Proposition 6.3.7(a), we have that u1, . . . , uℓ, uℓ+1 are
pairwise orthogonal.

So, {u1, . . . , uℓ, uℓ+1} is an orthogonal basis of Uℓ+1. This
completes the induction.
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Gram-Schmidt orthogonalization process (version 1)
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩ and the induced norm || · ||, and let v1, . . . , vk be
linearly independent vectors in V . For all ℓ ∈ {1, . . . , k}, set

uℓ := vℓ −
ℓ−1∑
i=1

projui (vℓ) = vℓ −
ℓ−1∑
i=1

⟨vℓ,ui ⟩
⟨ui ,ui ⟩ ui .

Then {u1, . . . , uk} is an orthogonal basis of Span(v1, . . . , vk), and{
u1

||u1|| , . . . , uk
||uk ||

}
is an orthonormal basis of Span(v1, . . . , vk).

Proof (continued). We have now shown that {u1, . . . , uk} is an
orthogonal basis of Span(v1, . . . , vk).

By Proposition 6.3.3(b), this implies that
{

u1
||u1|| , . . . , uk

||uk ||

}
is an

orthonormal basis of Span(v1, . . . , vk). This completes the
argument. □
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By Proposition 6.3.3(b), this implies that
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}
is an

orthonormal basis of Span(v1, . . . , vk). This completes the
argument. □



Gram-Schmidt orthogonalization process (version 2)
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩ and the induced norm || · ||, and let v1, . . . , vk be
linearly independent vectors in V . For all ℓ ∈ {1, . . . , k}, set

uℓ = vℓ −
ℓ−1∑
i=1

projzi (vℓ) = vℓ −
ℓ−1∑
i=1

⟨vℓ, zi⟩ zi ;

zℓ = uℓ
||uℓ|| .

Then {z1, . . . , zk} is an orthonormal basis of Span(v1, . . . , vk).



The Gram-Schmidt orthogonalization process (version 2)
recursively constructs two sequences of vectors, namely,
u1, . . . , uk and z1, . . . , zk , as follows:

u1 = v1;
z1 = u1

||u1|| ;
u2 = v2 − projz1(v2);
z2 = u2

||u2|| ;

u3 = v3 −
(

projz1(v3) + projz2(v3)
)

;
z3 = u3

||u3|| ;
...
uk = vk −

(
projz1(vk) + projz2(vk) + · · · + projzk−1

(vk)
)

;
zk = uk

||uk || .

So, at each step, we obtain a vector uℓ that is orthogonal to
the previously constructed vectors z1, . . . , zℓ−1, and then we
normalize uℓ to obtain the unit vector zℓ that points in the
same direction as uℓ.



The Gram-Schmidt orthogonalization process (version 2)
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u1, . . . , uk and z1, . . . , zk , as follows:

u1 = v1;
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u2 = v2 − projz1(v2);
z2 = u2

||u2|| ;

u3 = v3 −
(

projz1(v3) + projz2(v3)
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||u3|| ;
...
uk = vk −

(
projz1(vk) + projz2(vk) + · · · + projzk−1

(vk)
)

;
zk = uk

||uk || .
So, at each step, we obtain a vector uℓ that is orthogonal to
the previously constructed vectors z1, . . . , zℓ−1, and then we
normalize uℓ to obtain the unit vector zℓ that points in the
same direction as uℓ.



Gram-Schmidt orthogonalization process (version 2)
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩ and the induced norm || · ||, and let v1, . . . , vk be
linearly independent vectors in V . For all ℓ ∈ {1, . . . , k}, set

uℓ = vℓ −
ℓ−1∑
i=1

projzi (vℓ) = vℓ −
ℓ−1∑
i=1

⟨vℓ, zi⟩ zi ;

zℓ = uℓ
||uℓ|| .

Then {z1, . . . , zk} is an orthonormal basis of Span(v1, . . . , vk).

The proof of correctness is similar to that of version 1.
A numerical example is given in the Lecture Notes.



Corollary 6.3.11
Let V be a finite-dimensional real or complex vector space,
equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||.
Let U be a subspace of V . Then all the following hold:

(a) U has an orthogonal basis;
(b) any orthogonal basis of U can be extended to an orthogonal

basis of V ;a
(c) U has an orthonormal basis;
(d) any orthonormal basis of U can be extended to an

orthonormal basis of V .b
aThis means that for any orthogonal basis B of U, there exists an orthogonal

basis C of V s.t. B ⊆ C.
bThis means that for any orthonormal basis B of U, there exists an

orthonormal basis C of V s.t. B ⊆ C.



Proof. We first prove (a) and (c).

Since V is finite-dimensional,
Theorem 3.2.21 guarantees that the subspace U of V is also
finite-dimensional. Consider any basis {v1, . . . , vk} of U. Then the
Gram-Schmidt orthogonalization process (version 1) applied to the
vectors v1, . . . , vk yields a sequence of vectors u1, . . . , uk s.t.
{u1, . . . , uk} is an orthogonal and

{
u1

||u1|| , . . . , uk
||uk ||

}
an orthonormal

basis of U = Span(v1, . . . , vk). This proves (a) and (c).
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Proof (continued). For (b), consider any orthogonal basis
{v1, . . . , vk} of U, and using Theorem 3.2.19, extend it to a basis
{v1, . . . , vk , vk+1, . . . , vn} of V .

We apply the Gram-Schmidt orthogonalization process (version 1)
to the sequence v1, . . . , vk , vk+1, . . . , vn, and we obtain a sequence
u1, . . . , uk , uk+1, . . . , un s.t. {u1, . . . , uk , uk+1, . . . , un} is an
orthogonal basis of V .

However, since v1, . . . , vk were pairwise orthogonal to begin with,
we see from the description of the Gram-Schmidt orthogonalization
process that u1 = v1, . . . , uk = vk .

So, the orthogonal basis {u1, . . . , uk , uk+1, . . . , un} of V extends
the orthogonal basis {v1, . . . , vk} of U. This proves (b).
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Proof (continued). For (d), consider any orthonormal basis
{u1, . . . , uk} of U.

In particular, the basis {u1, . . . , uk} of U is
orthogonal, and so by (b), it can be extended to an orthogonal
basis {u1, . . . , uk , uk+1, . . . , un} of V .

Then by Proposition 6.3.3(c),{
u1

||u1|| , . . . , uk
||uk || ,

uk+1
||uk+1|| , . . . , un

||un||

}
is an orthonormal basis of V .

But since the basis {u1, . . . , uk} of U is orthonormal, we know
that ||u1|| = · · · = ||uk || = 1, and it follows that

u1
||u1|| = u1, . . . , uk

||uk || = uk .

So, our orthonormal basis
{

u1
||u1|| , . . . , uk

||uk || ,
uk+1

||uk+1|| , . . . , un
||un||

}
of V

in fact extends the orthonormal basis {u1, . . . , uk} of U. This
proves (d). □
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Corollary 6.3.11
Let V be a finite-dimensional real or complex vector space,
equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||.
Let U be a subspace of V . Then all the following hold:

(a) U has an orthogonal basis;
(b) any orthogonal basis of U can be extended to an orthogonal

basis of V ;a
(c) U has an orthonormal basis;
(d) any orthonormal basis of U can be extended to an

orthonormal basis of V .b
aThis means that for any orthogonal basis B of U, there exists an orthogonal

basis C of V s.t. B ⊆ C.
bThis means that for any orthonormal basis B of U, there exists an

orthonormal basis C of V s.t. B ⊆ C.


