Linear Algebra 2

Lecture \#15

Orthogonal and orthonormal bases.
 Gram-Schmidt orthogonalization

Irena Penev

March 6, 2024

- This lecture has four parts:
- This lecture has four parts:
(1) Vector projection
- This lecture has four parts:
(1) Vector projection
(2) Orthogonal and orthonormal sets. Orthogonal and orthonormal bases
- This lecture has four parts:
(1) Vector projection
(2) Orthogonal and orthonormal sets. Orthogonal and orthonormal bases
(3) Coordinate vectors w.r.t. orthogonal and orthonormal bases. Fourier coefficients
- This lecture has four parts:
(1) Vector projection
(2) Orthogonal and orthonormal sets. Orthogonal and orthonormal bases
(3) Coordinate vectors w.r.t. orthogonal and orthonormal bases. Fourier coefficients
(9) Gram-Schmidt orthogonalization
(1) Vector projection
(1) Vector projection

Definition

Suppose we are given a real or complex vector space V, equipped with a scalar product $\langle\cdot, \cdot\rangle$. For a non-zero vector $\mathbf{u} \in V$ and any vector $\mathbf{v} \in V$, the orthogonal projection of \mathbf{v} onto \mathbf{u} is the vector

$$
\operatorname{proj}_{\mathbf{u}}(\mathbf{v}):=\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u}
$$

- Remarks:
(1) Vector projection

Definition

Suppose we are given a real or complex vector space V, equipped with a scalar product $\langle\cdot, \cdot\rangle$. For a non-zero vector $\mathbf{u} \in V$ and any vector $\mathbf{v} \in V$, the orthogonal projection of \mathbf{v} onto \mathbf{u} is the vector

$$
\operatorname{proj}_{\mathbf{u}}(\mathbf{v}):=\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u}
$$

- Remarks:
- Since $\mathbf{u} \neq \mathbf{0}$, r. 1 or c. 1 guarantees that $\langle\mathbf{u}, \mathbf{u}\rangle>0$, and so the expression above is well-defined (that is, we are not dividing by zero).
(1) Vector projection

Definition

Suppose we are given a real or complex vector space V, equipped with a scalar product $\langle\cdot, \cdot\rangle$. For a non-zero vector $\mathbf{u} \in V$ and any vector $\mathbf{v} \in V$, the orthogonal projection of \mathbf{v} onto \mathbf{u} is the vector

$$
\operatorname{proj}_{\mathbf{u}}(\mathbf{v}):=\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u}
$$

- Remarks:

- Since $\mathbf{u} \neq \mathbf{0}$, r. 1 or c. 1 guarantees that $\langle\mathbf{u}, \mathbf{u}\rangle>0$, and so the expression above is well-defined (that is, we are not dividing by zero).
- $\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$ is a scalar multiple of \mathbf{u}.

$$
\operatorname{proj}_{\mathbf{u}}(\mathbf{v})=\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u}
$$

- As the picture suggests, for any scalar $\alpha \neq 0$, the projection of \mathbf{v} onto $\alpha \mathbf{u}$ is the same as the projection of \mathbf{v} onto \mathbf{u}.

$$
\operatorname{proj}_{\mathbf{u}}(\mathbf{v})=\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u}
$$

- As the picture suggests, for any scalar $\alpha \neq 0$, the projection of \mathbf{v} onto $\alpha \mathbf{u}$ is the same as the projection of \mathbf{v} onto \mathbf{u}.
- Indeed, if V is a complex vector space, then we have that

$$
\begin{aligned}
\operatorname{proj}_{\alpha \mathbf{u}}(\mathbf{v}) & =\frac{\langle\mathbf{v}, \alpha \mathbf{u}\rangle}{\langle\alpha \mathbf{u}, \alpha \mathbf{u}\rangle}(\alpha \mathbf{u}) & & \text { by definition } \\
& =\frac{\langle\mathbf{v}, \alpha \mathbf{u}\rangle}{\alpha\langle\mathbf{u}, \alpha \mathbf{u}\rangle}(\alpha \mathbf{u}) & & \text { by c. } 3 \\
& =\frac{\bar{\alpha}\langle\mathbf{v}, \mathbf{u}\rangle}{\alpha \bar{\alpha}\langle\mathbf{u}, \mathbf{u}\rangle}(\alpha \mathbf{u}) & & \text { by c.3' } \\
& =\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u} & & \\
& =\operatorname{proj}_{\mathbf{u}}(\mathbf{v}) & & \text { by definition. }
\end{aligned}
$$

$$
\operatorname{proj}_{\mathbf{u}}(\mathbf{v})=\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u}
$$

- As the picture suggests, for any scalar $\alpha \neq 0$, the projection of \mathbf{v} onto $\alpha \mathbf{u}$ is the same as the projection of \mathbf{v} onto \mathbf{u}.
- Indeed, if V is a complex vector space, then we have that

$$
\begin{aligned}
\operatorname{proj}_{\alpha \mathbf{u}}(\mathbf{v}) & =\frac{\langle\mathbf{v}, \alpha \mathbf{u}\rangle}{\langle\alpha \mathbf{u}, \alpha \mathbf{u}\rangle}(\alpha \mathbf{u}) & & \text { by definition } \\
& =\frac{\langle\mathbf{v}, \alpha \mathbf{u}\rangle}{\alpha\langle\mathbf{u}, \alpha \mathbf{u}\rangle}(\alpha \mathbf{u}) & & \text { by c. } 3 \\
& =\frac{\bar{\alpha}\langle\mathbf{v}, \mathbf{u}\rangle}{\alpha \bar{\alpha}\langle\mathbf{u}, \mathbf{u}\rangle}(\alpha \mathbf{u}) & & \text { by c.3' } \\
& =\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u} & & \\
& =\operatorname{proj}_{\mathbf{u}}(\mathbf{v}) & & \text { by definition. }
\end{aligned}
$$

- The real case is similar, only without complex conjugates.

Proposition 6.3.1

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let \mathbf{u} be a non-zero vector in V, let \mathbf{v} be any vector in V, and set $\mathbf{z}:=\mathbf{v}-\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$. Then $\mathbf{z} \perp \mathbf{u}$.

Proof.

Proposition 6.3.1

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let \mathbf{u} be a non-zero vector in V, let \mathbf{v} be any vector in V, and set $\mathbf{z}:=\mathbf{v}-\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$. Then $\mathbf{z} \perp \mathbf{u}$.

Proof. We compute

$$
\begin{aligned}
\langle\mathbf{z}, \mathbf{u}\rangle=\left\langle\mathbf{v}-\operatorname{proj}_{\mathbf{u}}(\mathbf{v}), \mathbf{u}\right\rangle & =\left\langle\mathbf{v}-\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u}, \mathbf{u}\right\rangle \\
& \stackrel{(*)}{=}\langle\mathbf{v}, \mathbf{u}\rangle-\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle}\langle\mathbf{u}, \mathbf{u}\rangle \\
& =\langle\mathbf{v}, \mathbf{u}\rangle-\langle\mathbf{v}, \mathbf{u}\rangle=0
\end{aligned}
$$

where (*) follows from r. 2 and r. 3 (in the real case) or from c. 2 and $c .3$ (in the complex case). This proves that $\mathbf{z} \perp \mathbf{u} . \square$
(2) Orthogonal and orthonormal sets. Orthogonal and orthonormal bases
(2) Orthogonal and orthonormal sets. Orthogonal and orthonormal bases

Definition

Suppose we are given a real or complex vector space V, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$.

- An orthogonal set of vectors in V is a set of pairwise orthogonal vectors in V.
- An orthonormal set of vectors is an orthogonal set of unit vectors (i.e. vectors of length 1).
- An orthogonal basis (resp. orthonormal basis) of V is an orthogonal (resp. orthonormal) set in V that is also a basis of V.

Proposition 6.3.2

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then both the following hold:
(a) any orthogonal set of non-zero vectors in V is linearly independent;
(D) any orthonormal set of vectors in V is linearly independent.

Proof.

Proposition 6.3.2

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then both the following hold:
(a) any orthogonal set of non-zero vectors in V is linearly independent;
(D) any orthonormal set of vectors in V is linearly independent.

Proof. Any orthonormal set of vectors is an orthogonal set of non-zero vectors (because $\mathbf{0}$ is not a unit vector). So, (a) immediately implies (b).

Proposition 6.3.2

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then both the following hold:
(a) any orthogonal set of non-zero vectors in V is linearly independent;
(D) any orthonormal set of vectors in V is linearly independent.

Proof. Any orthonormal set of vectors is an orthogonal set of non-zero vectors (because $\mathbf{0}$ is not a unit vector). So, (a) immediately implies (b).
It remains to prove (a).

Proposition 6.3.2

(a) any orthogonal set of non-zero vectors in V is linearly independent;

Proof (continued).

Proposition 6.3.2

(a) any orthogonal set of non-zero vectors in V is linearly independent;

Proof (continued). Fix an orthogonal set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of non-zero vectors in V. WTS this set is linearly independent.

Proposition 6.3.2

(a) any orthogonal set of non-zero vectors in V is linearly independent;

Proof (continued). Fix an orthogonal set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of non-zero vectors in V. WTS this set is linearly independent. Fix scalars $\alpha_{1}, \ldots, \alpha_{k}$ s.t.

$$
\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}=\mathbf{0}
$$

WTS $\alpha_{1}=\cdots=\alpha_{k}=0$.

Proposition 6.3.2

(a) any orthogonal set of non-zero vectors in V is linearly independent;

Proof (continued). Fix an orthogonal set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of non-zero vectors in V. WTS this set is linearly independent. Fix scalars $\alpha_{1}, \ldots, \alpha_{k}$ s.t.

$$
\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}=\mathbf{0}
$$

WTS $\alpha_{1}=\cdots=\alpha_{k}=0$. Fix any $i \in\{1, \ldots, k\}$. Then

$$
\langle\underbrace{\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}}_{=0}, \mathbf{u}_{i}\rangle=\left\langle\mathbf{0}, \mathbf{u}_{i}\right\rangle \stackrel{(*)}{=} 0
$$

where (*) follows from Proposition 6.1.4(c).

Proposition 6.3.2

(a) any orthogonal set of non-zero vectors in V is linearly independent;

Proof (continued). Reminder: $\left\langle\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}, \mathbf{u}_{i}\right\rangle=0$.

Proposition 6.3.2

(a) any orthogonal set of non-zero vectors in V is linearly independent;

Proof (continued). Reminder: $\left\langle\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}, \mathbf{u}_{i}\right\rangle=0$.
On the other hand, note that

$$
\left\langle\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}, \mathbf{u}_{i}\right\rangle \stackrel{(*)}{=} \alpha_{1}\left\langle\mathbf{u}_{1}, \mathbf{u}_{i}\right\rangle+\cdots+\alpha_{k}\left\langle\mathbf{u}_{k}, \mathbf{u}_{i}\right\rangle \stackrel{(* *)}{=} \alpha_{i}\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle,
$$

where $\left(^{*}\right.$) follows from r. 2 and r. 3 (in the real case) or from c. 2 and c. 3 (in the complex case), and (${ }^{* *}$) follows from the fact that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal set.

Proposition 6.3.2

(a) any orthogonal set of non-zero vectors in V is linearly independent;

Proof (continued). Reminder: $\left\langle\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}, \mathbf{u}_{i}\right\rangle=0$.
On the other hand, note that

$$
\left\langle\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}, \mathbf{u}_{i}\right\rangle \stackrel{(*)}{=} \alpha_{1}\left\langle\mathbf{u}_{1}, \mathbf{u}_{i}\right\rangle+\cdots+\alpha_{k}\left\langle\mathbf{u}_{k}, \mathbf{u}_{i}\right\rangle \stackrel{(* *)}{=} \alpha_{i}\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle,
$$

where $\left(^{*}\right.$) follows from r. 2 and r. 3 (in the real case) or from c. 2 and c. 3 (in the complex case), and (${ }^{* *}$) follows from the fact that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal set.

So,

$$
\alpha_{i}\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle=0
$$

Proposition 6.3.2

(a) any orthogonal set of non-zero vectors in V is linearly independent;

Proof (continued). Reminder: $\left\langle\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}, \mathbf{u}_{i}\right\rangle=0$.
On the other hand, note that

$$
\left\langle\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}, \mathbf{u}_{i}\right\rangle \stackrel{(*)}{=} \alpha_{1}\left\langle\mathbf{u}_{1}, \mathbf{u}_{i}\right\rangle+\cdots+\alpha_{k}\left\langle\mathbf{u}_{k}, \mathbf{u}_{i}\right\rangle \stackrel{(* *)}{=} \alpha_{i}\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle,
$$

where $\left(^{*}\right.$) follows from r. 2 and r. 3 (in the real case) or from c. 2 and c. 3 (in the complex case), and $\left(^{* *}\right)$ follows from the fact that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal set.
So,

$$
\alpha_{i}\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle=0
$$

Since $\mathbf{u}_{i} \neq \mathbf{0}$, r. 1 or c. 1 guarantees that $\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle \neq 0$; consequently, $\alpha_{i}=0$.

Proposition 6.3.2

(a) any orthogonal set of non-zero vectors in V is linearly independent;

Proof (continued). Reminder: $\left\langle\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}, \mathbf{u}_{i}\right\rangle=0$.
On the other hand, note that

$$
\left\langle\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}, \mathbf{u}_{i}\right\rangle \stackrel{(\stackrel{*}{=}}{=} \alpha_{1}\left\langle\mathbf{u}_{1}, \mathbf{u}_{i}\right\rangle+\cdots+\alpha_{k}\left\langle\mathbf{u}_{k}, \mathbf{u}_{i}\right\rangle \stackrel{(* *)}{=} \alpha_{i}\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle,
$$

where $\left(^{*}\right.$) follows from r. 2 and r. 3 (in the real case) or from c. 2 and c. 3 (in the complex case), and $\left({ }^{* *}\right)$ follows from the fact that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal set.
So,

$$
\alpha_{i}\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle=0
$$

Since $\mathbf{u}_{i} \neq \mathbf{0}$, r. 1 or c. 1 guarantees that $\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle \neq 0$; consequently, $\alpha_{i}=0$. Since $i \in\{1, \ldots, k\}$ was chosen arbitrarily, it follows that $\alpha_{1}=\cdots=\alpha_{k}=0$, and we are done. \square

Proposition 6.3.2

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then both the following hold:
(a) any orthogonal set of non-zero vectors in V is linearly independent;
(D) any orthonormal set of vectors in V is linearly independent.

Proposition 6.3.3

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be an orthogonal set of vectors in V. Then all the following hold:
(0) for all scalars $\alpha_{1}, \ldots, \alpha_{k}$, we have that $\left\{\alpha_{1} \mathbf{u}_{1}, \ldots, \alpha_{k} \mathbf{u}_{k}\right\}$ is an orthogonal set of vectors;
(b) if vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ are all non-zero, then $\left\{\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}, \ldots, \frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}\right\}$ is an orthonormal set of vectors, and consequently, an orthonormal basis of $\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$;
(0) if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of V, then $\left\{\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}, \ldots, \frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}\right\}$ is an orthonormal basis of V.

- Proof: Lecture Notes.

Proposition 6.3.4

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Set $n:=\operatorname{dim}(V)$. Then both the following hold:
(a) any orthogonal set of n non-zero vectors in V is an orthogonal basis of V;
(b) any orthonormal set of n vectors in V is an orthonormal basis of V.

Proof.

Proposition 6.3.4

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Set $n:=\operatorname{dim}(V)$. Then both the following hold:
(a) any orthogonal set of n non-zero vectors in V is an orthogonal basis of V;
(b) any orthonormal set of n vectors in V is an orthonormal basis of V.

Proof. By Proposition 6.3.2, any orthogonal set of non-zero vectors is linearly independent, and by Corollary 3.2.20(a), any linearly independent set of size n in an n-dimensional vector space is a basis of that vector space. This proves (a).

Proposition 6.3.4

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Set $n:=\operatorname{dim}(V)$. Then both the following hold:
(a) any orthogonal set of n non-zero vectors in V is an orthogonal basis of V;
(b) any orthonormal set of n vectors in V is an orthonormal basis of V.

Proof. By Proposition 6.3.2, any orthogonal set of non-zero vectors is linearly independent, and by Corollary 3.2.20(a), any linearly independent set of size n in an n-dimensional vector space is a basis of that vector space. This proves (a).
Part (b) follows from (a), since any orthonormal set of vectors is, in particular, an orthogonal set of non-zero vectors (because $\mathbf{0}$ is not a unit vector). \square
(3) Coordinate vectors w.r.t. orthogonal and orthonormal bases. Fourier coefficients
(3) Coordinate vectors w.r.t. orthogonal and orthonormal bases. Fourier coefficients

- If we have an orthogonal basis of a real or complex vector space (equipped with a scalar product and the norm induced by it), then every vector in that vector space can be expressed as a linear combination of those basis vectors in a particularly nice way, that is, we have a convenient formula for the coefficients in front of the basis vectors (see Theorem 6.3.5, next slide).
(3) Coordinate vectors w.r.t. orthogonal and orthonormal bases. Fourier coefficients
- If we have an orthogonal basis of a real or complex vector space (equipped with a scalar product and the norm induced by it), then every vector in that vector space can be expressed as a linear combination of those basis vectors in a particularly nice way, that is, we have a convenient formula for the coefficients in front of the basis vectors (see Theorem 6.3.5, next slide).
- If our basis is orthonormal, then we get an even nicer formula for the coefficients (see Corollary 6.3.6, next slide).
- The formula from Corollary 6.3.6 follows immediately from the one for Theorem 6.3.5.
- The coefficients from Corollary 6.3.6 are called the "Fourier coefficients."

Theorem 6.3.5

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\mathcal{B}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be an orthogonal basis of V. Then for all $\mathbf{v} \in V$, we have that

$$
\mathbf{v}=\sum_{i=1}^{n} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v})=\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

and consequently, $\left[\begin{array}{lll}\mathbf{v}\end{array}\right]_{\mathcal{B}}=\left[\begin{array}{lll}\frac{\left\langle\mathbf{v}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} & \cdots & \frac{\left\langle\mathbf{v}, \mathbf{u}_{n}\right\rangle}{\left\langle\mathbf{u}_{n}, \mathbf{u}_{n}\right\rangle}\end{array}\right]^{T}$.

Theorem 6.3.5

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\mathcal{B}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be an orthogonal basis of V. Then for all $\mathbf{v} \in V$, we have that

$$
\mathbf{v}=\sum_{i=1}^{n} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v})=\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

and consequently, $\left[\begin{array}{lll}\mathbf{v}\end{array}\right]_{\mathcal{B}}=\left[\begin{array}{lll}\frac{\left\langle\mathbf{v}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} & \cdots & \frac{\left\langle\mathbf{v}, \mathbf{u}_{n}\right\rangle}{\left\langle\mathbf{u}_{n}, \mathbf{u}_{n}\right\rangle}\end{array}\right]^{T}$.

Corollary 6.3.6

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let $\mathcal{B}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be an orthonormal basis of V. Then for all $\mathbf{v} \in V$, we have that

$$
\mathbf{v}=\sum_{i=1}^{n}\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle \mathbf{u}_{i}
$$

and consequently, $[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{lll}\left\langle\mathbf{v}, \mathbf{u}_{1}\right\rangle & \ldots & \left\langle\mathbf{v}, \mathbf{u}_{n}\right\rangle\end{array}\right]^{T}$.

Theorem 6.3.5

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\mathcal{B}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be an orthogonal basis of V. Then for all $\mathbf{v} \in V$, we have that

$$
\mathbf{v}=\sum_{i=1}^{n} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v})=\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

and consequently, $[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{lll}\frac{\left\langle\mathbf{v}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} & \cdots & \frac{\left\langle\mathbf{v}, \mathbf{u}_{n}\right\rangle}{\left\langle\mathbf{u}_{n}, \mathbf{u}_{n}\right\rangle}\end{array}\right]^{T}$.
Proof.

Theorem 6.3.5

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\mathcal{B}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be an orthogonal basis of V. Then for all $\mathbf{v} \in V$, we have that

$$
\mathbf{v}=\sum_{i=1}^{n} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v})=\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

and consequently, $\left[\begin{array}{lll}\mathbf{v}\end{array}\right]_{\mathcal{B}}=\left[\begin{array}{lll}\frac{\left\langle\mathbf{v}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} & \cdots & \frac{\left\langle\mathbf{v}, \mathbf{u}_{n}\right\rangle}{\left\langle\mathbf{u}_{n}, \mathbf{u}_{n}\right\rangle}\end{array}\right]^{T}$.
Proof. The second statement follows from the first and from the definition of a coordinate vector.

Theorem 6.3.5

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\mathcal{B}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be an orthogonal basis of V. Then for all $\mathbf{v} \in V$, we have that

$$
\mathbf{v}=\sum_{i=1}^{n} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v})=\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

and consequently, $\left[\begin{array}{lll}\mathbf{v}\end{array}\right]_{\mathcal{B}}=\left[\begin{array}{lll}\frac{\left\langle\mathbf{v}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} & \cdots & \frac{\left\langle\mathbf{v}, \mathbf{u}_{n}\right\rangle}{\left\langle\mathbf{u}_{n}, \mathbf{u}_{n}\right\rangle}\end{array}\right]^{T}$.
Proof. The second statement follows from the first and from the definition of a coordinate vector. It remains to prove the first statement.

Theorem 6.3.5

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\mathcal{B}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be an orthogonal basis of V. Then for all $\mathbf{v} \in V$, we have that

$$
\mathbf{v}=\sum_{i=1}^{n} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v})=\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

and consequently, $\left[\begin{array}{lll}\mathbf{v}\end{array}\right]_{\mathcal{B}}=\left[\begin{array}{lll}\frac{\left\langle\mathbf{v}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} & \cdots & \frac{\left\langle\mathbf{v}, \mathbf{u}_{n}\right\rangle}{\left\langle\mathbf{u}_{n}, \mathbf{u}_{n}\right\rangle}\end{array}\right]^{T}$.
Proof. The second statement follows from the first and from the definition of a coordinate vector. It remains to prove the first statement.

Fix a vector $\mathbf{v} \in V$.

Theorem 6.3.5

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\mathcal{B}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be an orthogonal basis of V. Then for all $\mathbf{v} \in V$, we have that

$$
\mathbf{v}=\sum_{i=1}^{n} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v})=\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

and consequently, $\left[\begin{array}{lll}\mathbf{v}\end{array}\right]_{\mathcal{B}}=\left[\begin{array}{lll}\frac{\left\langle\mathbf{v}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} & \cdots & \frac{\left\langle\mathbf{v}, \mathbf{u}_{n}\right\rangle}{\left\langle\mathbf{u}_{n}, \mathbf{u}_{n}\right\rangle}\end{array}\right]^{T}$.
Proof. The second statement follows from the first and from the definition of a coordinate vector. It remains to prove the first statement.

Fix a vector $\mathbf{v} \in V$. By definition, for all $i \in\{1, \ldots, n\}$, we have that $\operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v})=\frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}$. So, it suffices to show that

$$
\mathbf{v}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

Proof (continued). Reminder: WTS $\mathbf{v}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}$.

Proof (continued). Reminder: WTS $\mathbf{v}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}$.
Since $\mathbf{v} \in V$ and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ is a basis of V, there exist scalars $\alpha_{1}, \ldots, \alpha_{n}$ s.t.

$$
\mathbf{v}=\sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i} .
$$

Proof (continued). Reminder: WTS $\mathbf{v}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}$.
Since $\mathbf{v} \in V$ and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ is a basis of V, there exist scalars $\alpha_{1}, \ldots, \alpha_{n}$ s.t.

$$
\mathbf{v}=\sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i} .
$$

Now, fix any index $j \in\{1, \ldots, n\}$. We then have that

$$
\left\langle\mathbf{v}, \mathbf{u}_{j}\right\rangle=\left\langle\sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle \stackrel{(*)}{=} \sum_{i=1}^{n} \alpha_{i}\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle \stackrel{(* *)}{=} \alpha_{j}\left\langle\mathbf{u}_{j}, \mathbf{u}_{j}\right\rangle,
$$

where $\left(^{*}\right.$) follows from r. 2 and r. 3 (in the real case) or from c. 2 and c .3 (in the complex case), and $\left({ }^{* *}\right)$ follows from the fact that $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ are pairwise orthogonal.

Proof (continued). Reminder: WTS $\mathbf{v}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}$.
Since $\mathbf{v} \in V$ and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ is a basis of V, there exist scalars $\alpha_{1}, \ldots, \alpha_{n}$ s.t.

$$
\mathbf{v}=\sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i} .
$$

Now, fix any index $j \in\{1, \ldots, n\}$. We then have that

$$
\left\langle\mathbf{v}, \mathbf{u}_{j}\right\rangle=\left\langle\sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle \stackrel{(*)}{=} \sum_{i=1}^{n} \alpha_{i}\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle \stackrel{(* *)}{=} \alpha_{j}\left\langle\mathbf{u}_{j}, \mathbf{u}_{j}\right\rangle,
$$

where $\left(^{*}\right)$ follows from r. 2 and r. 3 (in the real case) or from c. 2 and $c .3$ (in the complex case), and $\left({ }^{* *}\right)$ follows from the fact that $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ are pairwise orthogonal. Since $\mathbf{u}_{j} \neq \mathbf{0}$ (because $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ is a basis of $\left.V\right)$, r. 1 or c. 1 guarantees that
$\left\langle\mathbf{u}_{j}, \mathbf{u}_{j}\right\rangle \neq 0$, and we deduce that

$$
\alpha_{j}=\frac{\left\langle\mathbf{v}, \mathbf{u}_{j}\right\rangle}{\left\langle\mathbf{u}_{j}, \mathbf{u}_{j}\right\rangle} .
$$

Proof (continued). Reminder: WTS $\mathbf{v}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}$.
Since $\mathbf{v} \in V$ and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ is a basis of V, there exist scalars $\alpha_{1}, \ldots, \alpha_{n}$ s.t.

$$
\mathbf{v}=\sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i} .
$$

Now, fix any index $j \in\{1, \ldots, n\}$. We then have that

$$
\left\langle\mathbf{v}, \mathbf{u}_{j}\right\rangle=\left\langle\sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle \stackrel{(*)}{=} \sum_{i=1}^{n} \alpha_{i}\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle \stackrel{(* *)}{=} \alpha_{j}\left\langle\mathbf{u}_{j}, \mathbf{u}_{j}\right\rangle,
$$

where $\left(^{*}\right)$ follows from r. 2 and r. 3 (in the real case) or from c. 2 and $c .3$ (in the complex case), and $\left({ }^{* *}\right)$ follows from the fact that $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ are pairwise orthogonal. Since $\mathbf{u}_{j} \neq \mathbf{0}$ (because $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ is a basis of $\left.V\right)$, r. 1 or c. 1 guarantees that $\left\langle\mathbf{u}_{j}, \mathbf{u}_{j}\right\rangle \neq 0$, and we deduce that

$$
\alpha_{j}=\frac{\left\langle\mathbf{v}, \mathbf{u}_{j}\right\rangle}{\left\langle\mathbf{u}_{j}, \mathbf{u}_{j}\right\rangle} .
$$

Since $j \in\{1, \ldots, n\}$ was chosen arbitrarily, we now deduce that

$$
\mathbf{v}=\sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i}=\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} .
$$

Theorem 6.3.5

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\mathcal{B}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be an orthogonal basis of V. Then for all $\mathbf{v} \in V$, we have that

$$
\mathbf{v}=\sum_{i=1}^{n} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v})=\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

and consequently, $\left[\begin{array}{lll}\mathbf{v}\end{array}\right]_{\mathcal{B}}=\left[\begin{array}{lll}\frac{\left\langle\mathbf{v}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} & \cdots & \frac{\left\langle\mathbf{v}, \mathbf{u}_{n}\right\rangle}{\left\langle\mathbf{u}_{n}, \mathbf{u}_{n}\right\rangle}\end{array}\right]^{T}$.

Theorem 6.3.5

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\mathcal{B}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be an orthogonal basis of V. Then for all $\mathbf{v} \in V$, we have that

$$
\mathbf{v}=\sum_{i=1}^{n} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v})=\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}
$$

and consequently, $\left[\begin{array}{lll}\mathbf{v}\end{array}\right]_{\mathcal{B}}=\left[\begin{array}{lll}\frac{\left\langle\mathbf{v}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} & \cdots & \frac{\left\langle\mathbf{v}, \mathbf{u}_{n}\right\rangle}{\left\langle\mathbf{u}_{n}, \mathbf{u}_{n}\right\rangle}\end{array}\right]^{T}$.

Corollary 6.3.6

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let $\mathcal{B}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be an orthonormal basis of V. Then for all $\mathbf{v} \in V$, we have that

$$
\mathbf{v}=\sum_{i=1}^{n}\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle \mathbf{u}_{i}
$$

and consequently, $[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{lll}\left\langle\mathbf{v}, \mathbf{u}_{1}\right\rangle & \ldots & \left\langle\mathbf{v}, \mathbf{u}_{n}\right\rangle\end{array}\right]^{T}$.
(9) Gram-Schmidt orthogonalization
(9) Gram-Schmidt orthogonalization

- Our goal is to describe the "Gram-Schmidt orthogonalization process," which gives a recipe for transforming an arbitrary basis of a real or complex vector space (equipped with a scalar product and the norm induced by it) into an orthogonal (and even orthonormal) basis.
(9) Gram-Schmidt orthogonalization
- Our goal is to describe the "Gram-Schmidt orthogonalization process," which gives a recipe for transforming an arbitrary basis of a real or complex vector space (equipped with a scalar product and the norm induced by it) into an orthogonal (and even orthonormal) basis.
- There are in fact two different (but similar) versions of the Gram-Schmidt orthogonalization process.
(9) Gram-Schmidt orthogonalization
- Our goal is to describe the "Gram-Schmidt orthogonalization process," which gives a recipe for transforming an arbitrary basis of a real or complex vector space (equipped with a scalar product and the norm induced by it) into an orthogonal (and even orthonormal) basis.
- There are in fact two different (but similar) versions of the Gram-Schmidt orthogonalization process.
- The first version first produces an orthogonal basis, and then (optionally) produces an orthonormal basis.
(9) Gram-Schmidt orthogonalization
- Our goal is to describe the "Gram-Schmidt orthogonalization process," which gives a recipe for transforming an arbitrary basis of a real or complex vector space (equipped with a scalar product and the norm induced by it) into an orthogonal (and even orthonormal) basis.
- There are in fact two different (but similar) versions of the Gram-Schmidt orthogonalization process.
- The first version first produces an orthogonal basis, and then (optionally) produces an orthonormal basis.
- The second version produces an orthonormal basis directly.
(9) Gram-Schmidt orthogonalization
- Our goal is to describe the "Gram-Schmidt orthogonalization process," which gives a recipe for transforming an arbitrary basis of a real or complex vector space (equipped with a scalar product and the norm induced by it) into an orthogonal (and even orthonormal) basis.
- There are in fact two different (but similar) versions of the Gram-Schmidt orthogonalization process.
- The first version first produces an orthogonal basis, and then (optionally) produces an orthonormal basis.
- The second version produces an orthonormal basis directly.
- We first describe the first version, we give a numerical example, and we prove the correctness of the process.
(9) Gram-Schmidt orthogonalization
- Our goal is to describe the "Gram-Schmidt orthogonalization process," which gives a recipe for transforming an arbitrary basis of a real or complex vector space (equipped with a scalar product and the norm induced by it) into an orthogonal (and even orthonormal) basis.
- There are in fact two different (but similar) versions of the Gram-Schmidt orthogonalization process.
- The first version first produces an orthogonal basis, and then (optionally) produces an orthonormal basis.
- The second version produces an orthonormal basis directly.
- We first describe the first version, we give a numerical example, and we prove the correctness of the process.
- Then we describe the second version.
- The proof of correctness is similar to the proof of the first, and we omit it.
- A numerical example is given in the Lecture Notes.

Gram-Schmidt orthogonalization process (version 1)

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$, and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be linearly independent vectors in V. For all $\ell \in\{1, \ldots, k\}$, set

$$
\mathbf{u}_{\ell}:=\mathbf{v}_{\ell}-\sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{u}_{i}}\left(\mathbf{v}_{\ell}\right)=\mathbf{v}_{\ell}-\sum_{i=1}^{\ell-1} \frac{\left\langle\mathbf{v}_{\ell}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} .
$$

Then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$, and $\left\{\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}, \ldots, \frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}\right\}$ is an orthonormal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.

- The sequence $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ is obtained (recursively) as follows:
- $\mathbf{u}_{1}:=\mathbf{v}_{1}$;
- $\mathbf{u}_{2}:=\mathbf{v}_{2}-\operatorname{proj}_{\mathbf{u}_{1}}\left(\mathbf{v}_{2}\right)$;
- $\mathbf{u}_{3}:=\mathbf{v}_{3}-\left(\operatorname{proj}_{\mathbf{u}_{1}}\left(\mathbf{v}_{3}\right)+\operatorname{proj}_{\mathbf{u}_{2}}\left(\mathbf{v}_{3}\right)\right)$;
- $\mathbf{u}_{k}:=\mathbf{v}_{k}-\left(\operatorname{proj}_{\mathbf{u}_{1}}\left(\mathbf{v}_{k}\right)+\operatorname{proj}_{\mathbf{u}_{2}}\left(\mathbf{v}_{k}\right)+\cdots+\operatorname{proj}_{\mathbf{u}_{k-1}}\left(\mathbf{v}_{k}\right)\right)$.

Example 6.3.8

Consider the following linearly independent vectors in \mathbb{R}^{4} :

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
3 \\
4 \\
-4 \\
3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-5 \\
10 \\
2 \\
11
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
8 \\
19 \\
11 \\
-2
\end{array}\right] .
$$

Set $U:=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$. Using the Gram-Schmidt orthogonalization process (version 1):
(a) compute an orthogonal basis of U (w.r.t. the standard scalar product - in \mathbb{R}^{4}).
(D) compute an orthonormal basis of U (w.r.t. the standard scalar product • in \mathbb{R}^{4} and the norm $\|\cdot\|$ induced by it).

- Remark: To see that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ really are linearly independent, we compute

$$
\operatorname{RREF}\left(\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right]\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

and we deduce that $\operatorname{rank}\left(\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]\right)=3$, i.e.
$\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]$ has full column rank. So, by
Theorem 3.3.12(a), vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent.

Example 6.3.8

Consider the following linearly independent vectors in \mathbb{R}^{4} :

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
3 \\
4 \\
-4 \\
3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-5 \\
10 \\
2 \\
11
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
8 \\
19 \\
11 \\
-2
\end{array}\right] .
$$

Set $U:=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$. Using the Gram-Schmidt orthogonalization process (version 1):
(0) compute an orthogonal basis of U (w.r.t. the standard scalar product • in \mathbb{R}^{4}).
(0) compute an orthonormal basis of U (w.r.t. the standard scalar product • in \mathbb{R}^{4} and the norm $\|\cdot\|$ induced by it).

- Solution: On the board.
- Let's now prove the correctness of the Gram-Schmidt orthogonalization process!
- Let's now prove the correctness of the Gram-Schmidt orthogonalization process!
- We begin with a technical proposition.
- Let's now prove the correctness of the Gram-Schmidt orthogonalization process!
- We begin with a technical proposition.

Proposition 6.3.7

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be an orthogonal set of non-zero vectors in V. Let $\mathbf{v} \in V$, and set $\mathbf{y}:=\sum_{i=1}^{k} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v})=\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}$ and $\mathbf{z}:=\mathbf{v}-\mathbf{y}$. Then all the following hold:
(0) $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{z}\right\}$ is an orthogonal set of vectors;
(D) $\mathbf{z}=\mathbf{0}$ iff $\mathbf{v} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$;
(c) $\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{v}\right)=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{z}\right)$.

Proof.

- Let's now prove the correctness of the Gram-Schmidt orthogonalization process!
- We begin with a technical proposition.

Proposition 6.3.7

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be an orthogonal set of non-zero vectors in V. Let $\mathbf{v} \in V$, and set $\mathbf{y}:=\sum_{i=1}^{k} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v})=\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}$ and $\mathbf{z}:=\mathbf{v}-\mathbf{y}$. Then all the following hold:
(D) $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{z}\right\}$ is an orthogonal set of vectors;
(D) $\mathbf{z}=\mathbf{0}$ iff $\mathbf{v} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$;
(a) $\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{v}\right)=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{z}\right)$.

Proof. First of all, Proposition 6.3 .2 guarantees that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a linearly independent set, and we deduce that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of $\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$.

Proof (continued). Let us first prove (a).

Proof (continued). Let us first prove (a). By hypothesis, vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ are pairwise orthogonal.

Proof (continued). Let us first prove (a). By hypothesis, vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ are pairwise orthogonal. On the other hand, for each $j \in\{1, \ldots, k\}$, we have the following:

$$
\begin{aligned}
\left\langle\mathbf{z}, \mathbf{u}_{j}\right\rangle & =\left\langle\mathbf{v}-\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{\mathbf{u}}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle \\
& \stackrel{(*)}{=}\left\langle\mathbf{v}, \mathbf{u}_{j}\right\rangle-\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle}\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle \\
& \stackrel{(* *)}{=}\left\langle\mathbf{v}, \mathbf{u}_{j}\right\rangle-\frac{\left\langle\mathbf{v}, \mathbf{u}_{j}\right\rangle}{\left\langle\mathbf{u}_{j}, \mathbf{u}_{j}\right\rangle}\left\langle\mathbf{u}_{j}, \mathbf{u}_{j}\right\rangle \\
& =\left\langle\mathbf{v}, \mathbf{u}_{j}\right\rangle-\left\langle\mathbf{v}, \mathbf{u}_{j}\right\rangle=0,
\end{aligned}
$$

where $\left(^{*}\right)$ follows from r. 2 and r. 3 (in the real case) or from c. 2 and c. 3 (in the complex case), and (${ }^{* *}$) follows from the fact that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal set.

Proof (continued). Let us first prove (a). By hypothesis, vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ are pairwise orthogonal. On the other hand, for each $j \in\{1, \ldots, k\}$, we have the following:

$$
\begin{aligned}
\left\langle\mathbf{z}, \mathbf{u}_{j}\right\rangle & =\left\langle\mathbf{v}-\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{\mathbf{u}}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle \\
& \stackrel{(*)}{=}\left\langle\mathbf{v}, \mathbf{u}_{j}\right\rangle-\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle}\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle \\
& \stackrel{(* *)}{=}\left\langle\mathbf{v}, \mathbf{u}_{j}\right\rangle-\frac{\left\langle\mathbf{v}, \mathbf{u}_{j}\right\rangle}{\left\langle\mathbf{u}_{j}, \mathbf{u}_{j}\right\rangle}\left\langle\mathbf{u}_{j}, \mathbf{u}_{j}\right\rangle \\
& =\left\langle\mathbf{v}, \mathbf{u}_{j}\right\rangle-\left\langle\mathbf{v}, \mathbf{u}_{j}\right\rangle=0,
\end{aligned}
$$

where (*) follows from r. 2 and r. 3 (in the real case) or from c. 2 and c .3 (in the complex case), and $\left({ }^{* *}\right)$ follows from the fact that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal set. Thus, $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{z}\right\}$ is an orthogonal set of vectors. This proves (a).

Proof (continued). Next, we prove (b).

$$
\begin{aligned}
& \text { Proof (continued). Next, we prove (b). Clearly, } \mathbf{z}=\mathbf{0} \text { iff } \\
& \mathbf{v}=\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} .
\end{aligned}
$$

Proof (continued). Next, we prove (b). Clearly, z = $\mathbf{0}$ iff $\mathbf{v}=\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}$.

So, we need to show that $\mathbf{v}=\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}$ iff $\mathbf{v} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$.

Proof (continued). Next, we prove (b). Clearly, $\mathbf{z}=\mathbf{0}$ iff $\mathbf{v}=\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}$.
So, we need to show that $\mathbf{v}=\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}$ iff $\mathbf{v} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$.
If $\mathbf{v}=\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}$, then \mathbf{v} is a linear combination of the vectors
$\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$, and consequently, $\mathbf{v} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$.

Proof (continued). Next, we prove (b). Clearly, $\mathbf{z}=\mathbf{0}$ iff $\mathbf{v}=\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}$.
So, we need to show that $\mathbf{v}=\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}$ iff $\mathbf{v} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$.
If $\mathbf{v}=\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}$, then \mathbf{v} is a linear combination of the vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$, and consequently, $\mathbf{v} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$.
On the other hand, if $\mathbf{v} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$, then Theorem 6.3.5 guarantees $\mathbf{v}=\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}$ (because $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of $\left.\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right)$. This proves (b).

Proof (continued).

Proof (continued). Finally, we prove (c). Fix any vector $\mathbf{x} \in V$. WTS $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{v}\right)$ iff $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{z}\right)$. We prove both directions (they are very similar).

Proof (continued). Finally, we prove (c). Fix any vector $\mathbf{x} \in V$. WTS $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{v}\right)$ iff $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{z}\right)$. We prove both directions (they are very similar).
Suppose first that $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{v}\right)$.

Proof (continued). Finally, we prove (c). Fix any vector $\mathbf{x} \in V$. WTS $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{v}\right)$ iff $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{z}\right)$. We prove both directions (they are very similar).
Suppose first that $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{v}\right)$. Then there exist scalars $\alpha_{1}, \ldots, \alpha_{k}, \beta$ s.t. $\mathbf{x}=\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}+\beta \mathbf{v}$.

Proof (continued). Finally, we prove (c). Fix any vector $\mathbf{x} \in V$. WTS $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{v}\right)$ iff $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{z}\right)$. We prove both directions (they are very similar).
Suppose first that $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{v}\right)$. Then there exist scalars $\alpha_{1}, \ldots, \alpha_{k}, \beta$ s.t. $\mathbf{x}=\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}+\beta \mathbf{v}$. But now

$$
\begin{aligned}
\mathbf{x} & =\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}+\beta \mathbf{v} \\
& =\left(\sum_{i=1}^{k} \alpha_{i} \mathbf{u}_{i}\right)+\beta(\mathbf{y}+\mathbf{z}) \\
& =\left(\sum_{i=1}^{k} \alpha_{i} \mathbf{u}_{i}\right)+\beta\left(\left(\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}\right)+\mathbf{z}\right) \\
& =\left(\sum_{i=1}^{k}\left(\alpha_{i}+\beta \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle}\right) \mathbf{u}_{i}\right)+\beta \mathbf{z},
\end{aligned}
$$

and we deduce that $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{z}\right)$.

Proof (continued). Suppose, conversely, that $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{z}\right)$.

Proof (continued). Suppose, conversely, that $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{z}\right)$. Then there exist scalars $\alpha_{1}, \ldots, \alpha_{k}, \beta$ s.t. $\mathbf{x}=\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}+\beta \mathbf{z}$.

Proof (continued). Suppose, conversely, that $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{z}\right)$. Then there exist scalars $\alpha_{1}, \ldots, \alpha_{k}, \beta$ s.t. $\mathbf{x}=\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}+\beta \mathbf{z}$. But now

$$
\begin{aligned}
\mathbf{x} & =\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}+\beta \mathbf{z} \\
& =\left(\sum_{i=1}^{k} \alpha_{i} \mathbf{u}_{i}\right)+\beta(\mathbf{v}-\mathbf{y}) \\
& =\left(\sum_{i=1}^{k} \alpha_{i} \mathbf{u}_{i}\right)+\beta\left(\mathbf{v}-\left(\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}\right)\right) \\
& =\left(\sum_{i=1}^{k}\left(\alpha_{i}-\beta \frac{\left\langle\mathbf{v}, \mathbf{u}_{\mathbf{i}}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle}\right) \mathbf{u}_{i}\right)+\beta \mathbf{v},
\end{aligned}
$$

and we deduce that $\mathbf{x} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{v}\right)$. This proves (c). \square

Proposition 6.3.7

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be an orthogonal set of non-zero vectors in V. Let $\mathbf{v} \in V$, and set $\mathbf{y}:=\sum_{i=1}^{k} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v})=\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}$ and $\mathbf{z}:=\mathbf{v}-\mathbf{y}$. Then all the following hold:
(a) $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{z}\right\}$ is an orthogonal set of vectors;
(b) $\mathbf{z}=\mathbf{0}$ iff $\mathbf{v} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$;
(c) $\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{v}\right)=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{z}\right)$.

Proposition 6.3.7

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be an orthogonal set of non-zero vectors in V. Let $\mathbf{v} \in V$, and set $\mathbf{y}:=\sum_{i=1}^{k} \operatorname{proj}_{\mathbf{u}_{i}}(\mathbf{v})=\sum_{i=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i}$ and $\mathbf{z}:=\mathbf{v}-\mathbf{y}$. Then all the following hold:
(a) $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{z}\right\}$ is an orthogonal set of vectors;
(D) $\mathbf{z}=\mathbf{0}$ iff $\mathbf{v} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$;
(c) $\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{v}\right)=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{z}\right)$.

- Using Proposition 6.3.7, we can now prove the correctness of the Gram-Schmidt orthogonalization process (version 1).

Gram-Schmidt orthogonalization process (version 1)

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$, and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be linearly independent vectors in V. For all $\ell \in\{1, \ldots, k\}$, set

$$
\mathbf{u}_{\ell}:=\mathbf{v}_{\ell}-\sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{u}_{i}}\left(\mathbf{v}_{\ell}\right)=\mathbf{v}_{\ell}-\sum_{i=1}^{\ell-1} \frac{\left\langle\mathbf{v}_{\ell}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} .
$$

Then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$, and $\left\{\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}, \ldots, \frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}\right\}$ is an orthonormal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.

Proof.

Gram-Schmidt orthogonalization process (version 1)

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$, and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be linearly independent vectors in V. For all $\ell \in\{1, \ldots, k\}$, set

$$
\mathbf{u}_{\ell}:=\mathbf{v}_{\ell}-\sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{u}_{i}}\left(\mathbf{v}_{\ell}\right)=\mathbf{v}_{\ell}-\sum_{i=1}^{\ell-1} \frac{\left\langle\mathbf{v}_{\ell}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} .
$$

Then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$, and $\left\{\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}, \ldots, \frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}\right\}$ is an orthonormal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.

Proof. We first prove that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.

Gram-Schmidt orthogonalization process (version 1)

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$, and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be linearly independent vectors in V. For all $\ell \in\{1, \ldots, k\}$, set

$$
\mathbf{u}_{\ell}:=\mathbf{v}_{\ell}-\sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{u}_{i}}\left(\mathbf{v}_{\ell}\right)=\mathbf{v}_{\ell}-\sum_{i=1}^{\ell-1} \frac{\left\langle\mathbf{v}_{\ell}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} .
$$

Then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$, and $\left\{\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}, \ldots, \frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}\right\}$ is an orthonormal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.

Proof. We first prove that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$. For each $\ell \in\{1, \ldots, k\}$, we set $U_{\ell}:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$, and we prove (inductively) that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of U_{ℓ}.

Gram-Schmidt orthogonalization process (version 1)

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$, and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be linearly independent vectors in V. For all $\ell \in\{1, \ldots, k\}$, set

$$
\mathbf{u}_{\ell}:=\mathbf{v}_{\ell}-\sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{u}_{i}}\left(\mathbf{v}_{\ell}\right)=\mathbf{v}_{\ell}-\sum_{i=1}^{\ell-1} \frac{\left\langle\mathbf{v}_{\ell}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} .
$$

Then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$, and $\left\{\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}, \ldots, \frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}\right\}$ is an orthonormal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.

Proof. We first prove that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$. For each $\ell \in\{1, \ldots, k\}$, we set $U_{\ell}:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$, and we prove (inductively) that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of U_{ℓ}. Obviously, this is enough, because for $k=\ell$, we get that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of $U_{k}=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.

Proof (continued). Reminder: WTS $\forall \ell \in\{1, \ldots, k\}:\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of $U_{\ell}:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$.

Proof (continued). Reminder: WTS $\forall \ell \in\{1, \ldots, k\}:\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of $U_{\ell}:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$.

Since $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent, we see that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are all non-zero, and in particular, $\left\{\mathbf{v}_{1}\right\}$ is linearly independent.

Proof (continued). Reminder: WTS $\forall \ell \in\{1, \ldots, k\}:\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of $U_{\ell}:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$.

Since $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent, we see that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are all non-zero, and in particular, $\left\{\mathbf{v}_{1}\right\}$ is linearly independent. Since $U_{1}=\operatorname{Span}\left(\mathbf{v}_{1}\right)$ and $\mathbf{u}_{1}=\mathbf{v}_{1}$, we deduce that $\left\{\mathbf{u}_{1}\right\}$ is a basis of U_{1}, and this basis is obviously orthogonal (since it contains only one vector).

Now, fix $\ell \in\{1, \ldots, k-1\}$, and assume inductively that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of U_{ℓ}.

Proof (continued). Reminder: WTS $\forall \ell \in\{1, \ldots, k\}:\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of $U_{\ell}:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$.

Since $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent, we see that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are all non-zero, and in particular, $\left\{\mathbf{v}_{1}\right\}$ is linearly independent. Since $U_{1}=\operatorname{Span}\left(\mathbf{v}_{1}\right)$ and $\mathbf{u}_{1}=\mathbf{v}_{1}$, we deduce that $\left\{\mathbf{u}_{1}\right\}$ is a basis of U_{1}, and this basis is obviously orthogonal (since it contains only one vector).

Now, fix $\ell \in\{1, \ldots, k-1\}$, and assume inductively that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of U_{ℓ}. WTS $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right\}$ is an orthogonal basis of $U_{\ell+1}$.

Proof (continued). Reminder: WTS $\forall \ell \in\{1, \ldots, k\}:\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of $U_{\ell}:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$.

Since $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent, we see that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are all non-zero, and in particular, $\left\{\mathbf{v}_{1}\right\}$ is linearly independent. Since $U_{1}=\operatorname{Span}\left(\mathbf{v}_{1}\right)$ and $\mathbf{u}_{1}=\mathbf{v}_{1}$, we deduce that $\left\{\mathbf{u}_{1}\right\}$ is a basis of U_{1}, and this basis is obviously orthogonal (since it contains only one vector).

Now, fix $\ell \in\{1, \ldots, k-1\}$, and assume inductively that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of U_{ℓ}. WTS $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right\}$ is an orthogonal basis of $U_{\ell+1}$.

We first prove that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right\}$ is a basis of $U_{\ell+1}$, and then that it is an orthogonal set of vectors.

Proof (continued). Reminder: WTS $\forall \ell \in\{1, \ldots, k\}:\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of $U_{\ell}:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$.

Since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right\}$ are two bases of U_{ℓ}, it is clear that $\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{v}_{\ell+1}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}, \mathbf{v}_{\ell+1}\right)=U_{\ell+1}$.

- Details?

Proof (continued). Reminder: WTS $\forall \ell \in\{1, \ldots, k\}:\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of $U_{\ell}:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$.
Since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right\}$ are two bases of U_{ℓ}, it is clear that $\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{v}_{\ell+1}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}, \mathbf{v}_{\ell+1}\right)=U_{\ell+1}$.

- Details?

On the other hand, by the construction of $\mathbf{u}_{\ell+1}$ and by Proposition 6.3.7(c), we have that

$$
\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{v}_{\ell+1}\right)=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right)
$$

Proof (continued). Reminder: WTS $\forall \ell \in\{1, \ldots, k\}:\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of $U_{\ell}:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$.
Since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right\}$ are two bases of U_{ℓ}, it is clear that $\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{v}_{\ell+1}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}, \mathbf{v}_{\ell+1}\right)=U_{\ell+1}$.

- Details?

On the other hand, by the construction of $\mathbf{u}_{\ell+1}$ and by Proposition 6.3.7(c), we have that

$$
\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{v}_{\ell+1}\right)=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right)
$$

So, $\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right)=U_{\ell+1}$.

Proof (continued). Reminder: WTS $\forall \ell \in\{1, \ldots, k\}:\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of $U_{\ell}:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$.

Since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right\}$ are two bases of U_{ℓ}, it is clear that $\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{v}_{\ell+1}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}, \mathbf{v}_{\ell+1}\right)=U_{\ell+1}$.

- Details?

On the other hand, by the construction of $\mathbf{u}_{\ell+1}$ and by Proposition 6.3.7(c), we have that

$$
\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{v}_{\ell+1}\right)=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right)
$$

So, $\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right)=U_{\ell+1}$.
Since $\operatorname{dim}\left(U_{\ell+1}\right)=\ell+1$ (because $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}, \mathbf{v}_{\ell+1}\right\}$ is a basis of $\left.U_{\ell+1}\right)$, the fact that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right\}$ spans $U_{\ell+1}$ implies that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right\}$ is in fact a basis of $U_{\ell+1}$ (this follows from Corollary 3.2.20).

Proof (continued). Reminder: WTS $\forall \ell \in\{1, \ldots, k\}:\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of $U_{\ell}:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$.
So far, we have shown that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right\}$ is a basis of $U_{\ell+1}$.

Proof (continued). Reminder: WTS $\forall \ell \in\{1, \ldots, k\}:\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of $U_{\ell}:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$.

So far, we have shown that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right\}$ is a basis of $U_{\ell+1}$. It remains to show that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right\}$ is an orthogonal set.

By the induction hypothesis, vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}$ are pairwise orthogonal non-zero vectors, and so by the construction of $\mathbf{u}_{\ell+1}$ and by Proposition 6.3.7(a), we have that $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}$ are pairwise orthogonal.

Proof (continued). Reminder: WTS $\forall \ell \in\{1, \ldots, k\}:\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of $U_{\ell}:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$.

So far, we have shown that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right\}$ is a basis of $U_{\ell+1}$. It remains to show that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right\}$ is an orthogonal set.

By the induction hypothesis, vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}$ are pairwise orthogonal non-zero vectors, and so by the construction of $\mathbf{u}_{\ell+1}$ and by Proposition 6.3.7(a), we have that $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}$ are pairwise orthogonal.

Proof (continued). Reminder: WTS $\forall \ell \in\{1, \ldots, k\}:\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of $U_{\ell}:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$.

So far, we have shown that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right\}$ is a basis of $U_{\ell+1}$. It remains to show that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right\}$ is an orthogonal set.

By the induction hypothesis, vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}$ are pairwise orthogonal non-zero vectors, and so by the construction of $\mathbf{u}_{\ell+1}$ and by Proposition 6.3.7(a), we have that $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}$ are pairwise orthogonal.

Proof (continued). Reminder: WTS $\forall \ell \in\{1, \ldots, k\}:\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of $U_{\ell}:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$.

So far, we have shown that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right\}$ is a basis of $U_{\ell+1}$. It remains to show that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right\}$ is an orthogonal set.

By the induction hypothesis, vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}$ are pairwise orthogonal non-zero vectors, and so by the construction of $\mathbf{u}_{\ell+1}$ and by Proposition 6.3.7(a), we have that $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}$ are pairwise orthogonal.

Proof (continued). Reminder: WTS $\forall \ell \in\{1, \ldots, k\}:\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right\}$ is an orthogonal basis of $U_{\ell}:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell}\right)$.
So far, we have shown that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right\}$ is a basis of $U_{\ell+1}$. It remains to show that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right\}$ is an orthogonal set.

By the induction hypothesis, vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}$ are pairwise orthogonal non-zero vectors, and so by the construction of $\mathbf{u}_{\ell+1}$ and by Proposition 6.3.7(a), we have that $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}$ are pairwise orthogonal.

So, $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1}\right\}$ is an orthogonal basis of $U_{\ell+1}$. This completes the induction.

Gram-Schmidt orthogonalization process (version 1)

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$, and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be linearly independent vectors in V. For all $\ell \in\{1, \ldots, k\}$, set

$$
\mathbf{u}_{\ell}:=\mathbf{v}_{\ell}-\sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{u}_{i}}\left(\mathbf{v}_{\ell}\right)=\mathbf{v}_{\ell}-\sum_{i=1}^{\ell-1} \frac{\left\langle\mathbf{v}_{\ell}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} .
$$

Then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$, and $\left\{\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}, \ldots, \frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}\right\}$ is an orthonormal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.

Proof (continued). We have now shown that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.

Gram-Schmidt orthogonalization process (version 1)

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$, and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be linearly independent vectors in V. For all $\ell \in\{1, \ldots, k\}$, set

$$
\mathbf{u}_{\ell}:=\mathbf{v}_{\ell}-\sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{u}_{i}}\left(\mathbf{v}_{\ell}\right)=\mathbf{v}_{\ell}-\sum_{i=1}^{\ell-1} \frac{\left\langle\mathbf{v}_{\ell}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} .
$$

Then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$, and $\left\{\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}, \ldots, \frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}\right\}$ is an orthonormal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.

Proof (continued). We have now shown that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.
By Proposition 6.3.3(b), this implies that $\left\{\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}, \ldots, \frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}\right\}$ is an orthonormal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$. This completes the argument. \square

Gram-Schmidt orthogonalization process (version 2)

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot \cdot\rangle$ and the induced norm $\|\cdot\|$, and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be linearly independent vectors in V. For all $\ell \in\{1, \ldots, k\}$, set

$$
\begin{aligned}
& \mathbf{u}_{\ell}=\mathbf{v}_{\ell}-\sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{z}_{i}}\left(\mathbf{v}_{\ell}\right)=\mathbf{v}_{\ell}-\sum_{i=1}^{\ell-1}\left\langle\mathbf{v}_{\ell}, \mathbf{z}_{i}\right\rangle \mathbf{z}_{i} ; \\
& \mathbf{z}_{\ell}=\frac{\mathbf{u}_{\ell}}{\left\|\mathbf{u}_{\ell}\right\|} .
\end{aligned}
$$

Then $\left\{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k}\right\}$ is an orthonormal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.

- The Gram-Schmidt orthogonalization process (version 2) recursively constructs two sequences of vectors, namely, $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ and $\mathbf{z}_{1}, \ldots, \mathbf{z}_{k}$, as follows:
- $\mathbf{u}_{1}=\mathbf{v}_{1}$;
- $\mathbf{z}_{1}=\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}$;
- $\mathbf{u}_{2}=\mathbf{v}_{2}-\operatorname{proj}_{\mathbf{z}_{1}}\left(\mathbf{v}_{2}\right)$;
- $\mathbf{z}_{2}=\frac{\mathbf{u}_{2}}{\left\|\mathbf{u}_{2}\right\|}$;
- $\mathbf{u}_{3}=\mathbf{v}_{3}-\left(\operatorname{proj}_{\mathbf{z}_{1}}\left(\mathbf{v}_{3}\right)+\operatorname{proj}_{\mathrm{z}_{2}}\left(\mathbf{v}_{3}\right)\right)$;
- $\mathbf{z}_{3}=\frac{\mathbf{u}_{3}}{\left\|\mathbf{u}_{3}\right\|} ;$
- $\mathbf{u}_{k}=\mathbf{v}_{k}-\left(\operatorname{proj}_{\mathrm{z}_{1}}\left(\mathbf{v}_{k}\right)+\operatorname{proj}_{\mathrm{z}_{2}}\left(\mathbf{v}_{k}\right)+\cdots+\operatorname{proj}_{\mathbf{z}_{k-1}}\left(\mathbf{v}_{k}\right)\right) ;$
- $\mathbf{z}_{k}=\frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}$.
- The Gram-Schmidt orthogonalization process (version 2) recursively constructs two sequences of vectors, namely, $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ and $\mathbf{z}_{1}, \ldots, \mathbf{z}_{k}$, as follows:
- $\mathbf{u}_{1}=\mathbf{v}_{1}$;
- $\mathbf{z}_{1}=\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}$;
- $\mathbf{u}_{2}=\mathbf{v}_{2}-\operatorname{proj}_{\mathbf{z}_{1}}\left(\mathbf{v}_{2}\right)$;
- $\mathbf{z}_{2}=\frac{\mathbf{u}_{2}}{\left\|\mathbf{u}_{2}\right\|}$;
- $\mathbf{u}_{3}=\mathbf{v}_{3}-\left(\operatorname{proj}_{\mathbf{z}_{1}}\left(\mathbf{v}_{3}\right)+\operatorname{proj}_{\mathrm{z}_{2}}\left(\mathbf{v}_{3}\right)\right)$;
- $\mathbf{z}_{3}=\frac{\mathbf{u}_{3}}{\left\|\mathbf{u}_{3}\right\|}$;
- $\mathbf{u}_{k}=\mathbf{v}_{k}-\left(\operatorname{proj}_{\mathbf{z}_{1}}\left(\mathbf{v}_{k}\right)+\operatorname{proj}_{\mathrm{z}_{2}}\left(\mathbf{v}_{k}\right)+\cdots+\operatorname{proj}_{\mathbf{z}_{k-1}}\left(\mathbf{v}_{k}\right)\right) ;$
- $\mathbf{z}_{k}=\frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}$.
- So, at each step, we obtain a vector \mathbf{u}_{ℓ} that is orthogonal to the previously constructed vectors $\mathbf{z}_{1}, \ldots, \mathbf{z}_{\ell-1}$, and then we normalize \mathbf{u}_{ℓ} to obtain the unit vector \mathbf{z}_{ℓ} that points in the same direction as \mathbf{u}_{ℓ}.

Gram-Schmidt orthogonalization process (version 2)

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$, and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be linearly independent vectors in V. For all $\ell \in\{1, \ldots, k\}$, set

$$
\begin{aligned}
& \mathbf{u}_{\ell}=\mathbf{v}_{\ell}-\sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{z}_{i}}\left(\mathbf{v}_{\ell}\right)=\mathbf{v}_{\ell}-\sum_{i=1}^{\ell-1}\left\langle\mathbf{v}_{\ell}, \mathbf{z}_{i}\right\rangle \mathbf{z}_{i} ; \\
& \mathbf{z}_{\ell}=\frac{\mathbf{u}_{\ell}}{\left\|\mathbf{u}_{\ell}\right\|} .
\end{aligned}
$$

Then $\left\{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k}\right\}$ is an orthonormal basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.

- The proof of correctness is similar to that of version 1.
- A numerical example is given in the Lecture Notes.

Corollary 6.3.11

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let U be a subspace of V. Then all the following hold:
(0) U has an orthogonal basis;
(D) any orthogonal basis of U can be extended to an orthogonal basis of $V_{;}{ }^{a}$
(c) U has an orthonormal basis;
(0) any orthonormal basis of U can be extended to an orthonormal basis of $V .{ }^{b}$
${ }^{a}$ This means that for any orthogonal basis \mathcal{B} of U, there exists an orthogonal basis \mathcal{C} of V s.t. $\mathcal{B} \subseteq \mathcal{C}$.
${ }^{b}$ This means that for any orthonormal basis \mathcal{B} of U, there exists an orthonormal basis \mathcal{C} of V s.t. $\mathcal{B} \subseteq \mathcal{C}$.

Proof. We first prove (a) and (c).

Proof. We first prove (a) and (c). Since V is finite-dimensional, Theorem 3.2.21 guarantees that the subspace U of V is also finite-dimensional.

Proof. We first prove (a) and (c). Since V is finite-dimensional, Theorem 3.2.21 guarantees that the subspace U of V is also finite-dimensional. Consider any basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ of U.

Proof. We first prove (a) and (c). Since V is finite-dimensional, Theorem 3.2.21 guarantees that the subspace U of V is also finite-dimensional. Consider any basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ of U. Then the Gram-Schmidt orthogonalization process (version 1) applied to the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ yields a sequence of vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ s.t. $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal and $\left\{\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}, \ldots, \frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}\right\}$ an orthonormal basis of $U=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.

Proof. We first prove (a) and (c). Since V is finite-dimensional, Theorem 3.2.21 guarantees that the subspace U of V is also finite-dimensional. Consider any basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ of U. Then the Gram-Schmidt orthogonalization process (version 1) applied to the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ yields a sequence of vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ s.t. $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal and $\left\{\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}, \ldots, \frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}\right\}$ an orthonormal basis of $U=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$. This proves (a) and (c).

Proof (continued). For (b), consider any orthogonal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ of U, and using Theorem 3.2.19, extend it to a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_{n}\right\}$ of V.

Proof (continued). For (b), consider any orthogonal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ of U, and using Theorem 3.2.19, extend it to a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_{n}\right\}$ of V.

We apply the Gram-Schmidt orthogonalization process (version 1) to the sequence $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_{n}$, and we obtain a sequence $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}$ s.t. $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of V.

Proof (continued). For (b), consider any orthogonal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ of U, and using Theorem 3.2.19, extend it to a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_{n}\right\}$ of V.
We apply the Gram-Schmidt orthogonalization process (version 1) to the sequence $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_{n}$, and we obtain a sequence $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}$ s.t. $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of V.

However, since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ were pairwise orthogonal to begin with, we see from the description of the Gram-Schmidt orthogonalization process that $\mathbf{u}_{1}=\mathbf{v}_{1}, \ldots, \mathbf{u}_{k}=\mathbf{v}_{k}$.

Proof (continued). For (b), consider any orthogonal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ of U, and using Theorem 3.2.19, extend it to a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_{n}\right\}$ of V.
We apply the Gram-Schmidt orthogonalization process (version 1) to the sequence $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_{n}$, and we obtain a sequence $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}$ s.t. $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal basis of V.

However, since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ were pairwise orthogonal to begin with, we see from the description of the Gram-Schmidt orthogonalization process that $\mathbf{u}_{1}=\mathbf{v}_{1}, \ldots, \mathbf{u}_{k}=\mathbf{v}_{k}$.
So, the orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V extends the orthogonal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ of U. This proves (b).

Proof (continued). For (d), consider any orthonormal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U.

Proof (continued). For (d), consider any orthonormal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U. In particular, the basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U is orthogonal, and so by (b), it can be extended to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V.

Proof (continued). For (d), consider any orthonormal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U. In particular, the basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U is orthogonal, and so by (b), it can be extended to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V.

Then by Proposition 6.3.3(c),

$$
\left\{\frac{\mathbf{u}_{1}}{\left\|u_{1}\right\|}, \ldots, \frac{\mathbf{u}_{k}}{\left\|u_{k}\right\|}, \frac{\mathbf{u}_{k+1}}{\left\|u_{k+1}\right\|}, \ldots, \frac{\mathbf{u}_{n}}{\left\|u_{n}\right\|}\right\}
$$

is an orthonormal basis of V.

Proof (continued). For (d), consider any orthonormal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U. In particular, the basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U is orthogonal, and so by (b), it can be extended to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V.

Then by Proposition 6.3.3(c),

$$
\left\{\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}, \ldots, \frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}, \frac{\mathbf{u}_{k+1}}{\left\|\mathbf{u}_{k+1}\right\|}, \ldots, \frac{\mathbf{u}_{n}}{\left\|\mathbf{u}_{n}\right\|}\right\}
$$

is an orthonormal basis of V.
But since the basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U is orthonormal, we know that $\left\|\mathbf{u}_{1}\right\|=\cdots=\left\|\mathbf{u}_{k}\right\|=1$,

Proof (continued). For (d), consider any orthonormal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U. In particular, the basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U is orthogonal, and so by (b), it can be extended to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V.

Then by Proposition 6.3.3(c),

$$
\left\{\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}, \ldots, \frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}, \frac{\mathbf{u}_{k+1}}{\left\|u_{k+1}\right\|}, \ldots, \frac{\mathbf{u}_{n}}{\left\|\mathbf{u}_{n}\right\|}\right\}
$$

is an orthonormal basis of V.
But since the basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U is orthonormal, we know that $\left\|\mathbf{u}_{1}\right\|=\cdots=\left\|\mathbf{u}_{k}\right\|=1$, and it follows that $\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}=\mathbf{u}_{1}, \ldots, \frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}=\mathbf{u}_{k}$.

Proof (continued). For (d), consider any orthonormal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U. In particular, the basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U is orthogonal, and so by (b), it can be extended to an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ of V.
Then by Proposition 6.3.3(c),

$$
\left\{\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}, \ldots, \frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}, \frac{\mathbf{u}_{k+1}}{\left\|u_{k+1}\right\|}, \ldots, \frac{\mathbf{u}_{n}}{\left\|u_{n}\right\|}\right\}
$$

is an orthonormal basis of V.
But since the basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U is orthonormal, we know that $\left\|\mathbf{u}_{1}\right\|=\cdots=\left\|\mathbf{u}_{k}\right\|=1$, and it follows that $\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}=\mathbf{u}_{1}, \ldots, \frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}=\mathbf{u}_{k}$.

So, our orthonormal basis $\left\{\frac{\mathbf{u}_{1}}{\left\|u_{1}\right\|}, \ldots, \frac{\mathbf{u}_{k}}{\left\|u_{k}\right\|}, \frac{u_{k+1}}{\left\|u_{k+1}\right\|}, \ldots, \frac{u_{n}}{\left\|u_{n}\right\|}\right\}$ of V in fact extends the orthonormal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U. This proves (d). \square

Corollary 6.3.11

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Let U be a subspace of V. Then all the following hold:
(0) U has an orthogonal basis;
(D) any orthogonal basis of U can be extended to an orthogonal basis of $V_{;}{ }^{a}$
(c) U has an orthonormal basis;
(0) any orthonormal basis of U can be extended to an orthonormal basis of $V .{ }^{b}$
${ }^{a}$ This means that for any orthogonal basis \mathcal{B} of U, there exists an orthogonal basis \mathcal{C} of V s.t. $\mathcal{B} \subseteq \mathcal{C}$.
${ }^{b}$ This means that for any orthonormal basis \mathcal{B} of U, there exists an orthonormal basis \mathcal{C} of V s.t. $\mathcal{B} \subseteq \mathcal{C}$.

