Linear Algebra 2

Lecture \#14

Scalar (inner) products

Irena Penev

February 28, 2024

- So far, we have worked with vector spaces over arbitrary fields \mathbb{F}.
- So far, we have worked with vector spaces over arbitrary fields \mathbb{F}.
- In this lecture, we impose some additional structure on vector spaces, namely the "scalar product" (also called "inner product") and the "norm."
- A scalar product is a way of multiplying two vectors and obtaining a scalar.
- A norm is a way of measuring the distance of a vector from the origin, or alternatively, measuring the length of a vector.
- So far, we have worked with vector spaces over arbitrary fields F.
- In this lecture, we impose some additional structure on vector spaces, namely the "scalar product" (also called "inner product") and the "norm."
- A scalar product is a way of multiplying two vectors and obtaining a scalar.
- A norm is a way of measuring the distance of a vector from the origin, or alternatively, measuring the length of a vector.
- As a trade-off for imposing this additional structure, we restrict ourselves to vector spaces over only two fields: \mathbb{R} and \mathbb{C}.
- So far, we have worked with vector spaces over arbitrary fields F.
- In this lecture, we impose some additional structure on vector spaces, namely the "scalar product" (also called "inner product") and the "norm."
- A scalar product is a way of multiplying two vectors and obtaining a scalar.
- A norm is a way of measuring the distance of a vector from the origin, or alternatively, measuring the length of a vector.
- As a trade-off for imposing this additional structure, we restrict ourselves to vector spaces over only two fields: \mathbb{R} and \mathbb{C}.
- The theory that we develop in this chapter would not work for vector spaces over general fields \mathbb{F}.
- So far, we have worked with vector spaces over arbitrary fields \mathbb{F}.
- In this lecture, we impose some additional structure on vector spaces, namely the "scalar product" (also called "inner product") and the "norm."
- A scalar product is a way of multiplying two vectors and obtaining a scalar.
- A norm is a way of measuring the distance of a vector from the origin, or alternatively, measuring the length of a vector.
- As a trade-off for imposing this additional structure, we restrict ourselves to vector spaces over only two fields: \mathbb{R} and \mathbb{C}.
- The theory that we develop in this chapter would not work for vector spaces over general fields \mathbb{F}.
- Terminology: Vector spaces over \mathbb{R} are called real vector spaces, and vector spaces over \mathbb{C} are called complex vector spaces.
- This lecture consists of five parts:
- This lecture consists of five parts:
(1) The scalar product
- We first study the scalar product in real vector spaces, and then we study the scalar product in complex vector spaces.
- This lecture consists of five parts:
(1) The scalar product
- We first study the scalar product in real vector spaces, and then we study the scalar product in complex vector spaces.
(2) Orthogonality
- This lecture consists of five parts:
(1) The scalar product
- We first study the scalar product in real vector spaces, and then we study the scalar product in complex vector spaces.
(2) Orthogonality
(3) The norm induced by a scalar product
- This lecture consists of five parts:
(1) The scalar product
- We first study the scalar product in real vector spaces, and then we study the scalar product in complex vector spaces.
(2) Orthogonality
(3) The norm induced by a scalar product
(9) The Pythagorean theorem, the Cauchy-Schwarz inequality, and the triangle inequality
- This lecture consists of five parts:
(1) The scalar product
- We first study the scalar product in real vector spaces, and then we study the scalar product in complex vector spaces.
(2) Orthogonality
(3) The norm induced by a scalar product
(9) The Pythagorean theorem, the Cauchy-Schwarz inequality, and the triangle inequality
(6) The norm in general
(1) The scalar product
(1) The scalar product

Definition

A scalar product (also called inner product) in a real vector space V is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ that satisfies the following four axioms:
r.1. for all $\mathbf{x} \in V,\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
r.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$;
r.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R},\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$;
r.4. for all $\mathbf{x}, \mathbf{y} \in V,\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$.

- The name "scalar product" comes from the fact that we multiply two vectors and obtain a scalar as a result.

Definition

A scalar product (also called inner product) in a real vector space V is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ that satisfies the following four axioms:
r.1. for all $\mathbf{x} \in V,\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
r.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$;
r.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R},\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$;
r.4. for all $\mathbf{x}, \mathbf{y} \in V,\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$.

- Axioms r. 2 and r. 3 guarantee that the scalar product in a real vector space V is linear in the first variable (when we keep the second variable fixed).

Definition

A scalar product (also called inner product) in a real vector space V is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ that satisfies the following four axioms:
r.1. for all $\mathbf{x} \in V,\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
r.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$;
r.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R},\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$;
r.4. for all $\mathbf{x}, \mathbf{y} \in V,\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$.

- Axioms r. 2 and r. 3 guarantee that the scalar product in a real vector space V is linear in the first variable (when we keep the second variable fixed).
- But in fact, axioms r.2, r.3, and r. 4 guarantee that it is linear in the second variable as well (when we keep the first variable fixed).
- More precisely, we have the following (next slide):

Definition

A scalar product (also called inner product) in a real vector space V is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ that satisfies the following four axioms:
r.1. for all $\mathbf{x} \in V,\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
r.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$;
r.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R},\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$;
r.4. for all $\mathbf{x}, \mathbf{y} \in V,\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$.
r.2'. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}, \mathbf{y}+\mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{z}\rangle ;$
r.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R},\langle\mathbf{x}, \alpha \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$.

Definition

A scalar product (also called inner product) in a real vector space V is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ that satisfies the following four axioms:
r.1. for all $\mathbf{x} \in V,\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
r.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$;
r.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R},\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$;
r.4. for all $\mathbf{x}, \mathbf{y} \in V,\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$.
r.2'. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}, \mathbf{y}+\mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{z}\rangle ;$
r.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R},\langle\mathbf{x}, \alpha \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$.

Proof of r.2'.

Definition

A scalar product (also called inner product) in a real vector space V is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ that satisfies the following four axioms:
r.1. for all $\mathbf{x} \in V,\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
r.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$;
r.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R},\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$;
r.4. for all $\mathbf{x}, \mathbf{y} \in V,\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$.
r.2'. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}, \mathbf{y}+\mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{z}\rangle ;$
r.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R},\langle\mathbf{x}, \alpha \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$.

Proof of r.2'. For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, we have the following:

$$
\langle\mathbf{x}, \mathbf{y}+\mathbf{z}\rangle \stackrel{\mathrm{r} .4}{=}\langle\mathbf{y}+\mathbf{z}, \mathbf{x}\rangle \stackrel{\text { r. } 2}{=}\langle\mathbf{y}, \mathbf{x}\rangle+\langle\mathbf{z}, \mathbf{x}\rangle \stackrel{\text { r. } 4}{=}\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{z}\rangle .
$$

Definition

A scalar product (also called inner product) in a real vector space V is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ that satisfies the following four axioms:
r.1. for all $\mathbf{x} \in V,\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
r.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$;
r.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R},\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$;
r.4. for all $\mathbf{x}, \mathbf{y} \in V,\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$.
r.2'. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}, \mathbf{y}+\mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{z}\rangle ;$
r.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R},\langle\mathbf{x}, \alpha \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$.

Proof of r.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R}$, we have the following:

$$
\langle\mathbf{x}, \alpha \mathbf{y}\rangle \stackrel{\text { r. } 4}{=}\langle\alpha \mathbf{y}, \mathbf{x}\rangle \stackrel{\text { r. } 3}{=} \alpha\langle\mathbf{y}, \mathbf{x}\rangle \stackrel{\text { r. } 4}{=} \alpha\langle\mathbf{x}, \mathbf{y}\rangle .
$$

Definition

A scalar product (also called inner product) in a real vector space V is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ that satisfies the following four axioms:
r.1. for all $\mathbf{x} \in V,\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
r.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$;
r.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R},\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$;
r.4. for all $\mathbf{x}, \mathbf{y} \in V,\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$.
r.2'. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}, \mathbf{y}+\mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{z}\rangle ;$
r.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R},\langle\mathbf{x}, \alpha \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$.

Definition

The standard scalar product of vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \ldots & y_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n} is given by

$$
\mathbf{x} \cdot \mathbf{y}:=\sum_{i=1}^{n} x_{i} y_{i}
$$

Definition

The standard scalar product of vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \ldots & y_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n} is given by

$$
\mathbf{x} \cdot \mathbf{y}:=\sum_{i=1}^{n} x_{i} y_{i}
$$

- For example, for vectors $\left[\begin{array}{lll}1 & -2 & 5\end{array}\right]^{T}$ and $\left[\begin{array}{lll}-3 & 2 & 1\end{array}\right]^{T}$ in \mathbb{R}^{3}, we compute:

$$
\left[\begin{array}{r}
1 \\
-2 \\
5
\end{array}\right] \cdot\left[\begin{array}{r}
-3 \\
2 \\
1
\end{array}\right]=1 \cdot(-3)+(-2) \cdot 2+5 \cdot 1=-2 .
$$

Definition

The standard scalar product of vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \ldots & y_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n} is given by

$$
\mathbf{x} \cdot \mathbf{y}:=\sum_{i=1}^{n} x_{i} y_{i} .
$$

- For example, for vectors $\left[\begin{array}{lll}1 & -2 & 5\end{array}\right]^{T}$ and $\left[\begin{array}{lll}-3 & 2 & 1\end{array}\right]^{T}$ in \mathbb{R}^{3}, we compute:

$$
\left[\begin{array}{r}
1 \\
-2 \\
5
\end{array}\right] \cdot\left[\begin{array}{r}
-3 \\
2 \\
1
\end{array}\right]=1 \cdot(-3)+(-2) \cdot 2+5 \cdot 1=-2 .
$$

- We still need to check that • really is a scalar product, i.e. that it satisfies axioms r.1-r.4.
- Later!

Definition

The standard scalar product of vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \ldots & y_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n} is given by

$$
\mathbf{x} \cdot \mathbf{y}:=\sum_{i=1}^{n} x_{i} y_{i}
$$

- For vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n}, we have that:

$$
\mathbf{x}^{T} \mathbf{y}=\left[\begin{array}{lll}
x_{1} & \ldots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\sum_{i=1}^{n} x_{i} y_{i}\right]=[\mathbf{x} \cdot \mathbf{y}] .
$$

Definition

The standard scalar product of vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n} is given by

$$
\mathbf{x} \cdot \mathbf{y}:=\sum_{i=1}^{n} x_{i} y_{i} .
$$

- For vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n}, we have that:

$$
\mathbf{x}^{T} \mathbf{y}=\left[\begin{array}{lll}
x_{1} & \ldots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\sum_{i=1}^{n} x_{i} y_{i}\right]=[\mathbf{x} \cdot \mathbf{y}] .
$$

- So, if we identify 1×1 matrices with scalars, then we simply get that

$$
\mathbf{x} \cdot \mathbf{y}=\mathbf{x}^{T} \mathbf{y} \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

Proposition 6.1.1
The standard scalar product in \mathbb{R}^{n} is a scalar product.
Proof.

Proposition 6.1.1

The standard scalar product in \mathbb{R}^{n} is a scalar product.
Proof. We need to check that the standard scalar product • in \mathbb{R}^{n} satisfies the four axioms from the definition of a scalar product in a real vector space.

Proposition 6.1.1

The standard scalar product in \mathbb{R}^{n} is a scalar product.
Proof. We need to check that the standard scalar product • in \mathbb{R}^{n} satisfies the four axioms from the definition of a scalar product in a real vector space.
r.1. For a vector $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n}, we have that

$$
\mathbf{x} \cdot \mathbf{x}=\sum_{i=1}^{n} x_{i}^{2} \stackrel{(*)}{\geq} 0
$$

and $\left({ }^{*}\right)$ is an equality iff $x_{1}=\cdots=x_{n}=0$, i.e. iff $\mathbf{x}=\mathbf{0}$.

Proposition 6.1.1

The standard scalar product in \mathbb{R}^{n} is a scalar product.

$$
\begin{aligned}
& \text { Proof (continued). r.2. For vectors } \mathbf{x}=\left[\begin{array}{lll}
x_{1} & \ldots & x_{n}
\end{array}\right]^{T}, \\
& \mathbf{y}=\left[\begin{array}{lll}
y_{1} & \cdots & y_{n}
\end{array}\right]^{T} \text {, and } \mathbf{z}
\end{aligned}=\left[\begin{array}{lll}
z_{1} & \ldots & z_{n}
\end{array}\right]^{T} \text { in } \mathbb{R}^{n} \text {, we have that }, ~ \begin{aligned}
(\mathbf{x}+\mathbf{y}) \cdot \mathbf{z} & =\sum_{i=1}^{n}\left(x_{i}+y_{i}\right) z_{i} \\
& =\left(\sum_{i=1}^{n} x_{i} z_{i}\right)+\left(\sum_{i=1}^{n} y_{i} z_{i}\right) \\
& =\mathbf{x} \cdot \mathbf{z}+\mathbf{y} \cdot \mathbf{z} .
\end{aligned}
$$

Proposition 6.1.1

The standard scalar product in \mathbb{R}^{n} is a scalar product.
Proof (continued). r.3. For vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n} and a scalar $\alpha \in \mathbb{R}$, we have that

$$
(\alpha \mathbf{x}) \cdot \mathbf{y}=\sum_{i=1}^{n}\left(\alpha x_{i}\right) y_{i}=\alpha \sum_{i=1}^{n} x_{i} y_{i}=\alpha(\mathbf{x} \cdot \mathbf{y})
$$

Proposition 6.1.1

The standard scalar product in \mathbb{R}^{n} is a scalar product.
Proof (continued). r.3. For vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n} and a scalar $\alpha \in \mathbb{R}$, we have that

$$
(\alpha \mathbf{x}) \cdot \mathbf{y}=\sum_{i=1}^{n}\left(\alpha x_{i}\right) y_{i}=\alpha \sum_{i=1}^{n} x_{i} y_{i}=\alpha(\mathbf{x} \cdot \mathbf{y})
$$

r.4. For vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n}, we have that

$$
\mathbf{x} \cdot \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}=\sum_{i=1}^{n} y_{i} x_{i}=\mathbf{y} \cdot \mathbf{x}
$$

Proposition 6.1.1

The standard scalar product in \mathbb{R}^{n} is a scalar product.
Proof (continued). r.3. For vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n} and a scalar $\alpha \in \mathbb{R}$, we have that

$$
(\alpha \mathbf{x}) \cdot \mathbf{y}=\sum_{i=1}^{n}\left(\alpha x_{i}\right) y_{i}=\alpha \sum_{i=1}^{n} x_{i} y_{i}=\alpha(\mathbf{x} \cdot \mathbf{y})
$$

r.4. For vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n}, we have that

$$
\mathbf{x} \cdot \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}=\sum_{i=1}^{n} y_{i} x_{i}=\mathbf{y} \cdot \mathbf{x}
$$

This proves that the standard scalar product in \mathbb{R}^{n} really is a scalar product. \square

Definition

The standard scalar product of vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \ldots & y_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n} is given by

$$
\mathbf{x} \cdot \mathbf{y}:=\sum_{i=1}^{n} x_{i} y_{i} .
$$

Proposition 6.1.1
The standard scalar product in \mathbb{R}^{n} is a scalar product.

Definition

The standard scalar product of vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \ldots & y_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n} is given by

$$
\mathbf{x} \cdot \mathbf{y}:=\sum_{i=1}^{n} x_{i} y_{i}
$$

Proposition 6.1.1
The standard scalar product in \mathbb{R}^{n} is a scalar product.

- A similar type of scalar product can be defined for matrices.

Definition

The standard scalar product of vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \ldots & y_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n} is given by

$$
\mathbf{x} \cdot \mathbf{y}:=\sum_{i=1}^{n} x_{i} y_{i}
$$

Proposition 6.1.1
The standard scalar product in \mathbb{R}^{n} is a scalar product.

- A similar type of scalar product can be defined for matrices.
- Indeed, for matrices $A=\left[a_{i, j}\right]_{n \times m}$ and $B=\left[b_{i, j}\right]_{n \times m}$ in $\mathbb{R}^{n \times m}$, we can define

$$
\langle A, B\rangle=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i j} b_{i j} .
$$

Definition

The standard scalar product of vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \ldots & y_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n} is given by

$$
\mathbf{x} \cdot \mathbf{y}:=\sum_{i=1}^{n} x_{i} y_{i}
$$

Proposition 6.1.1
The standard scalar product in \mathbb{R}^{n} is a scalar product.

- A similar type of scalar product can be defined for matrices.
- Indeed, for matrices $A=\left[a_{i, j}\right]_{n \times m}$ and $B=\left[b_{i, j}\right]_{n \times m}$ in $\mathbb{R}^{n \times m}$, we can define

$$
\langle A, B\rangle=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i j} b_{i j}
$$

- It is easy to verify that this really is a scalar product in $\mathbb{R}^{n \times m}$ (the proof is similar to that of Proposition 6.1.1).

Definition

The standard scalar product of vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n} is given by

$$
\mathbf{x} \cdot \mathbf{y}:=\sum_{i=1}^{n} x_{i} y_{i}
$$

Proposition 6.1.1
The standard scalar product in \mathbb{R}^{n} is a scalar product.

Definition

The standard scalar product of vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n} is given by

$$
\mathbf{x} \cdot \mathbf{y}:=\sum_{i=1}^{n} x_{i} y_{i}
$$

Proposition 6.1.1
The standard scalar product in \mathbb{R}^{n} is a scalar product.

- Remark: The standard scalar product is only one of many possible scalar products in \mathbb{R}^{n}.

Definition

The standard scalar product of vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n} is given by

$$
\mathbf{x} \cdot \mathbf{y}:=\sum_{i=1}^{n} x_{i} y_{i}
$$

Proposition 6.1.1
The standard scalar product in \mathbb{R}^{n} is a scalar product.

- Remark: The standard scalar product is only one of many possible scalar products in \mathbb{R}^{n}.
- A full characterization of all possible scalar products in \mathbb{R}^{n} will be given in a later lecture (in a couple of months).
- If you know calculus, here is an example with integrals:
- If you know calculus, here is an example with integrals:

Proposition 6.1.2

Let $a, b \in \mathbb{R}$ be such that $a<b$, and let $\mathcal{C}_{[a, b]}$ be the (real) vector space of all continuous functions from the closed interval $[a, b]$ to \mathbb{R}. Then the function $\langle\cdot, \cdot\rangle: \mathcal{C}_{[a, b]} \times \mathcal{C}_{[a, b]} \rightarrow \mathbb{R}$ defined by

$$
\langle f, g\rangle:=\int_{a}^{b} f(x) g(x) d x
$$

for all $f, g \in \mathcal{C}_{[a, b]}$ is a scalar product.

- Proof: Lecture Notes (optional).

Definition

A scalar product (also called inner product) in a complex vector space V is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$ that satisfies the following four axioms:
c.1. for all $\mathbf{x} \in V,\langle\mathbf{x}, \mathbf{x}\rangle$ is a real number, $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
c.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$;
c.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C},\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$;
c.4. for all $\mathbf{x}, \mathbf{y} \in V,\langle\mathbf{x}, \mathbf{y}\rangle=\overline{\langle\mathbf{y}, \mathbf{x}\rangle}$.

Definition

A scalar product (also called inner product) in a complex vector space V is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$ that satisfies the following four axioms:
c.1. for all $\mathbf{x} \in V,\langle\mathbf{x}, \mathbf{x}\rangle$ is a real number, $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
c.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$;
c.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C},\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$;
c.4. for all $\mathbf{x}, \mathbf{y} \in V,\langle\mathbf{x}, \mathbf{y}\rangle=\overline{\langle\mathbf{y}, \mathbf{x}\rangle}$.

- Axioms c. 2 and c. 3 guarantee that the scalar product in a complex vector space V is linear in the first variable (when we keep the second variable fixed).

Definition

A scalar product (also called inner product) in a complex vector space V is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$ that satisfies the following four axioms:
c.1. for all $\mathbf{x} \in V,\langle\mathbf{x}, \mathbf{x}\rangle$ is a real number, $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
c.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$;
c.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C},\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$;
c.4. for all $\mathbf{x}, \mathbf{y} \in V,\langle\mathbf{x}, \mathbf{y}\rangle=\overline{\langle\mathbf{y}, \mathbf{x}\rangle}$.

- Axioms c. 2 and c. 3 guarantee that the scalar product in a complex vector space V is linear in the first variable (when we keep the second variable fixed).
- Unlike in the real case, it is not linear in the second variable (when we keep the first variable fixed).
- We do, however, have the following (next slide):

Definition

A scalar product (also called inner product) in a complex vector space V is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$ that satisfies the following four axioms:
c.1. for all $\mathbf{x} \in V,\langle\mathbf{x}, \mathbf{x}\rangle$ is a real number, $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
c.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$;
c.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C},\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$;
c.4. for all $\mathbf{x}, \mathbf{y} \in V,\langle\mathbf{x}, \mathbf{y}\rangle=\overline{\langle\mathbf{y}, \mathbf{x}\rangle}$.
c.2'. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}, \mathbf{y}+\mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{z}\rangle ;$
c.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C},\langle\mathbf{x}, \alpha \mathbf{y}\rangle=\bar{\alpha}\langle\mathbf{x}, \mathbf{y}\rangle$.
c.2'. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}, \mathbf{y}+\mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{z}\rangle ;$
c.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C},\langle\mathbf{x}, \alpha \mathbf{y}\rangle=\bar{\alpha}\langle\mathbf{x}, \mathbf{y}\rangle$.

Proof.
c.2'. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}, \mathbf{y}+\mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{z}\rangle ;$
c.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C},\langle\mathbf{x}, \alpha \mathbf{y}\rangle=\bar{\alpha}\langle\mathbf{x}, \mathbf{y}\rangle$.

Proof. c.2'. For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, we have the following:

$$
\begin{aligned}
\langle\mathbf{x}, \mathbf{y}+\mathbf{z}\rangle & \stackrel{\text { c. } 4}{=} \overline{\langle\mathbf{y}+\mathbf{z}, \mathbf{x}\rangle} \\
& \stackrel{\mathrm{c.} .2}{=} \overline{\langle\mathbf{y}, \mathbf{x}\rangle+\langle\mathbf{z}, \mathbf{x}\rangle} \\
& =\overline{\langle\mathbf{y}, \mathbf{x}\rangle}+\overline{\langle\mathbf{z}, \mathbf{x}\rangle} \\
& \stackrel{\text { c. } 4}{=}\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{z}\rangle
\end{aligned}
$$

c.2'. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}, \mathbf{y}+\mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{z}\rangle ;$
c.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C},\langle\mathbf{x}, \alpha \mathbf{y}\rangle=\bar{\alpha}\langle\mathbf{x}, \mathbf{y}\rangle$.

Proof. c.2'. For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, we have the following:

$$
\begin{aligned}
\langle\mathbf{x}, \mathbf{y}+\mathbf{z}\rangle & \stackrel{\text { c. } 4}{=} \overline{\langle\mathbf{y}+\mathbf{z}, \mathbf{x}\rangle} \\
& \stackrel{\mathrm{c.} .2}{=} \overline{\langle\mathbf{y}, \mathbf{x}\rangle+\langle\mathbf{z}, \mathbf{x}\rangle} \\
& =\overline{\langle\mathbf{y}, \mathbf{x}\rangle}+\overline{\langle\mathbf{z}, \mathbf{x}\rangle} \\
& \stackrel{\text { c. } 4}{=}\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{z}\rangle
\end{aligned}
$$

c.3'. For all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C}$, we have the following:

$$
\langle\mathbf{x}, \alpha \mathbf{y}\rangle \stackrel{c .4}{=} \overline{\langle\alpha \mathbf{y}, \mathbf{x}\rangle} \stackrel{\mathrm{c.} 3}{=} \overline{\alpha\langle\mathbf{y}, \mathbf{x}\rangle}=\bar{\alpha} \overline{\langle\mathbf{y}, \mathbf{x}\rangle} \stackrel{\mathrm{c} .4}{=} \bar{\alpha}\langle\mathbf{x}, \mathbf{y}\rangle .
$$

Definition

A scalar product (also called inner product) in a complex vector space V is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$ that satisfies the following four axioms:
c.1. for all $\mathbf{x} \in V,\langle\mathbf{x}, \mathbf{x}\rangle$ is a real number, $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
c.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$;
c.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C},\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$;
c.4. for all $\mathbf{x}, \mathbf{y} \in V,\langle\mathbf{x}, \mathbf{y}\rangle=\overline{\langle\mathbf{y}, \mathbf{x}\rangle}$.
c.2'. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}, \mathbf{y}+\mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{z}\rangle ;$
c.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C},\langle\mathbf{x}, \alpha \mathbf{y}\rangle=\bar{\alpha}\langle\mathbf{x}, \mathbf{y}\rangle$.

Definition

The standard scalar product of vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{T}$ in \mathbb{C}^{n} is given by

$$
\mathbf{x} \cdot \mathbf{y}:=\sum_{i=1}^{n} x_{i} \overline{y_{i}} .
$$

- For example, for vectors $\left[\begin{array}{ll}1-2 i & -2+i\end{array}\right]^{T}$ and $\left[\begin{array}{cc}2+i & 1+3 i\end{array}\right]^{T}$ in \mathbb{C}^{2}, we compute:

$$
\begin{aligned}
{\left[\begin{array}{c}
1-2 i \\
-2+i
\end{array}\right] \cdot\left[\begin{array}{c}
2+i \\
1+3 i
\end{array}\right] } & =(1-2 i) \overline{(2+i)}+(-2+i) \overline{(1+3 i)} \\
& =(1-2 i)(2-i)+(-2+i)(1-3 i) \\
& =1+2 i .
\end{aligned}
$$

Definition

The standard scalar product of vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \ldots & y_{n}\end{array}\right]^{T}$ in \mathbb{C}^{n} is given by

$$
\mathbf{x} \cdot \mathbf{y}:=\sum_{i=1}^{n} x_{i} \overline{y_{i}} .
$$

Proposition 6.1.3

The standard scalar product in \mathbb{C}^{n} is a scalar product.

- Proof: Lecture Notes (similar to the real case).

(2) Orthogonality

(2) Orthogonality

Definition

Given a real or complex vector space V, equipped with a scalar product $\langle\cdot, \cdot\rangle$, we say that vectors \mathbf{x} and \mathbf{y} in V are orthogonal, and we write $\mathbf{x} \perp \mathbf{y}$, if $\langle\mathbf{x}, \mathbf{y}\rangle=0$.
(2) Orthogonality

Definition

Given a real or complex vector space V, equipped with a scalar product $\langle\cdot, \cdot\rangle$, we say that vectors \mathbf{x} and \mathbf{y} in V are orthogonal, and we write $\mathbf{x} \perp \mathbf{y}$, if $\langle\mathbf{x}, \mathbf{y}\rangle=0$.

- When our scalar product is the standard scalar product in \mathbb{R}^{n}, this corresponds to the usual geometric interpretation.
- Details: Later!
(2) Orthogonality

Definition

Given a real or complex vector space V, equipped with a scalar product $\langle\cdot, \cdot\rangle$, we say that vectors \mathbf{x} and \mathbf{y} in V are orthogonal, and we write $\mathbf{x} \perp \mathbf{y}$, if $\langle\mathbf{x}, \mathbf{y}\rangle=0$.

- When our scalar product is the standard scalar product in \mathbb{R}^{n}, this corresponds to the usual geometric interpretation.
- Details: Later!
- However, for general scalar products, this is how we define orthogonality.
(2) Orthogonality

Definition

Given a real or complex vector space V, equipped with a scalar product $\langle\cdot, \cdot\rangle$, we say that vectors \mathbf{x} and \mathbf{y} in V are orthogonal, and we write $\mathbf{x} \perp \mathbf{y}$, if $\langle\mathbf{x}, \mathbf{y}\rangle=0$.

- When our scalar product is the standard scalar product in \mathbb{R}^{n}, this corresponds to the usual geometric interpretation.
- Details: Later!
- However, for general scalar products, this is how we define orthogonality.
- For example, for the scalar product defined on $\mathcal{C}_{[-\pi, \pi]}$ in Proposition 6.1.2 (the one with integrals), we have that

$$
\sin x \perp \cos x
$$

$$
\text { since }\langle\sin x, \cos x\rangle=\int_{-\pi}^{\pi} \sin x \cos x d x=0
$$

Proposition 6.1.4

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Then all the following hold:
(0) for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $\mathbf{x} \perp \mathbf{y}$ iff $\mathbf{y} \perp \mathbf{x}$;
(b) for all vectors $\mathbf{x}, \mathbf{y} \in V$ and scalars $\alpha, \beta,{ }^{a}$ if $\mathbf{x} \perp \mathbf{y}$ then $(\alpha \mathbf{x}) \perp(\beta \mathbf{y})$;
(c) for all vectors $\mathbf{x} \in V$, we have that $\mathbf{x} \perp \mathbf{0}$ and $\mathbf{0} \perp \mathbf{x}$.

[^0]Proof.

Proposition 6.1.4

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Then all the following hold:
(0) for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $\mathbf{x} \perp \mathbf{y}$ iff $\mathbf{y} \perp \mathbf{x}$;
(D) for all vectors $\mathbf{x}, \mathbf{y} \in V$ and scalars $\alpha, \beta,{ }^{a}$ if $\mathbf{x} \perp \mathbf{y}$ then $(\alpha \mathbf{x}) \perp(\beta \mathbf{y})$;
(0) for all vectors $\mathbf{x} \in V$, we have that $\mathbf{x} \perp \mathbf{0}$ and $\mathbf{0} \perp \mathbf{x}$.
> ${ }^{2}$ Here, α and β are real or complex numbers, depending on whether V is a real or complex vector space.

Proof. We prove the proposition for the case when V is a complex vector space. The real case is similar but slightly easier (because we do not have to deal with complex conjugates).

Proposition 6.1.4

(a) for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $\mathbf{x} \perp \mathbf{y}$ iff $\mathbf{y} \perp \mathbf{x}$

Proof (continued). (a) For vectors $\mathbf{x}, \mathbf{y} \in V$, we have the following sequence of equivalences:

$$
\begin{array}{rlrl}
\mathbf{x} \perp \mathbf{y} & \Longleftrightarrow \quad\langle\mathbf{x}, \mathbf{y}\rangle=0 & & \text { by definition } \\
& \Longleftrightarrow & \overline{\langle\mathbf{y}, \mathbf{x}\rangle}=0 & \text { by c.4 } \\
& \Longleftrightarrow \quad\langle\mathbf{y}, \mathbf{x}\rangle=0 & \\
& \Longleftrightarrow \mathbf{y} \perp \mathbf{x} & & \text { by definition. }
\end{array}
$$

Proposition 6.1.4

(D) for all vectors $\mathbf{x}, \mathbf{y} \in V$ and scalars α, β, if $\mathbf{x} \perp \mathbf{y}$ then $(\alpha \mathbf{x}) \perp(\beta \mathbf{y})$

Proof (continued). (b) Fix vectors $\mathbf{x}, \mathbf{y} \in V$ and scalars $\alpha, \beta \in \mathbb{C}$, and assume that $\mathbf{x} \perp \mathbf{y}$. Then we compute:

$$
\begin{aligned}
\langle\alpha \mathbf{x}, \beta \mathbf{y}\rangle & =\alpha\langle\mathbf{x}, \beta \mathbf{y}\rangle & & \text { by c. } 3 \\
& =\alpha \bar{\beta}\langle\mathbf{x}, \mathbf{y}\rangle & & \text { by c. } 3^{\prime} \\
& =\alpha \bar{\beta} 0 & & \text { beause } \mathbf{x} \perp \mathbf{y} \\
& =0 . & &
\end{aligned}
$$

So, $(\alpha \mathbf{x}) \perp(\beta \mathbf{y})$.

Proposition 6.1.4

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Then all the following hold:
(0) for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $\mathbf{x} \perp \mathbf{y}$ iff $\mathbf{y} \perp \mathbf{x}$;
(D) for all vectors $\mathbf{x}, \mathbf{y} \in V$ and scalars $\alpha, \beta,{ }^{a}$ if $\mathbf{x} \perp \mathbf{y}$ then $(\alpha \mathbf{x}) \perp(\beta \mathbf{y})$;
(0) for all vectors $\mathbf{x} \in V$, we have that $\mathbf{x} \perp \mathbf{0}$ and $\mathbf{0} \perp \mathbf{x}$.
${ }^{a}$ Here, α and β are real or complex numbers, depending on whether V is a real or complex vector space.

Proof (continued). (c) Fix any vector $\mathbf{x} \in V$. We then have that

$$
\langle\mathbf{0}, \mathbf{x}\rangle=\langle 0 \mathbf{0}, \mathbf{x}\rangle \stackrel{\text { c. } 3}{=} 0\langle\mathbf{0}, \mathbf{x}\rangle=0
$$

and so $\mathbf{0} \perp \mathbf{x}$. The fact that $\mathbf{x} \perp \mathbf{0}$ now follows from (a). \square

Definition

Given a real or complex vector space V, equipped with a scalar product $\langle\cdot, \cdot\rangle$, we say that vectors \mathbf{x} and \mathbf{y} in V are orthogonal, and we write $\mathbf{x} \perp \mathbf{y}$, if $\langle\mathbf{x}, \mathbf{y}\rangle=0$.

Definition

Given a real or complex vector space V, equipped with a scalar product $\langle\cdot, \cdot\rangle$, we say that vectors \mathbf{x} and \mathbf{y} in V are orthogonal, and we write $\mathbf{x} \perp \mathbf{y}$, if $\langle\mathbf{x}, \mathbf{y}\rangle=0$.

- Suppose that V is a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$.

Definition

Given a real or complex vector space V, equipped with a scalar product $\langle\cdot, \cdot\rangle$, we say that vectors \mathbf{x} and \mathbf{y} in V are orthogonal, and we write $\mathbf{x} \perp \mathbf{y}$, if $\langle\mathbf{x}, \mathbf{y}\rangle=0$.

- Suppose that V is a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$.
- For a vector $\mathbf{v} \in V$ and a set of vectors $A \subseteq V$, we say that \mathbf{v} is orthogonal to A, and we write $\mathbf{v} \perp A$, provided that \mathbf{v} is orthogonal to all vectors in A.
- By definition, this means that for all $\mathbf{a} \in A$, we have that $\langle\mathbf{v}, \mathbf{a}\rangle=0$.

Definition

Given a real or complex vector space V, equipped with a scalar product $\langle\cdot, \cdot\rangle$, we say that vectors \mathbf{x} and \mathbf{y} in V are orthogonal, and we write $\mathbf{x} \perp \mathbf{y}$, if $\langle\mathbf{x}, \mathbf{y}\rangle=0$.

- Suppose that V is a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$.
- For a vector $\mathbf{v} \in V$ and a set of vectors $A \subseteq V$, we say that \mathbf{v} is orthogonal to A, and we write $\mathbf{v} \perp A$, provided that \mathbf{v} is orthogonal to all vectors in A.
- By definition, this means that for all $\mathbf{a} \in A$, we have that $\langle\mathbf{v}, \mathbf{a}\rangle=0$.
- For sets of vectors $A, B \subseteq V$, we say that A is orthogonal to B, and we write $A \perp B$, if every vector in A is orthogonal to every vector in B.

Proposition 6.1.5

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{q} \in V$, and assume that $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}\right\} \perp\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{q}\right\}$. Then $\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}\right) \perp \operatorname{Span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{q}\right)$.

Proof.

Proposition 6.1.5

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{q} \in V$, and assume that $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}\right\} \perp\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{q}\right\}$. Then
$\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}\right) \perp \operatorname{Span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{q}\right)$.
Proof. Fix $\mathbf{a} \in \operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}\right)$ and $\mathbf{b} \in \operatorname{Span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{q}\right)$. Then there exist scalars $\alpha_{1}, \ldots, \alpha_{p}, \beta_{1}, \ldots, \beta_{q}$ s.t.

$$
\mathbf{a}=\alpha_{1} \mathbf{a}_{1}+\cdots+\alpha_{p} \mathbf{a}_{p} \quad \text { and } \quad \mathbf{b}=\beta_{1} \mathbf{b}_{1}+\cdots+\beta_{q} \mathbf{b}_{q} .
$$

We now compute (next slide):

Proof (continued).

$$
\begin{array}{rlr}
\langle\mathbf{a}, \mathbf{b}\rangle & =\left\langle\sum_{i=1}^{p} \alpha_{i} \mathbf{a}_{i}, \sum_{j=1}^{q} \beta_{j} \mathbf{b}_{j}\right\rangle & \\
& =\sum_{i=1}^{p}\left\langle\alpha_{i} \mathbf{a}_{i}, \sum_{j=1}^{q} \beta_{j} \mathbf{b}_{j}\right\rangle & \text { by r. } 2 \text { or c. } 2 \\
& =\sum_{i=1}^{p} \sum_{j=1}^{q} \underbrace{\left\langle\alpha_{i} \mathbf{a}_{i}, \beta_{j} \mathbf{b}_{j}\right\rangle}_{\stackrel{(*)}{=} 0} & \text { by r.2' or c.2' } \\
& =0,
\end{array}
$$

where $\left(^{*}\right)$ follows from Proposition 6.1.4(b) and from the fact that $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}\right\} \perp\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{q}\right\}$. This proves that $\mathbf{a} \perp \mathbf{b}$, and the result follows. \square

Proposition 6.1.5

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$. Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{q} \in V$, and assume that $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}\right\} \perp\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{q}\right\}$. Then
$\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}\right) \perp \operatorname{Span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{q}\right)$.
(3) The norm induced by a scalar product
(3) The norm induced by a scalar product

- Our goal is to introduce the notion of a "norm" || $\cdot \|$ in a real or complex vector space V.
(3) The norm induced by a scalar product
- Our goal is to introduce the notion of a "norm" || $\cdot \|$ in a real or complex vector space V.
- The idea is that for a vector $\mathbf{x} \in V,\|\mathbf{x}\|$ is the distance from \mathbf{x} to the origin, or alternatively, the length of the vector \mathbf{x}; $\|\mathbf{x}\|$ is always supposed to be a non-negative real number (even if V is a complex vector space).
(3) The norm induced by a scalar product
- Our goal is to introduce the notion of a "norm" || || in a real or complex vector space V.
- The idea is that for a vector $\mathbf{x} \in V,\|\mathbf{x}\|$ is the distance from \mathbf{x} to the origin, or alternatively, the length of the vector \mathbf{x}; $\|\mathbf{x}\|$ is always supposed to be a non-negative real number (even if V is a complex vector space).
- For vectors $\mathbf{x}, \mathbf{y} \in V,\|\mathbf{x}-\mathbf{y}\|$ is supposed to be the distance between \mathbf{x} and \mathbf{y}.
(3) The norm induced by a scalar product
- Our goal is to introduce the notion of a "norm" || $\cdot|\mid$ in a real or complex vector space V.
- The idea is that for a vector $\mathbf{x} \in V,\|\mathbf{x}\|$ is the distance from \mathbf{x} to the origin, or alternatively, the length of the vector \mathbf{x}; $\|\mathbf{x}\|$ is always supposed to be a non-negative real number (even if V is a complex vector space).
- For vectors $\mathbf{x}, \mathbf{y} \in V,\|\mathbf{x}-\mathbf{y}\|$ is supposed to be the distance between \mathbf{x} and \mathbf{y}.
- Distance can be defined in a variety of ways.
(3) The norm induced by a scalar product
- Our goal is to introduce the notion of a "norm" || $\cdot|\mid$ in a real or complex vector space V.
- The idea is that for a vector $\mathbf{x} \in V,\|\mathbf{x}\|$ is the distance from \mathbf{x} to the origin, or alternatively, the length of the vector \mathbf{x}; $\|\mathbf{x}\|$ is always supposed to be a non-negative real number (even if V is a complex vector space).
- For vectors $\mathbf{x}, \mathbf{y} \in V,\|\mathbf{x}-\mathbf{y}\|$ is supposed to be the distance between \mathbf{x} and \mathbf{y}.
- Distance can be defined in a variety of ways.
- We first study norms induced by a scalar product.
(3) The norm induced by a scalar product
- Our goal is to introduce the notion of a "norm" || $\cdot \|$ in a real or complex vector space V.
- The idea is that for a vector $\mathbf{x} \in V,\|\mathbf{x}\|$ is the distance from \mathbf{x} to the origin, or alternatively, the length of the vector \mathbf{x}; $\|\mathbf{x}\|$ is always supposed to be a non-negative real number (even if V is a complex vector space).
- For vectors $\mathbf{x}, \mathbf{y} \in V,\|\mathbf{x}-\mathbf{y}\|$ is supposed to be the distance between \mathbf{x} and \mathbf{y}.
- Distance can be defined in a variety of ways.
- We first study norms induced by a scalar product.
- Later, we will define the norm in general and give some examples.

Definition

Given a scalar product $\langle\cdot, \cdot\rangle$ in a real or complex vector space V, we define the norm in V induced by $\langle\cdot, \cdot\rangle$ to be the function $\|\cdot\|: V \rightarrow \mathbb{R}$ given by

$$
\|\mathbf{x}\|:=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle} \quad \forall \mathbf{x} \in V .
$$

Definition

Given a scalar product $\langle\cdot, \cdot\rangle$ in a real or complex vector space V, we define the norm in V induced by $\langle\cdot, \cdot\rangle$ to be the function $\|\cdot\|: V \rightarrow \mathbb{R}$ given by

$$
\|\mathbf{x}\|:=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle} \quad \forall \mathbf{x} \in V
$$

- In view of r. 1 and c. 1 , for all $\mathbf{x} \in V$, we have that $\|\mathbf{x}\|$ is a non-negative real number, and moreover, $\|\mathbf{x}\|=0$ iff $\mathbf{x}=\mathbf{0}$.

Proposition 6.2.1

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then for all vectors $\mathbf{x} \in V$ and scalars $\alpha,{ }^{a}$ we have that

$$
\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\| .
$$

${ }^{\text {a }}$ So, α is a real or complex number, depending on whether the vector space V is real or complex.

Proof.

Proposition 6.2.1

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then for all vectors $\mathbf{x} \in V$ and scalars $\alpha,{ }^{a}$ we have that

$$
\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\| .
$$

[^1]Proof. We consider only the complex case. The real case is similar but easier (because we do not have to deal with complex conjugates).

Proof (continued). So, assume that V is a complex vector space.

Proof (continued). So, assume that V is a complex vector space. Then for all vectors $\mathbf{x} \in V$ and scalars $\alpha \in \mathbb{C}$, we have that

$$
\begin{aligned}
\|\alpha \mathbf{x}\| & =\sqrt{\langle\alpha \mathbf{x}, \alpha \mathbf{x}\rangle} \\
& =\sqrt{\alpha \bar{\alpha}\langle\mathbf{x}, \mathbf{x}\rangle} \quad \text { by c. } 3 \text { and c.3' } \\
& =\sqrt{|\alpha|^{2}\langle\mathbf{x}, \mathbf{x}\rangle} \quad \text { by Proposition 0.3.2 } \\
& =|\alpha| \sqrt{\langle\mathbf{x}, \mathbf{x}\rangle} \\
& =|\alpha|\|\mathbf{x}\| .
\end{aligned}
$$

This completes the argument. \square

Definition

Given a scalar product $\langle\cdot, \cdot\rangle$ in a real or complex vector space V, we define the norm in V induced by $\langle\cdot, \cdot\rangle$ to be the function $\|\cdot\|: V \rightarrow \mathbb{R}$ given by

$$
\|\mathbf{x}\|:=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle} \quad \forall \mathbf{x} \in V .
$$

Definition

Given a scalar product $\langle\cdot, \cdot\rangle$ in a real or complex vector space V, we define the norm in V induced by $\langle\cdot, \cdot\rangle$ to be the function $\|\cdot\|: V \rightarrow \mathbb{R}$ given by

$$
\|\mathbf{x}\|:=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle} \quad \forall \mathbf{x} \in V
$$

- Note that if $\|\cdot\|$ is the norm induced by the standard scalar product in \mathbb{R}^{n}, then for all vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n}, we have that

$$
\|\mathbf{x}\|=\sqrt{\mathbf{x} \cdot \mathbf{x}}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

So, we simply get the standard Euclidean length in \mathbb{R}^{n}.

- Suppose once again that $\|\cdot\|$ is the norm induced by the standard scalar product in \mathbb{R}^{n}.
- Suppose once again that $\|\cdot\|$ is the norm induced by the standard scalar product in \mathbb{R}^{n}.
- It turns out that if $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{T}$ are non-zero vectors in \mathbb{R}^{n}, then

$$
\mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta
$$

where θ is the angle between \mathbf{x} and \mathbf{y}.

- Suppose once again that $\|\cdot\|$ is the norm induced by the standard scalar product in \mathbb{R}^{n}.
- It turns out that if $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{T}$ are non-zero vectors in \mathbb{R}^{n}, then

$$
\mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta
$$

where θ is the angle between \mathbf{x} and \mathbf{y}.

- Let us justify this!
- Suppose once again that $\|\cdot\|$ is the norm induced by the standard scalar product in \mathbb{R}^{n}.
- It turns out that if $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{T}$ are non-zero vectors in \mathbb{R}^{n}, then

$$
\mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta
$$

where θ is the angle between \mathbf{x} and \mathbf{y}.

- Let us justify this!
- Consider the triangle formed by \mathbf{x}, \mathbf{y}, and $\mathbf{z}:=\mathbf{x}-\mathbf{y}$, and let θ be the angle between \mathbf{x} and \mathbf{y} in this triangle.

- We then compute:

$$
\begin{aligned}
\|\mathbf{z}\|^{2} & =\mathbf{z} \cdot \mathbf{z} \\
& =(\mathbf{x}-\mathbf{y}) \cdot(\mathbf{x}-\mathbf{y}) \\
& =\underbrace{\mathbf{x} \cdot \mathbf{x}}_{=\|\mathbf{x}\|^{2}}-\mathbf{x} \cdot \mathbf{y}-\mathbf{y} \cdot \mathbf{x}+\underbrace{\mathbf{y} \cdot \mathbf{y}}_{=\|\mathbf{y}\|^{2}} \\
& =\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}-2 \mathbf{x} \cdot \mathbf{y}
\end{aligned}
$$

- Reminder: $\|\mathbf{z}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}-2 \mathbf{x} \cdot \mathbf{y}$.

- Reminder: $\|\mathbf{z}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}-2 \mathbf{x} \cdot \mathbf{y}$.
- On the other hand, the Law of Cosines (for triangles) tells us that

$$
\|\mathbf{z}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}-2\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta
$$

- Reminder: $\|\mathbf{z}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}-2 \mathbf{x} \cdot \mathbf{y}$.
- On the other hand, the Law of Cosines (for triangles) tells us that

$$
\|\mathbf{z}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}-2\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta
$$

- So,

$$
\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}-2 \mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}-2\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta
$$

and consequently,

$$
\mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta
$$

as we had claimed.

- Reminder: $\mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta$.

- Reminder: $\mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta$.
- Note that this means that non-zero vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ are orthogonal in the usual geometric sense (i.e. the angle between them is 90°) iff $\mathbf{x} \cdot \mathbf{y}=0$.
- This is because for an angle θ, with $0^{\circ} \leq \theta \leq 180^{\circ}$, we have that $\cos \theta=0$ iff $\theta=90^{\circ}$.

- Reminder: $\mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta$.
- Note that this means that non-zero vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ are orthogonal in the usual geometric sense (i.e. the angle between them is 90°) iff $\mathbf{x} \cdot \mathbf{y}=0$.
- This is because for an angle θ, with $0^{\circ} \leq \theta \leq 180^{\circ}$, we have that $\cos \theta=0$ iff $\theta=90^{\circ}$.
- Warning: The formula $\mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta$ works for the standard scalar product in \mathbb{R}^{n} and the norm induced by it. Do not attempt to use it for general scalar products!
(9) The Pythagorean theorem, the Cauchy-Schwarz inequality, and the triangle inequality
(1) The Pythagorean theorem, the Cauchy-Schwarz inequality, and the triangle inequality

The Pythagorean theorem

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot \cdot\rangle$ and the induced norm $\|\cdot\|$. Then for all $\mathbf{x}, \mathbf{y} \in V$ such that $\mathbf{x} \perp \mathbf{y}$, we have that

$$
\|\mathbf{x}+\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2} .
$$

Proof.
(1) The Pythagorean theorem, the Cauchy-Schwarz inequality, and the triangle inequality

The Pythagorean theorem

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then for all $\mathbf{x}, \mathbf{y} \in V$ such that $\mathbf{x} \perp \mathbf{y}$, we have that

$$
\|\mathbf{x}+\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}
$$

Proof. Fix $\mathbf{x}, \mathbf{y} \in V$ s.t. $\mathbf{x} \perp \mathbf{y}$.
(1) The Pythagorean theorem, the Cauchy-Schwarz inequality, and the triangle inequality

The Pythagorean theorem

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then for all $\mathbf{x}, \mathbf{y} \in V$ such that $\mathbf{x} \perp \mathbf{y}$, we have that

$$
\|\mathbf{x}+\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}
$$

Proof. Fix $\mathbf{x}, \mathbf{y} \in V$ s.t. $\mathbf{x} \perp \mathbf{y}$. Then $\langle\mathbf{x}, \mathbf{y}\rangle=0$ and $\langle\mathbf{y}, \mathbf{x}\rangle=0$.

Proof (continued). So,

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{y}\|^{2} & =\langle\mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y}\rangle \\
& =\underbrace{\langle\mathbf{x}, \mathbf{x}\rangle}_{=\|\mathbf{x}\|^{2}}+\underbrace{\langle\mathbf{x}, \mathbf{y}\rangle}_{=0}+\underbrace{\langle\mathbf{y}, \mathbf{x}\rangle}_{=0}+\underbrace{\langle\mathbf{y}, \mathbf{y}\rangle}_{=\|\mathbf{y}\|^{2}} \\
& =\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}
\end{aligned}
$$

which is what we needed to show. \square

The Pythagorean theorem

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then for all $\mathbf{x}, \mathbf{y} \in V$ such that $\mathbf{x} \perp \mathbf{y}$, we have that

$$
\|\mathbf{x}+\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}
$$

The Cauchy-Schwarz inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Proof.

The Cauchy-Schwarz inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Proof. Fix $\mathbf{x}, \mathbf{y} \in V$.

The Cauchy-Schwarz inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Proof. Fix $\mathbf{x}, \mathbf{y} \in V$. WMA $\langle\mathbf{x}, \mathbf{y}\rangle \neq 0$, for otherwise, the result is immediate.

The Cauchy-Schwarz inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Proof. Fix $\mathbf{x}, \mathbf{y} \in V$. WMA $\langle\mathbf{x}, \mathbf{y}\rangle \neq 0$, for otherwise, the result is immediate. Note that this implies that $\mathbf{x}, \mathbf{y} \neq \mathbf{0}$, and consequently, $\|\mathbf{x}\|,\|\mathbf{y}\| \neq 0$.

The Cauchy-Schwarz inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Proof. Fix $\mathbf{x}, \mathbf{y} \in V$. WMA $\langle\mathbf{x}, \mathbf{y}\rangle \neq 0$, for otherwise, the result is immediate. Note that this implies that $\mathbf{x}, \mathbf{y} \neq \mathbf{0}$, and consequently, $\|\mathbf{x}\|,\|\mathbf{y}\| \neq 0$.

We set

$$
\mathbf{z}:=\frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle} \mathbf{x}-\mathbf{y},
$$

The Cauchy-Schwarz inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Proof. Fix $\mathbf{x}, \mathbf{y} \in V$. WMA $\langle\mathbf{x}, \mathbf{y}\rangle \neq 0$, for otherwise, the result is immediate. Note that this implies that $\mathbf{x}, \mathbf{y} \neq \mathbf{0}$, and consequently, $\|\mathbf{x}\|,\|\mathbf{y}\| \neq 0$.
We set

$$
\mathbf{z}:=\frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle} \mathbf{x}-\mathbf{y},
$$

and we compute

$$
\langle\mathbf{z}, \mathbf{y}\rangle=\left\langle\frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle} \mathbf{x}-\mathbf{y}, \mathbf{y}\right\rangle \stackrel{(*)}{=} \frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle}\langle\mathbf{x}, \mathbf{y}\rangle-\langle\mathbf{y}, \mathbf{y}\rangle=0,
$$

where $\left(^{*}\right)$ follows from r. 2 and $r .3$ if V is a real vector space, or from c. 2 and c. 3 if V is a complex vector space.

The Cauchy-Schwarz inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Proof. Fix $\mathbf{x}, \mathbf{y} \in V$. WMA $\langle\mathbf{x}, \mathbf{y}\rangle \neq 0$, for otherwise, the result is immediate. Note that this implies that $\mathbf{x}, \mathbf{y} \neq \mathbf{0}$, and consequently, $\|\mathbf{x}\|,\|\mathbf{y}\| \neq 0$.
We set

$$
\mathbf{z}:=\frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle} \mathbf{x}-\mathbf{y},
$$

and we compute

$$
\langle\mathbf{z}, \mathbf{y}\rangle=\left\langle\frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle} \mathbf{x}-\mathbf{y}, \mathbf{y}\right\rangle \stackrel{(*)}{=} \frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle}\langle\mathbf{x}, \mathbf{y}\rangle-\langle\mathbf{y}, \mathbf{y}\rangle=0,
$$

where $\left(^{*}\right)$ follows from r. 2 and $r .3$ if V is a real vector space, or from c. 2 and c. 3 if V is a complex vector space. So, $\mathbf{z} \perp \mathbf{y}$.

The Cauchy-Schwarz inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Proof (continued). Reminder: $\mathbf{z}:=\frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle} \mathbf{x}-\mathbf{y} ; \mathbf{z} \perp \mathbf{y}$.

The Cauchy-Schwarz inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Proof (continued). Reminder: $\mathbf{z}:=\frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle} \mathbf{x}-\mathbf{y} ; \mathbf{z} \perp \mathbf{y}$.
By the Pythagorean theorem, we have that $\|\mathbf{z}+\mathbf{y}\|^{2}=\|\mathbf{z}\|^{2}+\|\mathbf{y}\|^{2}$, and consequently:
$\|\mathbf{z}+\mathbf{y}\|=\left\|\frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle} \mathbf{x}\right\| \stackrel{(*)}{=}\left|\frac{|\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle}\right|\|\mathbf{x}\|=\frac{|\langle\mathbf{y}, \mathbf{y}\rangle|}{|\mathbf{x}, \mathbf{y}\rangle \|}\|\mathbf{x}\|=\frac{\|\mathbf{y}\|^{2}}{\|\langle\mathbf{x}, \mathbf{y}\rangle \mid}\|\mathbf{x}\|$,
where $\left(^{*}\right)$ follows from Proposition 6.2.1.

The Cauchy-Schwarz inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Proof (continued). Reminder: $\mathbf{z}:=\frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle} \mathbf{x}-\mathbf{y} ; \mathbf{z} \perp \mathbf{y}$.
By the Pythagorean theorem, we have that $\|\mathbf{z}+\mathbf{y}\|^{2}=\|\mathbf{z}\|^{2}+\|\mathbf{y}\|^{2}$, and consequently:

$$
\|\mathbf{z}+\mathbf{y}\|=\left\|\frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle} \mathbf{x}\right\| \stackrel{(*)}{=}\left|\frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle}\right|\|\mathbf{x}\|=\frac{|\langle\mathbf{y}, \mathbf{y}\rangle|}{\langle\mathbf{x}, \mathbf{y}\rangle \mid}\|\mathbf{x}\|=\frac{\|\mathbf{y}\|^{2}}{\langle\mathbf{x}, \mathbf{y}\rangle \|}\|\mathbf{x}\|,
$$

where (*) follows from Proposition 6.2.1. So,

$$
\frac{\|y\|^{4}}{|\langle x, y\rangle|^{2}}\|\mathbf{x}\|^{2}=\|\mathbf{z}+\mathbf{y}\|^{2}=\|\mathbf{z}\|^{2}+\|\mathbf{y}\|^{2} \geq\|\mathbf{y}\|^{2}
$$

The Cauchy-Schwarz inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Proof (continued). Reminder: $\mathbf{z}:=\frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle} \mathbf{x}-\mathbf{y} ; \mathbf{z} \perp \mathbf{y}$.
By the Pythagorean theorem, we have that $\|\mathbf{z}+\mathbf{y}\|^{2}=\|\mathbf{z}\|^{2}+\|\mathbf{y}\|^{2}$, and consequently:

$$
\|\mathbf{z}+\mathbf{y}\|=\left\|\frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle} \mathbf{x}\right\| \stackrel{(*)}{=}\left|\frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle}\right|\|\mathbf{x}\|=\frac{|\langle\mathbf{y}, \mathbf{y}\rangle|}{\langle\mathbf{x}, \mathbf{y}\rangle \mid}\|\mathbf{x}\|=\frac{\|\mathbf{y}\|^{2}}{\langle\mathbf{x}, \mathbf{y}\rangle \|}\|\mathbf{x}\|,
$$

where (*) follows from Proposition 6.2.1. So,

$$
\frac{\|y\|^{4}}{|\langle x, y\rangle|^{2}}\|\mathbf{x}\|^{2}=\|\mathbf{z}+\mathbf{y}\|^{2}=\|\mathbf{z}\|^{2}+\|\mathbf{y}\|^{2} \geq\|\mathbf{y}\|^{2}
$$

which yields

$$
\frac{\|\mathbf{y}\|^{4}}{\mid\left\langle\mathbf{x}, \mathbf{y} \|^{2}\right.}\|\mathbf{x}\|^{2} \geq\|\mathbf{y}\|^{2}
$$

The Cauchy-Schwarz inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Proof (continued). Reminder: $\frac{\|\mathbf{y}\|^{4}}{\mid\langle\mathbf{x}, \mathbf{y}\rangle \|^{2}}\|\mathbf{x}\|^{2} \geq\|\mathbf{y}\|^{2}$.

The Cauchy-Schwarz inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Proof (continued). Reminder: $\frac{\|\mathbf{y}\|^{4}}{|\langle\mathbf{x}, \mathbf{y}\rangle|^{2}}\|\mathbf{x}\|^{2} \geq\|\mathbf{y}\|^{2}$.
Since $\langle\mathbf{x}, \mathbf{y}\rangle$ and $\|\mathbf{y}\|$ are both non-zero, we have that $\frac{|\langle\mathbf{x}, \mathbf{y}\rangle|^{2}}{\|y\|^{2}}$ is defined and positive.

The Cauchy-Schwarz inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Proof (continued). Reminder: $\frac{\|\mathbf{y}\|^{4}}{|\langle\mathbf{x}, \mathbf{y}\rangle|^{2}}\|\mathbf{x}\|^{2} \geq\|\mathbf{y}\|^{2}$.
Since $\langle\mathbf{x}, \mathbf{y}\rangle$ and $\|\mathbf{y}\|$ are both non-zero, we have that $\frac{|\langle\mathbf{x}, \mathbf{y}\rangle|^{2}}{\|\mathbf{y}\|^{2}}$ is defined and positive. So, we may multiply both sides of the inequality above by $\frac{|\langle\mathbf{x}, \mathbf{y}\rangle|^{2}}{\|\mathbf{y}\|^{2}}$ to obtain

$$
\|\mathbf{x}\|^{2}\|\mathbf{y}\|^{2} \geq|\langle\mathbf{x}, \mathbf{y}\rangle|^{2}
$$

The Cauchy-Schwarz inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Proof (continued). Reminder: $\frac{\|\mathbf{y}\|^{4}}{|\langle\mathbf{x}, \mathbf{y}\rangle|^{2}}\|\mathbf{x}\|^{2} \geq\|\mathbf{y}\|^{2}$.
Since $\langle\mathbf{x}, \mathbf{y}\rangle$ and $\|\mathbf{y}\|$ are both non-zero, we have that $\frac{|\langle\mathbf{x}, \mathbf{y}\rangle|^{2}}{\|\mathbf{y}\|^{2}}$ is defined and positive. So, we may multiply both sides of the inequality above by $\frac{|\langle\mathbf{x}, \mathbf{y}\rangle|^{2}}{\|\mathbf{y}\|^{2}}$ to obtain

$$
\|\mathbf{x}\|^{2}\|\mathbf{y}\|^{2} \geq|\langle\mathbf{x}, \mathbf{y}\rangle|^{2}
$$

By taking the square root of both sides, we get

$$
\|\mathbf{x}\|\|\mathbf{y}\| \geq|\langle\mathbf{x}, \mathbf{y}\rangle|,
$$

which is what we needed to show. \square

The Cauchy-Schwarz inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

The Cauchy-Schwarz inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Corollary 6.2.2

For all $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in \mathbb{R}$, we have that

$$
\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} y_{i}^{2}\right)
$$

Proof.

The Cauchy-Schwarz inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Corollary 6.2.2

For all $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in \mathbb{R}$, we have that

$$
\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} y_{i}^{2}\right)
$$

Proof. If we consider the standard scalar product in \mathbb{R}^{n}, the Cauchy-Schwarz inequality yields

$$
\left|\sum_{i=1}^{n} x_{i} y_{i}\right| \leq \sqrt{\sum_{i=1}^{n} x_{i}^{2}} \sqrt{\sum_{i=1}^{n} y_{i}^{2}}
$$

for all $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in \mathbb{R}$. By squaring both sides, we obtain the desired inequality.

The triangle inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Proof.

The triangle inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Proof. We prove the result for the case when V is a complex vector space. The real case is similar but slightly easier (because we do not have to deal with complex conjugates).

The triangle inequality

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

Proof. We prove the result for the case when V is a complex vector space. The real case is similar but slightly easier (because we do not have to deal with complex conjugates).

We first remark that for all complex numbers $z=a+i b$ (where $a, b \in \mathbb{R}$), we have that

- $z+\bar{z}=2 a=2 \operatorname{Re}(z)$;
- $\operatorname{Re}(z)=a \leq|a| \leq \sqrt{a^{2}+b^{2}}=|z|$.

Proof (continued). Now, fix $\mathbf{x}, \mathbf{y} \in V$.

Proof (continued). Now, fix $\mathbf{x}, \mathbf{y} \in V$. Then we have the following:

$$
\begin{array}{rlr}
\|\mathbf{x}+\mathbf{y}\|^{2} & =\langle\mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y}\rangle \\
& =\underbrace{\langle\mathbf{x}, \mathbf{x}\rangle}_{=\|\mathbf{x}\|^{2}}+\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{y}, \mathbf{x}\rangle+\underbrace{\langle\mathbf{y}, \mathbf{y}\rangle}_{=\|\mathbf{y}\|^{2}} \quad & \\
& =\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}+\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{y}, \mathbf{x}\rangle & \\
& =\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}+\langle\mathbf{x}, \mathbf{y}\rangle+\overline{\langle\mathbf{x}, \mathbf{y}\rangle} \quad & \text { by c. } 4 \\
& =\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}+2 \operatorname{Re}(\langle\mathbf{x}, \mathbf{y}\rangle) & \\
& \leq\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}+2|\langle\mathbf{x}, \mathbf{y}\rangle| & \\
& \leq\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}+2\|\mathbf{x}\|\|\mathbf{y}\| & \\
& =(\|\mathbf{x}\|+\|\mathbf{y}\|)^{2} . & \text { by C-S } \leq
\end{array}
$$

Proof (continued). Now, fix $\mathbf{x}, \mathbf{y} \in V$. Then we have the following:

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{y}\|^{2} & =\langle\mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y}\rangle \\
& =\underbrace{\langle\mathbf{x}, \mathbf{x}\rangle}_{=\|\mathbf{x}\|^{2}}+\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{y}, \mathbf{x}\rangle+\underbrace{\langle\mathbf{y}, \mathbf{y}\rangle}_{=\|\mathbf{y}\|^{2}} \quad \text { by c. } 2 \text { and c.2' } \\
& =\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}+\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{y}, \mathbf{x}\rangle \\
& =\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}+\langle\mathbf{x}, \mathbf{y}\rangle+\overline{\langle\mathbf{x}, \mathbf{y}\rangle} \quad \text { by c.4 } \\
& =\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}+2 \operatorname{Re}(\langle\mathbf{x}, \mathbf{y}\rangle) \\
& \leq\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}+2|\langle\mathbf{x}, \mathbf{y}\rangle| \\
& \leq\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}+2\|\mathbf{x}\|\|\mathbf{y}\| \\
& =\left(\|\mathbf{x}\|^{\prime}+\|\mathbf{y}\|\right)^{2} .
\end{aligned}
$$

By taking the square root of both sides, we obtain
$\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$, which is what we needed to show. \square

The triangle inequality
Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

(6) The norm in general
(9) The norm in general

Definition

A norm in a real or complex vector space V is a function
$\|\cdot\|: V \rightarrow \mathbb{R}$ that satisfies the following three axioms:
n.1. for all vectors $\mathbf{x} \in V$, we have that $\|\mathbf{x}\| \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
n.2. for all vectors $\mathbf{x} \in V$ and scalars $\alpha,{ }^{a}$ we have that

$$
\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\| ;
$$

n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.
${ }^{a}$ So, α is a real or complex number, depending on whether the vector space V is real or complex.

Definition

A norm in a real or complex vector space V is a function
$\|\cdot\|: V \rightarrow \mathbb{R}$ that satisfies the following three axioms:
n.1. for all vectors $\mathbf{x} \in V$, we have that $\|\mathbf{x}\| \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
n.2. for all vectors $\mathbf{x} \in V$ and scalars α, we have that $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\| ;$
n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.

- A norm in a real or complex vector space V gives a way of measuring the distance of a vector from the origin, or equivalently, measuring the length of a vector.
- The norm of a vector is always a non-negative real number (regardless of whether the vector space is real or complex).

Definition

A norm in a real or complex vector space V is a function $\|\cdot\|: V \rightarrow \mathbb{R}$ that satisfies the following three axioms:
n.1. for all vectors $\mathbf{x} \in V$, we have that $\|x\| \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
n.2. for all vectors $\mathbf{x} \in V$ and scalars α, we have that $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\| ;$
n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.

- We note that n. 3 is referred to as the "triangle inequality."

Definition

A norm in a real or complex vector space V is a function
$\|\cdot\|: V \rightarrow \mathbb{R}$ that satisfies the following three axioms:
n.1. for all vectors $\mathbf{x} \in V$, we have that $\|\mathbf{x}\| \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
n.2. for all vectors $\mathbf{x} \in V$ and scalars α, we have that

$$
\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\| ;
$$

n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.

- Any norm induced by a scalar product in a real or complex vector space V really is a norm, i.e. it is a function from V to \mathbb{R} that satisfies axioms n.1, n.2, and n. 3 above.

Definition

A norm in a real or complex vector space V is a function
$\|\cdot\|: V \rightarrow \mathbb{R}$ that satisfies the following three axioms:
n.1. for all vectors $\mathbf{x} \in V$, we have that $\|\mathbf{x}\| \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
n.2. for all vectors $\mathbf{x} \in V$ and scalars α, we have that $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\| ;$
n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.

- Any norm induced by a scalar product in a real or complex vector space V really is a norm, i.e. it is a function from V to \mathbb{R} that satisfies axioms $n .1, n .2$, and $n .3$ above.
- The fact that axiom n. 1 is satisfied is immediate from the construction of a norm induced by a scalar product, the fact that n .2 is satisfied follows from Proposition ??, and the fact that n .3 is satisfied follows from the triangle inequality proven a few slides ago.

Definition

A norm in a real or complex vector space V is a function
$\|\cdot\|: V \rightarrow \mathbb{R}$ that satisfies the following three axioms:
n.1. for all vectors $\mathbf{x} \in V$, we have that $\|\mathbf{x}\| \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
n.2. for all vectors $\mathbf{x} \in V$ and scalars α, we have that

$$
\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\| ;
$$

n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.

Definition

A norm in a real or complex vector space V is a function
$\|\cdot\|: V \rightarrow \mathbb{R}$ that satisfies the following three axioms:
n.1. for all vectors $\mathbf{x} \in V$, we have that $\|\mathbf{x}\| \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
n.2. for all vectors $\mathbf{x} \in V$ and scalars α, we have that

$$
\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\| ;
$$

n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.

Definition

Let V be a real or complex vector space, equipped with a norm $\|\cdot\|$. A vector $\mathbf{v} \in V$ is called a unit vector if $\|\mathbf{v}\|=1$.

Definition

A norm in a real or complex vector space V is a function
$\|\cdot\|: V \rightarrow \mathbb{R}$ that satisfies the following three axioms:
n.1. for all vectors $\mathbf{x} \in V$, we have that $\|\mathbf{x}\| \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
n.2. for all vectors $\mathbf{x} \in V$ and scalars α, we have that

$$
\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\| ;
$$

n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.

Definition

Let V be a real or complex vector space, equipped with a norm $\|\cdot\|$. A vector $\mathbf{v} \in V$ is called a unit vector if $\|\mathbf{v}\|=1$.

- By n.1, any unit vector is, in particular, a non-zero vector.

Definition

A norm in a real or complex vector space V is a function
$\|\cdot\|: V \rightarrow \mathbb{R}$ that satisfies the following three axioms:
n.1. for all vectors $\mathbf{x} \in V$, we have that $\|\mathbf{x}\| \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
n.2. for all vectors $\mathbf{x} \in V$ and scalars α, we have that

$$
\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\| ;
$$

n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.

Definition

Let V be a real or complex vector space, equipped with a norm $\|\cdot\|$. A vector $\mathbf{v} \in V$ is called a unit vector if $\|\mathbf{v}\|=1$.

- By n.1, any unit vector is, in particular, a non-zero vector.
- For notational convenience, given a vector \mathbf{v} and a scalar $\alpha \neq 0$, we often write $\frac{\mathbf{v}}{\alpha}$ instead of $\alpha^{-1} \mathbf{v}$ or $\frac{1}{\alpha} \mathbf{v}$.
- In particular, for a non-zero vector $\mathbf{v} \in V$, we may write $\frac{\mathbf{v}}{\|\mathrm{v}\|}$.

Proposition 6.2.3

Let V be a real or complex vector space, equipped with a norm $\|\cdot\|$. Then for all non-zero vectors $\mathbf{v} \in V$, we have that $\|\mathbf{v}\|>0$ and that $\left\|\frac{\mathbf{v}}{\|\mathbf{v}\|}\right\|=1$, and in particular, $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ is a unit vector.

Proof.

Proposition 6.2.3

Let V be a real or complex vector space, equipped with a norm $\|\cdot\|$. Then for all non-zero vectors $\mathbf{v} \in V$, we have that $\|\mathbf{v}\|>0$ and that $\left\|\frac{\mathbf{v}}{\|\mathbf{v}\|}\right\|=1$, and in particular, $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ is a unit vector.

Proof. Fix a non-zero vector $\mathbf{v} \in V$. By n .1 , we have that $\|\mathbf{v}\|>0$. We further have that

$$
\|\stackrel{v}{\|\mathbf{v}\|}\| \stackrel{n .2}{=}\left|\frac{1}{\|\mathbf{v}\|}\right|\|\mathbf{v}\| \stackrel{(*)}{=} \frac{1}{\|\mathbf{v}\|}\|\mathbf{v}\|=1
$$

where (*) follows from the fact that $\|\mathbf{v}\|>0$. This completes the argument. \square

Proposition 6.2.3

Let V be a real or complex vector space, equipped with a norm $\|\cdot\|$. Then for all non-zero vectors $\mathbf{v} \in V$, we have that $\|\mathbf{v}\|>0$ and that $\left\|\frac{\mathbf{v}}{\|\mathbf{v}\|}\right\|=1$, and in particular, $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ is a unit vector.

Proposition 6.2.3

Let V be a real or complex vector space, equipped with a norm $\|\cdot\|$. Then for all non-zero vectors $\mathbf{v} \in V$, we have that $\|\mathbf{v}\|>0$ and that $\left\|\frac{\mathbf{v}}{\|\mathbf{v}\|}\right\|=1$, and in particular, $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ is a unit vector.

- Terminology/Remark: Suppose that V is a real or complex vector space, equipped with a norm $\|\cdot\|$.

Proposition 6.2.3

Let V be a real or complex vector space, equipped with a norm $\|\cdot\|$. Then for all non-zero vectors $\mathbf{v} \in V$, we have that $\|\mathbf{v}\|>0$ and that $\left\|\frac{\mathbf{v}}{\|\mathbf{v}\|}\right\|=1$, and in particular, $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ is a unit vector.

- Terminology/Remark: Suppose that V is a real or complex vector space, equipped with a norm $\|\cdot\|$.
- To normalize a non-zero vector \mathbf{v} in V means to multiply that vector by $\frac{1}{\|v\|}$ ("divide by its length").

Proposition 6.2.3

Let V be a real or complex vector space, equipped with a norm $\|\cdot\|$. Then for all non-zero vectors $\mathbf{v} \in V$, we have that $\|\mathbf{v}\|>0$ and that $\left\|\frac{\mathbf{v}}{\|\mathbf{v}\|}\right\|=1$, and in particular, $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ is a unit vector.

- Terminology/Remark: Suppose that V is a real or complex vector space, equipped with a norm $\|\cdot\|$.
- To normalize a non-zero vector \mathbf{v} in V means to multiply that vector by $\frac{1}{\|v\|}$ ("divide by its length").
- By Proposition 6.2.3, when we normalize a non-zero vector, we produce a unit vector.

Definition

A norm in a real or complex vector space V is a function
$\|\cdot\|: V \rightarrow \mathbb{R}$ that satisfies the following three axioms:
n.1. for all vectors $\mathbf{x} \in V$, we have that $\|\mathbf{x}\| \geq 0$, and equality holds iff $\mathbf{x}=\mathbf{0}$;
n.2. for all vectors $\mathbf{x} \in V$ and scalars α, we have that $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\| ;$
n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.

- We now consider a few examples of norms in real vector spaces.

Definition

For a positive integer p, we define the p-norm in \mathbb{R}^{n}, denoted by $\|\cdot\|_{p}$, by setting

$$
\|\mathbf{x}\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

for all $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n}.

Definition

For a positive integer p, we define the p-norm in \mathbb{R}^{n}, denoted by $\|\cdot\|_{p}$, by setting

$$
\|\mathbf{x}\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

for all $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n}.

- We omit the proof of the fact that this really is a norm in \mathbb{R}^{n}.

Definition

For a positive integer p, we define the p-norm in \mathbb{R}^{n}, denoted by $\|\cdot\|_{p}$, by setting

$$
\|\mathbf{x}\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

for all $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n}.

- We omit the proof of the fact that this really is a norm in \mathbb{R}^{n}.
- We do note, however, that for $p=2$, we get

$$
\|\mathbf{x}\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

which is precisely the norm induced by the standard scalar product in \mathbb{R}^{n}, i.e. the standard Euclidean norm in \mathbb{R}^{n}.

- Reminder: $\|\mathbf{x}\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} \forall \mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T} \in \mathbb{R}^{n}$.
- For $p=1$, we get

$$
\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| .
$$

- The $\|\cdot\|_{1}$ norm is sometimes called the "Manhattan norm." This is because streets and avenues in Manhattan form a perfect grid (more or less), and so $\|\cdot\|_{1}$ gives the actual walking distance between two places in Manhattan.

- Another norm of interest is the so called "Chebyshev distance" in \mathbb{R}^{n}, denoted by $\|\cdot\|_{\infty}$. It is defined by

$$
\|\mathbf{x}\|_{\infty}:=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}
$$

for all vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$ in \mathbb{R}^{n}.

Definition

The unit disk in a real or complex vector space V, equipped with a norm $\|\cdot\|$, is the set $\{\mathbf{x} \in V\|\|x\| \leq 1\}$.

unit disk in \mathbb{R}^{2}
w.r.t. $\|\cdot\| \|_{2}$

unit disk in \mathbb{R}^{2}
w.r.t. $\|\cdot\|_{1}$

unit disk in \mathbb{R}^{2}
w.r.t. $\|\cdot\|_{\infty}$

- Finally, if you have studied calculus, recall that for $a, b \in \mathbb{R}$ such that $a<b, \mathcal{C}_{[a, b]}$ is the (real) vector space of all continuous functions from $[a, b]$ to \mathbb{R}.
- Finally, if you have studied calculus, recall that for $a, b \in \mathbb{R}$ such that $a<b, \mathcal{C}_{[a, b]}$ is the (real) vector space of all continuous functions from $[a, b]$ to \mathbb{R}.
- For a real number $p \geq 1$, we have the norm $\|\cdot\|_{p}$ on $\mathcal{C}_{[a, b]}$ given by

$$
\|f\|_{p}=\left(\int_{a}^{b}|f(x)|^{p}\right)^{\frac{1}{p}}
$$

for all $f \in \mathcal{C}_{[a, b]}$.

- Finally, if you have studied calculus, recall that for $a, b \in \mathbb{R}$ such that $a<b, \mathcal{C}_{[a, b]}$ is the (real) vector space of all continuous functions from $[a, b]$ to \mathbb{R}.
- For a real number $p \geq 1$, we have the norm $\|\cdot\|_{p}$ on $\mathcal{C}_{[a, b]}$ given by

$$
\|f\|_{p}=\left(\int_{a}^{b}|f(x)|^{p}\right)^{\frac{1}{p}}
$$

for all $f \in \mathcal{C}_{[a, b]}$.

- We also have the norm $\|\cdot\|_{\infty}$ on $\mathcal{C}_{[a, b]}$ given by

$$
\|f\|_{\infty}=\max _{x \in[a, b]}|f(x)|
$$

for all $f \in \mathcal{C}_{[a, b]}$.

- Finally, if you have studied calculus, recall that for $a, b \in \mathbb{R}$ such that $a<b, \mathcal{C}_{[a, b]}$ is the (real) vector space of all continuous functions from $[a, b]$ to \mathbb{R}.
- For a real number $p \geq 1$, we have the norm $\|\cdot\|_{p}$ on $\mathcal{C}_{[a, b]}$ given by

$$
\|f\|_{p}=\left(\int_{a}^{b}|f(x)|^{p}\right)^{\frac{1}{p}}
$$

for all $f \in \mathcal{C}_{[a, b]}$.

- We also have the norm $\|\cdot\|_{\infty}$ on $\mathcal{C}_{[a, b]}$ given by

$$
\|f\|_{\infty}=\max _{x \in[a, b]}|f(x)|
$$

for all $f \in \mathcal{C}_{[a, b]}$.

- Once again, we omit the proof of the fact that $\|\cdot\|_{p}$ (for a real number $p \geq 1$) and $\|\cdot\|_{\infty}$ really are norms in $\mathcal{C}_{[a, b]}$.

[^0]: ${ }^{2}$ Here, α and β are real or complex numbers, depending on whether V is a real or complex vector space.

[^1]: ${ }^{\text {a }}$ So, α is a real or complex number, depending on whether the vector space V is real or complex.

