Linear Algebra 2

Lecture #14

Scalar (inner) products

Irena Penev

February 28, 2024

 $\bullet\,$ So far, we have worked with vector spaces over arbitrary fields $\mathbb F.$

- So far, we have worked with vector spaces over arbitrary fields $\mathbb F.$
- In this lecture, we impose some additional structure on vector spaces, namely the "scalar product" (also called "inner product") and the "norm."
 - A scalar product is a way of multiplying two vectors and obtaining a scalar.
 - A norm is a way of measuring the distance of a vector from the origin, or alternatively, measuring the length of a vector.

- So far, we have worked with vector spaces over arbitrary fields $\mathbb F.$
- In this lecture, we impose some additional structure on vector spaces, namely the "scalar product" (also called "inner product") and the "norm."
 - A scalar product is a way of multiplying two vectors and obtaining a scalar.
 - A norm is a way of measuring the distance of a vector from the origin, or alternatively, measuring the length of a vector.
- As a trade-off for imposing this additional structure, we restrict ourselves to vector spaces over only two fields: $\mathbb R$ and $\mathbb C.$

- So far, we have worked with vector spaces over arbitrary fields $\mathbb F.$
- In this lecture, we impose some additional structure on vector spaces, namely the "scalar product" (also called "inner product") and the "norm."
 - A scalar product is a way of multiplying two vectors and obtaining a scalar.
 - A norm is a way of measuring the distance of a vector from the origin, or alternatively, measuring the length of a vector.
- As a trade-off for imposing this additional structure, we restrict ourselves to vector spaces over only two fields: $\mathbb R$ and $\mathbb C.$
 - The theory that we develop in this chapter would not work for vector spaces over general fields $\mathbb{F}.$

- $\bullet\,$ So far, we have worked with vector spaces over arbitrary fields $\mathbb F.$
- In this lecture, we impose some additional structure on vector spaces, namely the "scalar product" (also called "inner product") and the "norm."
 - A scalar product is a way of multiplying two vectors and obtaining a scalar.
 - A norm is a way of measuring the distance of a vector from the origin, or alternatively, measuring the length of a vector.
- As a trade-off for imposing this additional structure, we restrict ourselves to vector spaces over only two fields: $\mathbb R$ and $\mathbb C.$
 - The theory that we develop in this chapter would not work for vector spaces over general fields $\mathbb{F}.$
- **Terminology:** Vector spaces over \mathbb{R} are called *real vector spaces*, and vector spaces over \mathbb{C} are called *complex vector spaces*.

• This lecture consists of five parts:

- This lecture consists of five parts:
 - The scalar product
 - We first study the scalar product in real vector spaces, and then we study the scalar product in complex vector spaces.

- This lecture consists of five parts:
 - The scalar product
 - We first study the scalar product in real vector spaces, and then we study the scalar product in complex vector spaces.
 - Orthogonality

- This lecture consists of five parts:
 - The scalar product
 - We first study the scalar product in real vector spaces, and then we study the scalar product in complex vector spaces.
 - Orthogonality
 - The norm induced by a scalar product

- This lecture consists of five parts:
 - The scalar product
 - We first study the scalar product in real vector spaces, and then we study the scalar product in complex vector spaces.
 - Orthogonality
 - The norm induced by a scalar product
 - The Pythagorean theorem, the Cauchy–Schwarz inequality, and the triangle inequality

- This lecture consists of five parts:
 - The scalar product
 - We first study the scalar product in real vector spaces, and then we study the scalar product in complex vector spaces.
 - Orthogonality
 - The norm induced by a scalar product
 - The Pythagorean theorem, the Cauchy–Schwarz inequality, and the triangle inequality
 - The norm in general

The scalar product

Definition

A scalar product (also called inner product) in a **real** vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ that satisfies the following four axioms:

- r.1. for all $\mathbf{x} \in V$, $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$, and equality holds iff $\mathbf{x} = \mathbf{0}$;
- r.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$;

r.3. for all
$$\mathbf{x}, \mathbf{y} \in V$$
 and $\alpha \in \mathbb{R}$, $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$;

r.4. for all $\mathbf{x}, \mathbf{y} \in V$, $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$.

• The name "scalar product" comes from the fact that we multiply two vectors and obtain a scalar as a result.

A scalar product (also called inner product) in a real vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ that satisfies the following four axioms:

- r.1. for all $\mathbf{x} \in V$, $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$, and equality holds iff $\mathbf{x} = \mathbf{0}$;
- r.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$;
- r.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R}$, $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$;

r.4. for all $\mathbf{x}, \mathbf{y} \in V$, $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$.

 Axioms r.2 and r.3 guarantee that the scalar product in a real vector space V is linear in the first variable (when we keep the second variable fixed).

A scalar product (also called inner product) in a **real** vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ that satisfies the following four axioms:

- r.1. for all $\mathbf{x} \in V$, $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$, and equality holds iff $\mathbf{x} = \mathbf{0}$;
- r.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$;
- r.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R}$, $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$;

r.4. for all $\mathbf{x}, \mathbf{y} \in V$, $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$.

- Axioms r.2 and r.3 guarantee that the scalar product in a real vector space V is linear in the first variable (when we keep the second variable fixed).
- But in fact, axioms r.2, r.3, and r.4 guarantee that it is linear in the second variable as well (when we keep the first variable fixed).
 - More precisely, we have the following (next slide):

A scalar product (also called inner product) in a **real** vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ that satisfies the following four axioms:

r.1. for all $\mathbf{x} \in V$, $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$, and equality holds iff $\mathbf{x} = \mathbf{0}$;

r.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$;

r.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R}$, $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$;

r.4. for all $\mathbf{x}, \mathbf{y} \in V$, $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$.

r.2'. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$; r.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R}$, $\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$.

A scalar product (also called inner product) in a **real** vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ that satisfies the following four axioms:

r.1. for all $\mathbf{x} \in V$, $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$, and equality holds iff $\mathbf{x} = \mathbf{0}$;

r.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$;

r.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R}$, $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$;

r.4. for all $\mathbf{x}, \mathbf{y} \in V$, $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$.

r.2'. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$; r.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R}$, $\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$.

Proof of r.2'.

A scalar product (also called inner product) in a **real** vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ that satisfies the following four axioms:

r.1. for all $\mathbf{x} \in V$, $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$, and equality holds iff $\mathbf{x} = \mathbf{0}$;

r.2. for all
$$\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$$
, $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$;

r.3. for all
$$\mathbf{x}, \mathbf{y} \in V$$
 and $\alpha \in \mathbb{R}$, $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$;

r.4. for all $\mathbf{x}, \mathbf{y} \in V$, $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$.

r.2'. for all
$$\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$$
, $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$;
r.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R}$, $\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$.

Proof of r.2'. For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, we have the following:

$$\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle \stackrel{\text{r.4}}{=} \langle \mathbf{y} + \mathbf{z}, \mathbf{x} \rangle \stackrel{\text{r.2}}{=} \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{z}, \mathbf{x} \rangle \stackrel{\text{r.4}}{=} \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle.$$

A scalar product (also called inner product) in a **real** vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ that satisfies the following four axioms:

- r.1. for all $\mathbf{x} \in V$, $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$, and equality holds iff $\mathbf{x} = \mathbf{0}$;
- r.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$;
- r.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R}$, $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$;

r.4. for all $\mathbf{x}, \mathbf{y} \in V$, $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$.

r.2'. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$; r.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R}$, $\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$.

Proof of r.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R}$, we have the following:

$$\langle \mathbf{x}, \alpha \mathbf{y} \rangle \stackrel{\text{r.4}}{=} \langle \alpha \mathbf{y}, \mathbf{x} \rangle \stackrel{\text{r.3}}{=} \alpha \langle \mathbf{y}, \mathbf{x} \rangle \stackrel{\text{r.4}}{=} \alpha \langle \mathbf{x}, \mathbf{y} \rangle.$$

A scalar product (also called inner product) in a **real** vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ that satisfies the following four axioms:

r.1. for all $\mathbf{x} \in V$, $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$, and equality holds iff $\mathbf{x} = \mathbf{0}$;

r.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$;

r.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R}$, $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$; r.4. for all $\mathbf{x}, \mathbf{y} \in V$, $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$.

r.2'. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$; r.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R}$, $\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$.

The standard scalar product of vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{R}^n is given by $\mathbf{x} \cdot \mathbf{y} := \sum_{i=1}^n x_i y_i.$

The standard scalar product of vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{R}^n is given by $\mathbf{x} \cdot \mathbf{y} := \sum_{i=1}^n x_i y_i.$

• For example, for vectors $\begin{bmatrix} 1 & -2 & 5 \end{bmatrix}^T$ and $\begin{bmatrix} -3 & 2 & 1 \end{bmatrix}^T$ in \mathbb{R}^3 , we compute:

$$\begin{bmatrix} 1\\-2\\5 \end{bmatrix} \cdot \begin{bmatrix} -3\\2\\1 \end{bmatrix} = 1 \cdot (-3) + (-2) \cdot 2 + 5 \cdot 1 = -2.$$

The standard scalar product of vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{R}^n is given by $\mathbf{x} \cdot \mathbf{y} := \sum_{i=1}^n x_i y_i.$

• For example, for vectors $\begin{bmatrix} 1 & -2 & 5 \end{bmatrix}^T$ and $\begin{bmatrix} -3 & 2 & 1 \end{bmatrix}^T$ in \mathbb{R}^3 , we compute:

$$\begin{bmatrix} 1\\-2\\5 \end{bmatrix} \cdot \begin{bmatrix} -3\\2\\1 \end{bmatrix} = 1 \cdot (-3) + (-2) \cdot 2 + 5 \cdot 1 = -2.$$

- We still need to check that really is a scalar product, i.e. that it satisfies axioms r.1-r.4.
 - Later!

The standard scalar product of vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{R}^n is given by $\mathbf{x} \cdot \mathbf{y} := \sum_{i=1}^n x_i y_i.$

• For vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{R}^n , we have that:

$$\mathbf{x}^T \mathbf{y} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n x_i y_i \end{bmatrix} = \begin{bmatrix} \mathbf{x} \cdot \mathbf{y} \end{bmatrix}$$

The standard scalar product of vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{R}^n is given by $\mathbf{x} \cdot \mathbf{y} := \sum_{i=1}^n x_i y_i.$

• For vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{R}^n , we have that:

$$\mathbf{x}^T \mathbf{y} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n x_i y_i \end{bmatrix} = \begin{bmatrix} \mathbf{x} \cdot \mathbf{y} \end{bmatrix}.$$

 $\bullet\,$ So, if we identify 1×1 matrices with scalars, then we simply get that

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y} \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

The standard scalar product in \mathbb{R}^n is a scalar product.

Proof.

The standard scalar product in \mathbb{R}^n is a scalar product.

Proof. We need to check that the standard scalar product \cdot in \mathbb{R}^n satisfies the four axioms from the definition of a scalar product in a real vector space.

The standard scalar product in \mathbb{R}^n is a scalar product.

Proof. We need to check that the standard scalar product \cdot in \mathbb{R}^n satisfies the four axioms from the definition of a scalar product in a real vector space.

r.1. For a vector $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ in \mathbb{R}^n , we have that

$$\mathbf{x} \cdot \mathbf{x} = \sum_{i=1}^{n} x_i^2 \stackrel{(*)}{\geq} 0$$

and (*) is an equality iff $x_1 = \cdots = x_n = 0$, i.e. iff $\mathbf{x} = \mathbf{0}$.

The standard scalar product in \mathbb{R}^n is a scalar product.

Proof (continued). r.2. For vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$, $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$, and $\mathbf{z} = \begin{bmatrix} z_1 & \dots & z_n \end{bmatrix}^T$ in \mathbb{R}^n , we have that

$$(\mathbf{x} + \mathbf{y}) \cdot \mathbf{z} = \sum_{i=1}^{n} (x_i + y_i) z_i$$

$$= \left(\sum_{i=1}^n x_i z_i\right) + \left(\sum_{i=1}^n y_i z_i\right)$$

 $= \mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z}.$

The standard scalar product in \mathbb{R}^n is a scalar product.

Proof (continued). r.3. For vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{R}^n and a scalar $\alpha \in \mathbb{R}$, we have that

$$(\alpha \mathbf{x}) \cdot \mathbf{y} = \sum_{i=1}^{n} (\alpha x_i) y_i = \alpha \sum_{i=1}^{n} x_i y_i = \alpha (\mathbf{x} \cdot \mathbf{y}).$$

The standard scalar product in \mathbb{R}^n is a scalar product.

Proof (continued). r.3. For vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{R}^n and a scalar $\alpha \in \mathbb{R}$, we have that

$$(\alpha \mathbf{x}) \cdot \mathbf{y} = \sum_{i=1}^{n} (\alpha x_i) y_i = \alpha \sum_{i=1}^{n} x_i y_i = \alpha (\mathbf{x} \cdot \mathbf{y}).$$

r.4. For vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{R}^n , we have that

$$\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} y_i x_i = \mathbf{y} \cdot \mathbf{x}_i$$

The standard scalar product in \mathbb{R}^n is a scalar product.

Proof (continued). r.3. For vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{R}^n and a scalar $\alpha \in \mathbb{R}$, we have that

$$(\alpha \mathbf{x}) \cdot \mathbf{y} = \sum_{i=1}^{n} (\alpha x_i) y_i = \alpha \sum_{i=1}^{n} x_i y_i = \alpha (\mathbf{x} \cdot \mathbf{y}).$$

r.4. For vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{R}^n , we have that

$$\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^n x_i y_i = \sum_{i=1}^n y_i x_i = \mathbf{y} \cdot \mathbf{x}.$$

This proves that the standard scalar product in \mathbb{R}^n really is a scalar product. \Box

The standard scalar product of vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{R}^n is given by $\mathbf{x} \cdot \mathbf{y} := \sum_{i=1}^n x_i y_i.$

Proposition 6.1.1

The standard scalar product in \mathbb{R}^n is a scalar product.

The standard scalar product of vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{R}^n is given by $\mathbf{x} \cdot \mathbf{y} := \sum_{i=1}^n x_i y_i.$

Proposition 6.1.1

The standard scalar product in \mathbb{R}^n is a scalar product.

• A similar type of scalar product can be defined for matrices.

The standard scalar product of vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{R}^n is given by $\mathbf{x} \cdot \mathbf{y} := \sum_{i=1}^n x_i y_i.$

Proposition 6.1.1

The standard scalar product in \mathbb{R}^n is a scalar product.

- A similar type of scalar product can be defined for matrices.
- Indeed, for matrices $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times m}$ and $B = \begin{bmatrix} b_{i,j} \end{bmatrix}_{n \times m}$ in $\mathbb{R}^{n \times m}$, we can define

$$\langle A,B\rangle = \sum_{i=1}^{n}\sum_{j=1}^{m}a_{ij}b_{ij}$$
The standard scalar product of vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{R}^n is given by $\mathbf{x} \cdot \mathbf{y} := \sum_{i=1}^n x_i y_i.$

Proposition 6.1.1

The standard scalar product in \mathbb{R}^n is a scalar product.

- A similar type of scalar product can be defined for matrices.
- Indeed, for matrices $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times m}$ and $B = \begin{bmatrix} b_{i,j} \end{bmatrix}_{n \times m}$ in $\mathbb{R}^{n \times m}$, we can define

$$\langle A,B\rangle = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}b_{ij}$$

 It is easy to verify that this really is a scalar product in ℝ^{n×m} (the proof is similar to that of Proposition 6.1.1).

The standard scalar product of vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{R}^n is given by $\mathbf{x} \cdot \mathbf{y} := \sum_{i=1}^n x_i y_i.$

Proposition 6.1.1

The standard scalar product in \mathbb{R}^n is a scalar product.

The standard scalar product of vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{R}^n is given by $\mathbf{x} \cdot \mathbf{y} := \sum_{i=1}^n x_i y_i.$

Proposition 6.1.1

The standard scalar product in \mathbb{R}^n is a scalar product.

• **Remark:** The standard scalar product is only one of many possible scalar products in \mathbb{R}^n .

The standard scalar product of vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{R}^n is given by $\mathbf{x} \cdot \mathbf{y} := \sum_{i=1}^n x_i y_i.$

Proposition 6.1.1

The standard scalar product in \mathbb{R}^n is a scalar product.

- **Remark:** The standard scalar product is only one of many possible scalar products in \mathbb{R}^n .
 - A full characterization of all possible scalar products in ℝⁿ will be given in a later lecture (in a couple of months).

• If you know calculus, here is an example with integrals:

• If you know calculus, here is an example with integrals:

Proposition 6.1.2

Let $a, b \in \mathbb{R}$ be such that a < b, and let $\mathcal{C}_{[a,b]}$ be the (real) vector space of all continuous functions from the closed interval [a, b] to \mathbb{R} . Then the function $\langle \cdot, \cdot \rangle : \mathcal{C}_{[a,b]} \times \mathcal{C}_{[a,b]} \to \mathbb{R}$ defined by

$$\langle f,g\rangle := \int_{a}^{b} f(x)g(x)dx$$

for all $f, g \in C_{[a,b]}$ is a scalar product.

• Proof: Lecture Notes (optional).

A scalar product (also called inner product) in a **complex** vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ that satisfies the following four axioms:

- c.1. for all $\mathbf{x} \in V$, $\langle \mathbf{x}, \mathbf{x} \rangle$ is a real number, $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$, and equality holds iff $\mathbf{x} = \mathbf{0}$;
- c.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$;
- c.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C}$, $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$;
- c.4. for all $\mathbf{x}, \mathbf{y} \in V$, $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$.

A scalar product (also called inner product) in a **complex** vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ that satisfies the following four axioms:

- c.1. for all $\mathbf{x} \in V$, $\langle \mathbf{x}, \mathbf{x} \rangle$ is a real number, $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$, and equality holds iff $\mathbf{x} = \mathbf{0}$;
- c.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$;
- c.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C}$, $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$;
- c.4. for all $\mathbf{x}, \mathbf{y} \in V$, $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$.
 - Axioms c.2 and c.3 guarantee that the scalar product in a complex vector space V is linear in the first variable (when we keep the second variable fixed).

A scalar product (also called inner product) in a **complex** vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ that satisfies the following four axioms:

- c.1. for all $\mathbf{x} \in V$, $\langle \mathbf{x}, \mathbf{x} \rangle$ is a real number, $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$, and equality holds iff $\mathbf{x} = \mathbf{0}$;
- c.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$;
- c.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C}$, $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$;

c.4. for all $\mathbf{x}, \mathbf{y} \in V$, $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$.

- Axioms c.2 and c.3 guarantee that the scalar product in a complex vector space V is linear in the first variable (when we keep the second variable fixed).
- Unlike in the real case, it is **not** linear in the second variable (when we keep the first variable fixed).
 - We do, however, have the following (next slide):

A scalar product (also called inner product) in a **complex** vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ that satisfies the following four axioms:

c.1. for all $\mathbf{x} \in V$, $\langle \mathbf{x}, \mathbf{x} \rangle$ is a real number, $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$, and equality holds iff $\mathbf{x} = \mathbf{0}$;

c.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$;

c.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C}$, $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$; c.4. for all $\mathbf{x}, \mathbf{y} \in V$, $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$.

c.2'. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$; c.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C}$, $\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \overline{\alpha} \langle \mathbf{x}, \mathbf{y} \rangle$. c.2'. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$; c.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C}$, $\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \overline{\alpha} \langle \mathbf{x}, \mathbf{y} \rangle$. *Proof.* c.2'. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$; c.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C}$, $\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \overline{\alpha} \langle \mathbf{x}, \mathbf{y} \rangle$. *Proof.* c.2'. For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, we have the following:

$$\begin{array}{ll} \langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle & \stackrel{\mathrm{c.4}}{=} & \overline{\langle \mathbf{y} + \mathbf{z}, \mathbf{x} \rangle} \\ & \stackrel{\mathrm{c.2}}{=} & \overline{\langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{z}, \mathbf{x} \rangle} \\ & = & \overline{\langle \mathbf{y}, \mathbf{x} \rangle} + \overline{\langle \mathbf{z}, \mathbf{x} \rangle} \\ & \stackrel{\mathrm{c.4}}{=} & \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle. \end{array}$$

c.2'. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$; c.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C}$, $\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \overline{\alpha} \langle \mathbf{x}, \mathbf{y} \rangle$. *Proof.* c.2'. For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, we have the following:

$$\begin{array}{ll} \langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle & \stackrel{\mathrm{c.4}}{=} & \overline{\langle \mathbf{y} + \mathbf{z}, \mathbf{x} \rangle} \\ & \stackrel{\mathrm{c.2}}{=} & \overline{\langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{z}, \mathbf{x} \rangle} \\ & = & \overline{\langle \mathbf{y}, \mathbf{x} \rangle} + \overline{\langle \mathbf{z}, \mathbf{x} \rangle} \\ & \stackrel{\mathrm{c.4}}{=} & \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle \end{array}$$

c.3'. For all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C}$, we have the following:

$$\langle \mathbf{x}, \alpha \mathbf{y} \rangle \stackrel{\mathsf{c.4}}{=} \overline{\langle \alpha \mathbf{y}, \mathbf{x} \rangle} \stackrel{\mathsf{c.3}}{=} \overline{\alpha} \overline{\langle \mathbf{y}, \mathbf{x} \rangle} = \overline{\alpha} \overline{\langle \mathbf{y}, \mathbf{x} \rangle} \stackrel{\mathsf{c.4}}{=} \overline{\alpha} \langle \mathbf{x}, \mathbf{y} \rangle.$$

A scalar product (also called inner product) in a **complex** vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ that satisfies the following four axioms:

c.1. for all $\mathbf{x} \in V$, $\langle \mathbf{x}, \mathbf{x} \rangle$ is a real number, $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$, and equality holds iff $\mathbf{x} = \mathbf{0}$;

c.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$;

c.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C}$, $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$; c.4. for all $\mathbf{x}, \mathbf{y} \in V$, $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$.

c.2'. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$; c.3'. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C}$, $\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \overline{\alpha} \langle \mathbf{x}, \mathbf{y} \rangle$.

The standard scalar product of vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{C}^n is given by $\mathbf{x} \cdot \mathbf{y} := \sum_{i=1}^n x_i \overline{y_i}.$

• For example, for vectors $\begin{bmatrix} 1-2i & -2+i \end{bmatrix}^{T}$ and $\begin{bmatrix} 2+i & 1+3i \end{bmatrix}^{T}$ in \mathbb{C}^{2} , we compute: $\begin{bmatrix} 1-2i \\ -2+i \end{bmatrix} \cdot \begin{bmatrix} 2+i \\ 1+3i \end{bmatrix} = (1-2i)\overline{(2+i)} + (-2+i)\overline{(1+3i)}$ = (1-2i)(2-i) + (-2+i)(1-3i)= 1+2i.

The standard scalar product of vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ in \mathbb{C}^n is given by $\mathbf{x} \cdot \mathbf{y} := \sum_{i=1}^n x_i \overline{y_i}.$

Proposition 6.1.3

The standard scalar product in \mathbb{C}^n is a scalar product.

• Proof: Lecture Notes (similar to the real case).

- When our scalar product is the **standard** scalar product in \mathbb{R}^n , this corresponds to the usual geometric interpretation.
 - Details: Later!

- When our scalar product is the **standard** scalar product in \mathbb{R}^n , this corresponds to the usual geometric interpretation.
 - Details: Later!
- However, for general scalar products, this is how we **define** orthogonality.

- When our scalar product is the **standard** scalar product in \mathbb{R}^n , this corresponds to the usual geometric interpretation.
 - Details: Later!
- However, for general scalar products, this is how we **define** orthogonality.
 - For example, for the scalar product defined on $C_{[-\pi,\pi]}$ in Proposition 6.1.2 (the one with integrals), we have that

$$\sin x \perp \cos x$$
,

since
$$\langle \sin x, \cos x \rangle = \int_{-\pi}^{\pi} \sin x \cos x dx = 0.$$

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Then all the following hold:

- (a) for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $\mathbf{x} \perp \mathbf{y}$ iff $\mathbf{y} \perp \mathbf{x}$;
- for all vectors $\mathbf{x}, \mathbf{y} \in V$ and scalars α, β, a if $\mathbf{x} \perp \mathbf{y}$ then $(\alpha \mathbf{x}) \perp (\beta \mathbf{y});$
- **③** for all vectors $\mathbf{x} \in V$, we have that $\mathbf{x} \perp \mathbf{0}$ and $\mathbf{0} \perp \mathbf{x}$.

*Here, α and β are real or complex numbers, depending on whether V is a real or complex vector space.

Proof.

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Then all the following hold:

- (a) for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $\mathbf{x} \perp \mathbf{y}$ iff $\mathbf{y} \perp \mathbf{x}$;
- for all vectors $\mathbf{x}, \mathbf{y} \in V$ and scalars α, β, a if $\mathbf{x} \perp \mathbf{y}$ then $(\alpha \mathbf{x}) \perp (\beta \mathbf{y});$
- **③** for all vectors $\mathbf{x} \in V$, we have that $\mathbf{x} \perp \mathbf{0}$ and $\mathbf{0} \perp \mathbf{x}$.

*Here, α and β are real or complex numbers, depending on whether V is a real or complex vector space.

Proof. We prove the proposition for the case when V is a complex vector space. The real case is similar but slightly easier (because we do not have to deal with complex conjugates).

(a) for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $\mathbf{x} \perp \mathbf{y}$ iff $\mathbf{y} \perp \mathbf{x}$

Proof (continued). (a) For vectors $\mathbf{x}, \mathbf{y} \in V$, we have the following sequence of equivalences:

$$\begin{array}{lll} \mathbf{x} \perp \mathbf{y} & \Longleftrightarrow & \langle \mathbf{x}, \mathbf{y} \rangle = 0 & \text{by definition} \\ & \Leftrightarrow & \overline{\langle \mathbf{y}, \mathbf{x} \rangle} = 0 & \text{by c.4} \\ & \Leftrightarrow & \langle \mathbf{y}, \mathbf{x} \rangle = 0 \\ & \Leftrightarrow & \mathbf{y} \perp \mathbf{x} & \text{by definition.} \end{array}$$

If or all vectors x, y ∈ V and scalars α, β, if x ⊥ y then (αx) ⊥ (βy)

Proof (continued). (b) Fix vectors $\mathbf{x}, \mathbf{y} \in V$ and scalars $\alpha, \beta \in \mathbb{C}$, and assume that $\mathbf{x} \perp \mathbf{y}$. Then we compute:

$$\langle \alpha \mathbf{x}, \beta \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \beta \mathbf{y} \rangle$$
 by c.3
$$= \alpha \overline{\beta} \langle \mathbf{x}, \mathbf{y} \rangle$$
 by c.3'
$$= \alpha \overline{\beta} 0$$
 beause $\mathbf{x} \perp \mathbf{y}$
$$= 0$$

So, $(\alpha \mathbf{x}) \perp (\beta \mathbf{y})$.

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Then all the following hold:

- **(a)** for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $\mathbf{x} \perp \mathbf{y}$ iff $\mathbf{y} \perp \mathbf{x}$;
- for all vectors $\mathbf{x}, \mathbf{y} \in V$ and scalars α, β, a if $\mathbf{x} \perp \mathbf{y}$ then $(\alpha \mathbf{x}) \perp (\beta \mathbf{y});$
- If or all vectors $\mathbf{x} \in V$, we have that $\mathbf{x} \perp \mathbf{0}$ and $\mathbf{0} \perp \mathbf{x}$.

^aHere, α and β are real or complex numbers, depending on whether V is a real or complex vector space.

Proof (continued). (c) Fix any vector $\mathbf{x} \in V$. We then have that

$$\langle \mathbf{0}, \mathbf{x} \rangle = \langle 0\mathbf{0}, \mathbf{x} \rangle \stackrel{\text{c.3}}{=} 0 \langle \mathbf{0}, \mathbf{x} \rangle = 0,$$

and so $\mathbf{0} \perp \mathbf{x}$. The fact that $\mathbf{x} \perp \mathbf{0}$ now follows from (a). \Box

Given a real or complex vector space V, equipped with a scalar product $\langle \cdot, \cdot \rangle$, we say that vectors **x** and **y** in V are *orthogonal*, and we write **x** \perp **y**, if \langle **x**, **y** $\rangle = 0$.

• Suppose that V is a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$.

- Suppose that V is a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$.
 - For a vector v ∈ V and a set of vectors A ⊆ V, we say that v is orthogonal to A, and we write v ⊥ A, provided that v is orthogonal to all vectors in A.
 - By definition, this means that for all ${\bf a}\in A,$ we have that $\langle {\bf v}, {\bf a} \rangle = 0.$

- Suppose that V is a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$.
 - For a vector v ∈ V and a set of vectors A ⊆ V, we say that v is orthogonal to A, and we write v ⊥ A, provided that v is orthogonal to all vectors in A.
 - By definition, this means that for all $\mathbf{a} \in A$, we have that $\langle \mathbf{v}, \mathbf{a} \rangle = 0$.
 - For sets of vectors A, B ⊆ V, we say that A is orthogonal to B, and we write A ⊥ B, if every vector in A is orthogonal to every vector in B.

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\mathbf{a}_1, \ldots, \mathbf{a}_p, \mathbf{b}_1, \ldots, \mathbf{b}_q \in V$, and assume that $\{\mathbf{a}_1, \ldots, \mathbf{a}_p\} \perp \{\mathbf{b}_1, \ldots, \mathbf{b}_q\}$. Then $\text{Span}(\mathbf{a}_1, \ldots, \mathbf{a}_p) \perp \text{Span}(\mathbf{b}_1, \ldots, \mathbf{b}_q)$.

Proof.

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\mathbf{a}_1, \ldots, \mathbf{a}_p, \mathbf{b}_1, \ldots, \mathbf{b}_q \in V$, and assume that $\{\mathbf{a}_1, \ldots, \mathbf{a}_p\} \perp \{\mathbf{b}_1, \ldots, \mathbf{b}_q\}$. Then $\text{Span}(\mathbf{a}_1, \ldots, \mathbf{a}_p) \perp \text{Span}(\mathbf{b}_1, \ldots, \mathbf{b}_q)$.

Proof. Fix $\mathbf{a} \in \text{Span}(\mathbf{a}_1, \dots, \mathbf{a}_p)$ and $\mathbf{b} \in \text{Span}(\mathbf{b}_1, \dots, \mathbf{b}_q)$. Then there exist scalars $\alpha_1, \dots, \alpha_p, \beta_1, \dots, \beta_q$ s.t.

 $\mathbf{a} = \alpha_1 \mathbf{a}_1 + \dots + \alpha_p \mathbf{a}_p$ and $\mathbf{b} = \beta_1 \mathbf{b}_1 + \dots + \beta_q \mathbf{b}_q$.

We now compute (next slide):

Proof (continued).

$$\begin{aligned} \langle \mathbf{a}, \mathbf{b} \rangle &= \left\langle \sum_{i=1}^{p} \alpha_i \mathbf{a}_i, \sum_{j=1}^{q} \beta_j \mathbf{b}_j \right\rangle \\ &= \sum_{i=1}^{p} \left\langle \alpha_i \mathbf{a}_i, \sum_{j=1}^{q} \beta_j \mathbf{b}_j \right\rangle \qquad \text{by r.2 or c.2} \\ &= \sum_{i=1}^{p} \sum_{j=1}^{q} \underbrace{\langle \alpha_i \mathbf{a}_i, \beta_j \mathbf{b}_j \rangle}_{\stackrel{(*)}{=} 0} \qquad \text{by r.2' or c.2'} \\ &= 0, \end{aligned}$$

where (*) follows from Proposition 6.1.4(b) and from the fact that $\{\mathbf{a}_1, \ldots, \mathbf{a}_p\} \perp \{\mathbf{b}_1, \ldots, \mathbf{b}_q\}$. This proves that $\mathbf{a} \perp \mathbf{b}$, and the result follows. \Box

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\mathbf{a}_1, \ldots, \mathbf{a}_p, \mathbf{b}_1, \ldots, \mathbf{b}_q \in V$, and assume that $\{\mathbf{a}_1, \ldots, \mathbf{a}_p\} \perp \{\mathbf{b}_1, \ldots, \mathbf{b}_q\}$. Then $\text{Span}(\mathbf{a}_1, \ldots, \mathbf{a}_p) \perp \text{Span}(\mathbf{b}_1, \ldots, \mathbf{b}_q)$.

The norm induced by a scalar product

- The norm induced by a scalar product
 - Our goal is to introduce the notion of a "norm" $|| \cdot ||$ in a real or complex vector space V.
- The norm induced by a scalar product
 - Our goal is to introduce the notion of a "norm" || · || in a real or complex vector space V.
 - The idea is that for a vector x ∈ V, ||x|| is the distance from x to the origin, or alternatively, the length of the vector x;
 ||x|| is always supposed to be a non-negative real number (even if V is a complex vector space).

- The norm induced by a scalar product
 - Our goal is to introduce the notion of a "norm" || · || in a real or complex vector space V.
 - The idea is that for a vector x ∈ V, ||x|| is the distance from x to the origin, or alternatively, the length of the vector x;
 ||x|| is always supposed to be a non-negative real number (even if V is a complex vector space).
 - For vectors $\mathbf{x}, \mathbf{y} \in V$, $||\mathbf{x} \mathbf{y}||$ is supposed to be the distance between \mathbf{x} and \mathbf{y} .

- The norm induced by a scalar product
 - Our goal is to introduce the notion of a "norm" || · || in a real or complex vector space V.
 - The idea is that for a vector x ∈ V, ||x|| is the distance from x to the origin, or alternatively, the length of the vector x;
 ||x|| is always supposed to be a non-negative real number (even if V is a complex vector space).
 - For vectors $\mathbf{x}, \mathbf{y} \in V$, $||\mathbf{x} \mathbf{y}||$ is supposed to be the distance between \mathbf{x} and \mathbf{y} .
 - Distance can be defined in a variety of ways.

- The norm induced by a scalar product
 - Our goal is to introduce the notion of a "norm" || · || in a real or complex vector space V.
 - The idea is that for a vector x ∈ V, ||x|| is the distance from x to the origin, or alternatively, the length of the vector x;
 ||x|| is always supposed to be a non-negative real number (even if V is a complex vector space).
 - For vectors $\mathbf{x}, \mathbf{y} \in V$, $||\mathbf{x} \mathbf{y}||$ is supposed to be the distance between \mathbf{x} and \mathbf{y} .
 - Distance can be defined in a variety of ways.
 - We first study norms induced by a scalar product.

- The norm induced by a scalar product
 - Our goal is to introduce the notion of a "norm" || · || in a real or complex vector space V.
 - The idea is that for a vector x ∈ V, ||x|| is the distance from x to the origin, or alternatively, the length of the vector x;
 ||x|| is always supposed to be a non-negative real number (even if V is a complex vector space).
 - For vectors $\mathbf{x}, \mathbf{y} \in V$, $||\mathbf{x} \mathbf{y}||$ is supposed to be the distance between \mathbf{x} and \mathbf{y} .
 - Distance can be defined in a variety of ways.
 - We first study norms induced by a scalar product.
 - Later, we will define the norm in general and give some examples.

Definition

Given a scalar product $\langle \cdot, \cdot \rangle$ in a real or complex vector space V, we define the *norm in* V *induced by* $\langle \cdot, \cdot \rangle$ to be the function $|| \cdot || : V \to \mathbb{R}$ given by

$$||\mathbf{x}|| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \quad \forall \mathbf{x} \in V.$$

Definition

Given a scalar product $\langle \cdot, \cdot \rangle$ in a real or complex vector space V, we define the *norm in* V *induced by* $\langle \cdot, \cdot \rangle$ to be the function $|| \cdot || : V \to \mathbb{R}$ given by

$$||\mathbf{x}|| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \quad \forall \mathbf{x} \in V.$$

In view of r.1 and c.1, for all x ∈ V, we have that ||x|| is a non-negative real number, and moreover, ||x|| = 0 iff x = 0.

Proposition 6.2.1

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Then for all vectors $\mathbf{x} \in V$ and scalars α ,^{*a*} we have that

$$|\alpha \mathbf{x}|| = |\alpha| ||\mathbf{x}||.$$

^aSo, α is a real or complex number, depending on whether the vector space V is real or complex.

Proof.

Proposition 6.2.1

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Then for all vectors $\mathbf{x} \in V$ and scalars α ,^{*a*} we have that

$$|\alpha \mathbf{x}|| = |\alpha| ||\mathbf{x}||.$$

aSo, α is a real or complex number, depending on whether the vector space V is real or complex.

Proof. We consider only the complex case. The real case is similar but easier (because we do not have to deal with complex conjugates).

Proof (continued). So, assume that V is a complex vector space.

Proof (continued). So, assume that V is a complex vector space. Then for all vectors $\mathbf{x} \in V$ and scalars $\alpha \in \mathbb{C}$, we have that

$$\begin{aligned} ||\alpha \mathbf{x}|| &= \sqrt{\langle \alpha \mathbf{x}, \alpha \mathbf{x} \rangle} \\ &= \sqrt{\alpha \overline{\alpha} \langle \mathbf{x}, \mathbf{x} \rangle} \quad \text{by c.3 and c.3'} \\ &= \sqrt{|\alpha|^2 \langle \mathbf{x}, \mathbf{x} \rangle} \quad \text{by Proposition 0.3.2} \\ &= |\alpha| \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \\ &= |\alpha| ||\mathbf{x}||. \end{aligned}$$

This completes the argument. \Box

Definition

Given a scalar product $\langle \cdot, \cdot \rangle$ in a real or complex vector space V, we define the *norm in* V *induced by* $\langle \cdot, \cdot \rangle$ to be the function $|| \cdot || : V \to \mathbb{R}$ given by

$$|\mathbf{x}|| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \quad \forall \mathbf{x} \in V.$$

Definition

Given a scalar product $\langle \cdot, \cdot \rangle$ in a real or complex vector space V, we define the *norm in* V *induced by* $\langle \cdot, \cdot \rangle$ to be the function $|| \cdot || : V \to \mathbb{R}$ given by

$$||\mathbf{x}|| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \quad \forall \mathbf{x} \in V.$$

• Note that if $|| \cdot ||$ is the norm induced by the **standard** scalar product in \mathbb{R}^n , then for all vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ in \mathbb{R}^n , we have that

$$||\mathbf{x}|| = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{\sum_{i=1}^{n} x_i^2}.$$

So, we simply get the standard Euclidean length in \mathbb{R}^n .

• Suppose once again that $|| \cdot ||$ is the norm induced by the standard scalar product in \mathbb{R}^n .

- Suppose once again that || · || is the norm induced by the standard scalar product in ℝⁿ.
- It turns out that if $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ are non-zero vectors in \mathbb{R}^n , then

$$\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| \, ||\mathbf{y}|| \, \cos \theta,$$

where θ is the angle between **x** and **y**.

- Suppose once again that || · || is the norm induced by the standard scalar product in ℝⁿ.
- It turns out that if $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ are non-zero vectors in \mathbb{R}^n , then

$$\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| \, ||\mathbf{y}|| \, \cos \theta,$$

where θ is the angle between **x** and **y**.

Let us justify this!

- Suppose once again that || · || is the norm induced by the standard scalar product in ℝⁿ.
- It turns out that if $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ are non-zero vectors in \mathbb{R}^n , then

$$\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| \, ||\mathbf{y}|| \, \cos \theta,$$

where θ is the angle between **x** and **y**.

- Let us justify this!
- Consider the triangle formed by x, y, and z := x y, and let θ be the angle between x and y in this triangle.

• We then compute:

$$|\mathbf{z}||^2 = \mathbf{z} \cdot \mathbf{z}$$

= $(\mathbf{x} - \mathbf{y}) \cdot (\mathbf{x} - \mathbf{y})$
= $\underbrace{\mathbf{x} \cdot \mathbf{x}}_{=||\mathbf{x}||^2} - \mathbf{x} \cdot \mathbf{y} - \mathbf{y} \cdot \mathbf{x} + \underbrace{\mathbf{y} \cdot \mathbf{y}}_{=||\mathbf{y}||^2}$
= $||\mathbf{x}||^2 + ||\mathbf{y}||^2 - 2\mathbf{x} \cdot \mathbf{y}$

• Reminder: $||\mathbf{z}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2 - 2\mathbf{x} \cdot \mathbf{y}$.

- Reminder: $||\mathbf{z}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2 2\mathbf{x} \cdot \mathbf{y}$.
- On the other hand, the Law of Cosines (for triangles) tells us that

$$||\mathbf{z}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2 - 2||\mathbf{x}|| ||\mathbf{y}|| \cos \theta.$$

- Reminder: $||\mathbf{z}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2 2\mathbf{x} \cdot \mathbf{y}$.
- On the other hand, the Law of Cosines (for triangles) tells us that

$$||\mathbf{z}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2 - 2||\mathbf{x}|| ||\mathbf{y}|| \cos \theta.$$

So,

$$||\mathbf{x}||^2 + ||\mathbf{y}||^2 - 2\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}||^2 + ||\mathbf{y}||^2 - 2||\mathbf{x}|| ||\mathbf{y}|| \cos \theta,$$

and consequently,

$$\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| \, ||\mathbf{y}|| \, \cos \theta,$$

as we had claimed.

• Reminder: $\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| ||\mathbf{y}|| \cos \theta$.

- Reminder: $\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| ||\mathbf{y}|| \cos \theta$.
- Note that this means that non-zero vectors x, y ∈ ℝⁿ are orthogonal in the usual geometric sense (i.e. the angle between them is 90°) iff x y = 0.
 - This is because for an angle θ , with $0^{\circ} \le \theta \le 180^{\circ}$, we have that $\cos \theta = 0$ iff $\theta = 90^{\circ}$.

- Reminder: $\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| ||\mathbf{y}|| \cos \theta$.
- Note that this means that non-zero vectors x, y ∈ ℝⁿ are orthogonal in the usual geometric sense (i.e. the angle between them is 90°) iff x y = 0.
 - This is because for an angle θ , with $0^{\circ} \le \theta \le 180^{\circ}$, we have that $\cos \theta = 0$ iff $\theta = 90^{\circ}$.
- Warning: The formula x y = ||x|| ||y|| cos θ works for the standard scalar product in ℝⁿ and the norm induced by it. Do not attempt to use it for general scalar products!

The Pythagorean theorem

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Then for all $\mathbf{x}, \mathbf{y} \in V$ such that $\mathbf{x} \perp \mathbf{y}$, we have that

$$||\mathbf{x} + \mathbf{y}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2.$$

Proof.

The Pythagorean theorem

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Then for all $\mathbf{x}, \mathbf{y} \in V$ such that $\mathbf{x} \perp \mathbf{y}$, we have that

$$||\mathbf{x} + \mathbf{y}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2.$$

Proof. Fix $\mathbf{x}, \mathbf{y} \in V$ s.t. $\mathbf{x} \perp \mathbf{y}$.

The Pythagorean theorem

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Then for all $\mathbf{x}, \mathbf{y} \in V$ such that $\mathbf{x} \perp \mathbf{y}$, we have that

$$||\mathbf{x} + \mathbf{y}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2.$$

Proof. Fix $\mathbf{x}, \mathbf{y} \in V$ s.t. $\mathbf{x} \perp \mathbf{y}$. Then $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ and $\langle \mathbf{y}, \mathbf{x} \rangle = 0$.

Proof (continued). So,

$$||\mathbf{x} + \mathbf{y}||^{2} = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$

= $\underbrace{\langle \mathbf{x}, \mathbf{x} \rangle}_{=||\mathbf{x}||^{2}} + \underbrace{\langle \mathbf{x}, \mathbf{y} \rangle}_{=0} + \underbrace{\langle \mathbf{y}, \mathbf{x} \rangle}_{=0} + \underbrace{\langle \mathbf{y}, \mathbf{y} \rangle}_{=||\mathbf{y}||^{2}}$
= $||\mathbf{x}||^{2} + ||\mathbf{y}||^{2}$,

which is what we needed to show. \Box

The Pythagorean theorem

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Then for all $\mathbf{x}, \mathbf{y} \in V$ such that $\mathbf{x} \perp \mathbf{y}$, we have that

$$||\mathbf{x} + \mathbf{y}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2.$$

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||.$ Then

 $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$

Proof.

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||.$ Then

 $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$

Proof. Fix $\mathbf{x}, \mathbf{y} \in V$.

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||.$ Then

 $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$

Proof. Fix $\mathbf{x}, \mathbf{y} \in V$. WMA $\langle \mathbf{x}, \mathbf{y} \rangle \neq 0$, for otherwise, the result is immediate.

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||.$ Then

 $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$

Proof. Fix $\mathbf{x}, \mathbf{y} \in V$. WMA $\langle \mathbf{x}, \mathbf{y} \rangle \neq 0$, for otherwise, the result is immediate. Note that this implies that $\mathbf{x}, \mathbf{y} \neq \mathbf{0}$, and consequently, $||\mathbf{x}||, ||\mathbf{y}|| \neq 0$.

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||.$ Then

 $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$

Proof. Fix $\mathbf{x}, \mathbf{y} \in V$. WMA $\langle \mathbf{x}, \mathbf{y} \rangle \neq 0$, for otherwise, the result is immediate. Note that this implies that $\mathbf{x}, \mathbf{y} \neq \mathbf{0}$, and consequently, $||\mathbf{x}||, ||\mathbf{y}|| \neq 0$.

We set

$$z := \frac{\langle y, y \rangle}{\langle x, y \rangle} x - y,$$

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||$. Then

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$$

Proof. Fix $\mathbf{x}, \mathbf{y} \in V$. WMA $\langle \mathbf{x}, \mathbf{y} \rangle \neq 0$, for otherwise, the result is immediate. Note that this implies that $\mathbf{x}, \mathbf{y} \neq \mathbf{0}$, and consequently, $||\mathbf{x}||, ||\mathbf{y}|| \neq 0$.

We set

$$\mathbf{z} := \frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle} \mathbf{x} - \mathbf{y},$$

and we compute

$$\langle \mathbf{z}, \mathbf{y} \rangle = \langle \frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle} \mathbf{x} - \mathbf{y}, \mathbf{y} \rangle \stackrel{(*)}{=} \frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle} \langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{y} \rangle = 0,$$

where (*) follows from r.2 and r.3 if V is a real vector space, or from c.2 and c.3 if V is a complex vector space.
Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||$. Then

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$$

Proof. Fix $\mathbf{x}, \mathbf{y} \in V$. WMA $\langle \mathbf{x}, \mathbf{y} \rangle \neq 0$, for otherwise, the result is immediate. Note that this implies that $\mathbf{x}, \mathbf{y} \neq \mathbf{0}$, and consequently, $||\mathbf{x}||, ||\mathbf{y}|| \neq 0$.

We set

$$\mathbf{z} := \frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle} \mathbf{x} - \mathbf{y},$$

and we compute

$$\langle \mathbf{z}, \mathbf{y} \rangle = \langle \frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle} \mathbf{x} - \mathbf{y}, \mathbf{y} \rangle \stackrel{(*)}{=} \frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle} \langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{y} \rangle = 0,$$

where (*) follows from r.2 and r.3 if V is a real vector space, or from c.2 and c.3 if V is a complex vector space. So, $\mathbf{z} \perp \mathbf{y}$.

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Then

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$$

Proof (continued). Reminder: $\mathbf{z} := \frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle} \mathbf{x} - \mathbf{y}; \mathbf{z} \perp \mathbf{y}.$

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||.$ Then

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$$

Proof (continued). Reminder: $\mathbf{z} := \frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle} \mathbf{x} - \mathbf{y}; \mathbf{z} \perp \mathbf{y}.$

By the Pythagorean theorem, we have that $||\mathbf{z} + \mathbf{y}||^2 = ||\mathbf{z}||^2 + ||\mathbf{y}||^2$, and consequently:

$$||\mathbf{z} + \mathbf{y}|| = ||\frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle} \mathbf{x}|| \stackrel{(*)}{=} |\frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle}| ||\mathbf{x}|| = \frac{|\langle \mathbf{y}, \mathbf{y} \rangle|}{|\langle \mathbf{x}, \mathbf{y} \rangle|} ||\mathbf{x}||,$$

where (*) follows from Proposition 6.2.1.

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||.$ Then

$$|\langle \mathbf{x}, \mathbf{y}
angle| \leq ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$$

Proof (continued). Reminder: $\mathbf{z} := \frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle} \mathbf{x} - \mathbf{y}; \mathbf{z} \perp \mathbf{y}.$

By the Pythagorean theorem, we have that $||\mathbf{z} + \mathbf{y}||^2 = ||\mathbf{z}||^2 + ||\mathbf{y}||^2$, and consequently:

$$||\mathbf{z} + \mathbf{y}|| = ||\frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle} \mathbf{x}|| \stackrel{(*)}{=} |\frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle}| ||\mathbf{x}|| = \frac{|\langle \mathbf{y}, \mathbf{y} \rangle|}{|\langle \mathbf{x}, \mathbf{y} \rangle|} ||\mathbf{x}||,$$

where (*) follows from Proposition 6.2.1. So,

$$\frac{||\mathbf{y}||^4}{|\langle \mathbf{x}, \mathbf{y} \rangle|^2} \ ||\mathbf{x}||^2 = ||\mathbf{z} + \mathbf{y}||^2 = ||\mathbf{z}||^2 + ||\mathbf{y}||^2 \geq ||\mathbf{y}||^2,$$

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||.$ Then

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$$

Proof (continued). Reminder: $\mathbf{z} := \frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle} \mathbf{x} - \mathbf{y}; \mathbf{z} \perp \mathbf{y}.$

By the Pythagorean theorem, we have that $||\mathbf{z} + \mathbf{y}||^2 = ||\mathbf{z}||^2 + ||\mathbf{y}||^2$, and consequently:

$$||\mathbf{z} + \mathbf{y}|| = ||\frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle} \mathbf{x}|| \stackrel{(*)}{=} |\frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle}| ||\mathbf{x}|| = \frac{|\langle \mathbf{y}, \mathbf{y} \rangle|}{|\langle \mathbf{x}, \mathbf{y} \rangle|} ||\mathbf{x}||,$$

where (*) follows from Proposition 6.2.1. So,

$$\frac{||\mathbf{y}||^4}{|\langle \mathbf{x}, \mathbf{y} \rangle|^2} \ ||\mathbf{x}||^2 = ||\mathbf{z} + \mathbf{y}||^2 = ||\mathbf{z}|^2 + ||\mathbf{y}||^2 \geq ||\mathbf{y}||^2,$$

which yields

$$\frac{||\mathbf{y}||^4}{|\langle \mathbf{x}, \mathbf{y} \rangle|^2} ||\mathbf{x}||^2 \geq ||\mathbf{y}||^2.$$

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||$. Then

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$$

Proof (continued). Reminder: $\frac{||\mathbf{y}||^4}{|\langle \mathbf{x}, \mathbf{y} \rangle|^2} ||\mathbf{x}||^2 \ge ||\mathbf{y}||^2$.

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||$. Then

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$$

Proof (continued). Reminder: $\frac{||\mathbf{y}||^4}{|\langle \mathbf{x}, \mathbf{y} \rangle|^2} ||\mathbf{x}||^2 \ge ||\mathbf{y}||^2$.

Since $\langle \mathbf{x}, \mathbf{y} \rangle$ and $||\mathbf{y}||$ are both non-zero, we have that $\frac{|\langle \mathbf{x}, \mathbf{y} \rangle|^2}{||\mathbf{y}||^2}$ is defined and positive.

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||$. Then

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$$

Proof (continued). Reminder: $\frac{||\mathbf{y}||^4}{|\langle \mathbf{x}, \mathbf{y} \rangle|^2} ||\mathbf{x}||^2 \ge ||\mathbf{y}||^2$.

Since $\langle \mathbf{x}, \mathbf{y} \rangle$ and $||\mathbf{y}||$ are both non-zero, we have that $\frac{|\langle \mathbf{x}, \mathbf{y} \rangle|^2}{||\mathbf{y}||^2}$ is defined and positive. So, we may multiply both sides of the inequality above by $\frac{|\langle \mathbf{x}, \mathbf{y} \rangle|^2}{||\mathbf{y}||^2}$ to obtain

 $||\mathbf{x}||^2||\mathbf{y}||^2 \ \geq \ |\langle \mathbf{x}, \mathbf{y} \rangle|^2.$

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||$. Then

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$$

Proof (continued). Reminder: $\frac{||\mathbf{y}||^4}{|\langle \mathbf{x}, \mathbf{y} \rangle|^2} ||\mathbf{x}||^2 \ge ||\mathbf{y}||^2$.

Since $\langle \mathbf{x}, \mathbf{y} \rangle$ and $||\mathbf{y}||$ are both non-zero, we have that $\frac{|\langle \mathbf{x}, \mathbf{y} \rangle|^2}{||\mathbf{y}||^2}$ is defined and positive. So, we may multiply both sides of the inequality above by $\frac{|\langle \mathbf{x}, \mathbf{y} \rangle|^2}{||\mathbf{y}||^2}$ to obtain

$$||\mathbf{x}||^2 ||\mathbf{y}||^2 \geq |\langle \mathbf{x}, \mathbf{y} \rangle|^2.$$

By taking the square root of both sides, we get

$$||\mathbf{x}|| \; ||\mathbf{y}|| \;\; \geq \;\; |\langle \mathbf{x}, \mathbf{y} \rangle|,$$

which is what we needed to show. \Box

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||$. Then

 $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||$. Then

 $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$

Corollary 6.2.2

For all $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}$, we have that

$$\Big(\sum_{i=1}^n x_i y_i\Big)^2 \leq \Big(\sum_{i=1}^n x_i^2\Big)\Big(\sum_{i=1}^n y_i^2\Big).$$

Proof.

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||.$ Then

 $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$

Corollary 6.2.2

For all $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}$, we have that

$$\Big(\sum_{i=1}^n x_i y_i\Big)^2 \leq \Big(\sum_{i=1}^n x_i^2\Big)\Big(\sum_{i=1}^n y_i^2\Big).$$

Proof. If we consider the standard scalar product in \mathbb{R}^n , the Cauchy-Schwarz inequality yields

$$\left|\sum_{i=1}^n x_i y_i\right| \leq \sqrt{\sum_{i=1}^n x_i^2} \sqrt{\sum_{i=1}^n y_i^2}.$$

for all $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}$. By squaring both sides, we obtain the desired inequality. \Box

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||$. Then

 $||\mathbf{x} + \mathbf{y}|| \leq ||\mathbf{x}|| + ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$

Proof.

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||$. Then

 $||\mathbf{x} + \mathbf{y}|| \leq ||\mathbf{x}|| + ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$

Proof. We prove the result for the case when V is a complex vector space. The real case is similar but slightly easier (because we do not have to deal with complex conjugates).

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||$. Then

 $||\mathbf{x} + \mathbf{y}|| \leq ||\mathbf{x}|| + ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in V.$

Proof. We prove the result for the case when V is a complex vector space. The real case is similar but slightly easier (because we do not have to deal with complex conjugates).

We first remark that for all complex numbers z = a + ib (where $a, b \in \mathbb{R}$), we have that

• $z + \overline{z} = 2a = 2\operatorname{Re}(z);$

•
$$\operatorname{Re}(z) = a \le |a| \le \sqrt{a^2 + b^2} = |z|.$$

Proof (continued). Now, fix $\mathbf{x}, \mathbf{y} \in V$.

Proof (continued). Now, fix $\mathbf{x}, \mathbf{y} \in V$. Then we have the following:

$$\begin{aligned} ||\mathbf{x} + \mathbf{y}||^2 &= \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle \\ &= \underbrace{\langle \mathbf{x}, \mathbf{x} \rangle}_{=||\mathbf{x}||^2} + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \underbrace{\langle \mathbf{y}, \mathbf{y} \rangle}_{=||\mathbf{y}||^2} \qquad \text{by c.2 and c.2'} \\ &= ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle \\ &= ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + \langle \mathbf{x}, \mathbf{y} \rangle + \overline{\langle \mathbf{x}, \mathbf{y} \rangle} \qquad \text{by c.4} \\ &= ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + 2\text{Re}(\langle \mathbf{x}, \mathbf{y} \rangle) \\ &\leq ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + 2|\langle \mathbf{x}, \mathbf{y} \rangle| \\ &\leq ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + 2||\mathbf{x}|| ||\mathbf{y}|| \qquad \text{by C-S} \le \\ &= (||\mathbf{x}|| + ||\mathbf{y}||)^2. \end{aligned}$$

Proof (continued). Now, fix $\mathbf{x}, \mathbf{y} \in V$. Then we have the following:

$$||\mathbf{x} + \mathbf{y}||^{2} = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$

$$= \underbrace{\langle \mathbf{x}, \mathbf{x} \rangle}_{=||\mathbf{x}||^{2}} + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \underbrace{\langle \mathbf{y}, \mathbf{y} \rangle}_{=||\mathbf{y}||^{2}} \quad \text{by c.2 and c.2'}$$

$$= ||\mathbf{x}||^{2} + ||\mathbf{y}||^{2} + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle$$

$$= ||\mathbf{x}||^{2} + ||\mathbf{y}||^{2} + \langle \mathbf{x}, \mathbf{y} \rangle + \overline{\langle \mathbf{x}, \mathbf{y} \rangle} \quad \text{by c.4}$$

$$= ||\mathbf{x}||^{2} + ||\mathbf{y}||^{2} + 2\text{Re}(\langle \mathbf{x}, \mathbf{y} \rangle)$$

$$\leq ||\mathbf{x}||^{2} + ||\mathbf{y}||^{2} + 2|\langle \mathbf{x}, \mathbf{y} \rangle|$$

$$\leq ||\mathbf{x}||^{2} + ||\mathbf{y}||^{2} + 2||\mathbf{x}|| ||\mathbf{y}|| \quad \text{by C-S} \leq$$

$$= (||\mathbf{x}|| + ||\mathbf{y}||)^{2}.$$

By taking the square root of both sides, we obtain $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$, which is what we needed to show. \Box

Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot,\cdot\rangle$ and the induced norm $||\cdot||.$ Then

5 The norm in general

The norm in general

Definition

A norm in a real or complex vector space V is a function

- $||\cdot||: V \to \mathbb{R}$ that satisfies the following three axioms:
- n.1. for all vectors $\mathbf{x} \in V$, we have that $||\mathbf{x}|| \ge 0$, and equality holds iff $\mathbf{x} = \mathbf{0}$;
- n.2. for all vectors $\mathbf{x} \in V$ and scalars α ,^{*a*} we have that $||\alpha \mathbf{x}|| = |\alpha| ||\mathbf{x}||$;

n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$.

^aSo, α is a real or complex number, depending on whether the vector space V is real or complex.

A norm in a real or complex vector space V is a function $|| \cdot || : V \to \mathbb{R}$ that satisfies the following three axioms:

- n.1. for all vectors $\mathbf{x} \in V$, we have that $||\mathbf{x}|| \ge 0$, and equality holds iff $\mathbf{x} = \mathbf{0}$;
- n.2. for all vectors $\mathbf{x} \in V$ and scalars α , we have that $||\alpha \mathbf{x}|| = |\alpha| ||\mathbf{x}||$;

n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$.

- A norm in a real or complex vector space V gives a way of measuring the distance of a vector from the origin, or equivalently, measuring the length of a vector.
 - The norm of a vector is always a non-negative real number (regardless of whether the vector space is real or complex).

A norm in a real or complex vector space V is a function $|| \cdot || : V \to \mathbb{R}$ that satisfies the following three axioms:

- n.1. for all vectors $\mathbf{x} \in V$, we have that $||\mathbf{x}|| \ge 0$, and equality holds iff $\mathbf{x} = \mathbf{0}$;
- n.2. for all vectors $\mathbf{x} \in V$ and scalars α , we have that $||\alpha \mathbf{x}|| = |\alpha| ||\mathbf{x}||$;
- n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$.
 - We note that n.3 is referred to as the "triangle inequality."

A norm in a real or complex vector space V is a function $|| \cdot || : V \to \mathbb{R}$ that satisfies the following three axioms:

- n.1. for all vectors $\mathbf{x} \in V$, we have that $||\mathbf{x}|| \ge 0$, and equality holds iff $\mathbf{x} = \mathbf{0}$;
- n.2. for all vectors $\mathbf{x} \in V$ and scalars α , we have that $||\alpha \mathbf{x}|| = |\alpha| ||\mathbf{x}||$;
- n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$.

A *norm* in a real or complex vector space V is a function $|| \cdot || : V \to \mathbb{R}$ that satisfies the following three axioms:

- n.1. for all vectors $\mathbf{x} \in V$, we have that $||\mathbf{x}|| \ge 0$, and equality holds iff $\mathbf{x} = \mathbf{0}$;
- n.2. for all vectors $\mathbf{x} \in V$ and scalars α , we have that $||\alpha \mathbf{x}|| = |\alpha| ||\mathbf{x}||$;

n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$.

- - The fact that axiom n.1 is satisfied is immediate from the construction of a norm induced by a scalar product, the fact that n.2 is satisfied follows from Proposition **??**, and the fact that n.3 is satisfied follows from the triangle inequality proven a few slides ago.

A norm in a real or complex vector space V is a function $|| \cdot || : V \to \mathbb{R}$ that satisfies the following three axioms:

- n.1. for all vectors $\mathbf{x} \in V$, we have that $||\mathbf{x}|| \geq 0$, and equality holds iff $\mathbf{x} = \mathbf{0};$
- n.2. for all vectors $\mathbf{x} \in V$ and scalars α , we have that $||\alpha \mathbf{x}|| = |\alpha| ||\mathbf{x}||$;
- n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$.

A norm in a real or complex vector space V is a function $|| \cdot || : V \to \mathbb{R}$ that satisfies the following three axioms:

- n.1. for all vectors $\mathbf{x} \in V$, we have that $||\mathbf{x}|| \geq 0$, and equality holds iff $\mathbf{x} = \mathbf{0};$
- n.2. for all vectors $\mathbf{x} \in V$ and scalars α , we have that $||\alpha \mathbf{x}|| = |\alpha| ||\mathbf{x}||$;
- n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$.

Definition

Let V be a real or complex vector space, equipped with a norm $|| \cdot ||$. A vector $\mathbf{v} \in V$ is called a *unit vector* if $||\mathbf{v}|| = 1$.

A norm in a real or complex vector space V is a function $|| \cdot || : V \to \mathbb{R}$ that satisfies the following three axioms:

- n.1. for all vectors $\mathbf{x} \in V$, we have that $||\mathbf{x}|| \geq 0$, and equality holds iff $\mathbf{x} = \mathbf{0};$
- n.2. for all vectors $\mathbf{x} \in V$ and scalars α , we have that $||\alpha \mathbf{x}|| = |\alpha| ||\mathbf{x}||$;
- n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$.

Definition

Let V be a real or complex vector space, equipped with a norm $|| \cdot ||$. A vector $\mathbf{v} \in V$ is called a *unit vector* if $||\mathbf{v}|| = 1$.

• By n.1, any unit vector is, in particular, a non-zero vector.

A norm in a real or complex vector space V is a function $|| \cdot || : V \to \mathbb{R}$ that satisfies the following three axioms:

- n.1. for all vectors $\mathbf{x} \in V$, we have that $||\mathbf{x}|| \geq 0$, and equality holds iff $\mathbf{x} = \mathbf{0};$
- n.2. for all vectors $\mathbf{x} \in V$ and scalars α , we have that $||\alpha \mathbf{x}|| = |\alpha| ||\mathbf{x}||$;
- n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$.

Definition

Let V be a real or complex vector space, equipped with a norm $|| \cdot ||$. A vector $\mathbf{v} \in V$ is called a *unit vector* if $||\mathbf{v}|| = 1$.

- By n.1, any unit vector is, in particular, a non-zero vector.
- For notational convenience, given a vector **v** and a scalar $\alpha \neq 0$, we often write $\frac{\mathbf{v}}{\alpha}$ instead of $\alpha^{-1}\mathbf{v}$ or $\frac{1}{\alpha}\mathbf{v}$.
 - In particular, for a non-zero vector $\mathbf{v} \in V$, we may write $\frac{\mathbf{v}}{||\mathbf{v}||}$.

Let V be a real or complex vector space, equipped with a norm $|| \cdot ||$. Then for all non-zero vectors $\mathbf{v} \in V$, we have that $||\mathbf{v}|| > 0$ and that $||\frac{\mathbf{v}}{||\mathbf{v}||}|| = 1$, and in particular, $\frac{\mathbf{v}}{||\mathbf{v}||}$ is a unit vector.

Proof.

Let V be a real or complex vector space, equipped with a norm $|| \cdot ||$. Then for all non-zero vectors $\mathbf{v} \in V$, we have that $||\mathbf{v}|| > 0$ and that $||\frac{\mathbf{v}}{||\mathbf{v}||}|| = 1$, and in particular, $\frac{\mathbf{v}}{||\mathbf{v}||}$ is a unit vector.

Proof. Fix a non-zero vector $\mathbf{v} \in V$. By n.1, we have that $||\mathbf{v}|| > 0$. We further have that

$$||\frac{\mathbf{v}}{||\mathbf{v}||}|| \stackrel{\mathrm{n.2}}{=} |\frac{1}{||\mathbf{v}||}| ||\mathbf{v}|| \stackrel{(*)}{=} \frac{1}{||\mathbf{v}||} ||\mathbf{v}|| = 1,$$

where (*) follows from the fact that $||\mathbf{v}|| > 0$. This completes the argument. \Box

Let V be a real or complex vector space, equipped with a norm $|| \cdot ||$. Then for all non-zero vectors $\mathbf{v} \in V$, we have that $||\mathbf{v}|| > 0$ and that $||\frac{\mathbf{v}}{||\mathbf{v}||}|| = 1$, and in particular, $\frac{\mathbf{v}}{||\mathbf{v}||}$ is a unit vector.

Let V be a real or complex vector space, equipped with a norm $|| \cdot ||$. Then for all non-zero vectors $\mathbf{v} \in V$, we have that $||\mathbf{v}|| > 0$ and that $||\frac{\mathbf{v}}{||\mathbf{v}||}|| = 1$, and in particular, $\frac{\mathbf{v}}{||\mathbf{v}||}$ is a unit vector.

• Terminology/Remark: Suppose that V is a real or complex vector space, equipped with a norm $|| \cdot ||$.

Let V be a real or complex vector space, equipped with a norm $|| \cdot ||$. Then for all non-zero vectors $\mathbf{v} \in V$, we have that $||\mathbf{v}|| > 0$ and that $||\frac{\mathbf{v}}{||\mathbf{v}||}|| = 1$, and in particular, $\frac{\mathbf{v}}{||\mathbf{v}||}$ is a unit vector.

- Terminology/Remark: Suppose that V is a real or complex vector space, equipped with a norm $|| \cdot ||$.
 - To normalize a non-zero vector **v** in V means to multiply that vector by $\frac{1}{||\mathbf{v}||}$ ("divide by its length").

Let V be a real or complex vector space, equipped with a norm $|| \cdot ||$. Then for all non-zero vectors $\mathbf{v} \in V$, we have that $||\mathbf{v}|| > 0$ and that $||\frac{\mathbf{v}}{||\mathbf{v}||}|| = 1$, and in particular, $\frac{\mathbf{v}}{||\mathbf{v}||}$ is a unit vector.

- Terminology/Remark: Suppose that V is a real or complex vector space, equipped with a norm $|| \cdot ||$.
 - To normalize a non-zero vector **v** in V means to multiply that vector by $\frac{1}{||\mathbf{v}||}$ ("divide by its length").
 - By Proposition 6.2.3, when we normalize a non-zero vector, we produce a unit vector.

A norm in a real or complex vector space V is a function

 $||\cdot||: V \to \mathbb{R}$ that satisfies the following three axioms:

- n.1. for all vectors $\mathbf{x} \in V$, we have that $||\mathbf{x}|| \ge 0$, and equality holds iff $\mathbf{x} = \mathbf{0}$;
- n.2. for all vectors $\mathbf{x} \in V$ and scalars α , we have that $||\alpha \mathbf{x}|| = |\alpha| ||\mathbf{x}||$;
- n.3. for all vectors $\mathbf{x}, \mathbf{y} \in V$, we have that $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$.
 - We now consider a few examples of norms in real vector spaces.
For a positive integer p, we define the *p*-norm in \mathbb{R}^n , denoted by $|| \cdot ||_p$, by setting

$$||\mathbf{x}||_{p} := \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}}$$
for all $\mathbf{x} = \begin{bmatrix} x_{1} & \dots & x_{n} \end{bmatrix}^{T}$ in \mathbb{R}^{n} .

For a positive integer p, we define the *p*-norm in \mathbb{R}^n , denoted by $|| \cdot ||_p$, by setting

$$||\mathbf{x}||_{p} := \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}}$$
for all $\mathbf{x} = \left[\begin{array}{cc} x_{1} & \dots & x_{n} \end{array}\right]^{T}$ in \mathbb{R}^{n} .

• We omit the proof of the fact that this really is a norm in \mathbb{R}^n .

For a positive integer p, we define the *p*-norm in \mathbb{R}^n , denoted by $|| \cdot ||_p$, by setting

$$||\mathbf{x}||_{p} := \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}}$$
for all $\mathbf{x} = \left[\begin{array}{cc} x_{1} & \dots & x_{n} \end{array}\right]^{T}$ in \mathbb{R}^{n} .

- We omit the proof of the fact that this really is a norm in \mathbb{R}^n .
- We do note, however, that for p = 2, we get

$$||\mathbf{x}||_2 = \sqrt{\sum_{i=1}^n x_i^2},$$

which is precisely the norm induced by the standard scalar product in \mathbb{R}^n , i.e. the standard Euclidean norm in \mathbb{R}^n .

• Reminder:
$$||\mathbf{x}||_{p} := \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}} \forall \mathbf{x} = \begin{bmatrix} x_{1} & \dots & x_{n} \end{bmatrix}^{T} \in \mathbb{R}^{n}.$$

• For p = 1, we get

$$||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|.$$

 The || · ||₁ norm is sometimes called the "Manhattan norm." This is because streets and avenues in Manhattan form a perfect grid (more or less), and so || · ||₁ gives the actual walking distance between two places in Manhattan.

 Another norm of interest is the so called "Chebyshev distance" in ℝⁿ, denoted by || · ||_∞. It is defined by

$$||\mathbf{x}||_{\infty} := \max \{|x_1|, \dots, |x_n|\}$$
for all vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ in \mathbb{R}^n .

The *unit disk* in a real or complex vector space V, equipped with a norm $|| \cdot ||$, is the set $\{\mathbf{x} \in V \mid ||\mathbf{x}|| \le 1\}$.

 Finally, if you have studied calculus, recall that for a, b ∈ ℝ such that a < b, C_[a,b] is the (real) vector space of all continuous functions from [a, b] to ℝ.

- Finally, if you have studied calculus, recall that for a, b ∈ ℝ such that a < b, C_[a,b] is the (real) vector space of all continuous functions from [a, b] to ℝ.
- For a real number $p \ge 1$, we have the norm $||\cdot||_p$ on $\mathcal{C}_{[a,b]}$ given by

$$||f||_p = \left(\int\limits_a^b |f(x)|^p\right)^{\frac{1}{p}}$$

for all $f \in C_{[a,b]}$.

- Finally, if you have studied calculus, recall that for a, b ∈ ℝ such that a < b, C_[a,b] is the (real) vector space of all continuous functions from [a, b] to ℝ.
- For a real number p ≥ 1, we have the norm || · ||_p on C_[a,b] given by

$$||f||_p = \left(\int\limits_a^b |f(x)|^p\right)^{\frac{1}{p}}$$

for all $f \in C_{[a,b]}$.

 \bullet We also have the norm $||\cdot||_\infty$ on $\mathcal{C}_{[a,b]}$ given by

$$||f||_{\infty} = \max_{x \in [a,b]} |f(x)|$$

for all $f \in C_{[a,b]}$.

- Finally, if you have studied calculus, recall that for a, b ∈ ℝ such that a < b, C_[a,b] is the (real) vector space of all continuous functions from [a, b] to ℝ.
- For a real number $p \ge 1$, we have the norm $||\cdot||_p$ on $\mathcal{C}_{[a,b]}$ given by

$$||f||_p = \left(\int\limits_a^b |f(x)|^p\right)^{\frac{1}{p}}$$

for all $f \in C_{[a,b]}$.

 \bullet We also have the norm $||\cdot||_\infty$ on $\mathcal{C}_{[a,b]}$ given by

$$||f||_{\infty} = \max_{x \in [a,b]} |f(x)|$$

for all $f \in C_{[a,b]}$.

Once again, we omit the proof of the fact that || · ||_p (for a real number p ≥ 1) and || · ||_∞ really are norms in C_[a,b].