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This lecture has three parts:

1 Matrices of linear functions between non-trivial,
finite-dimensional vector spaces

2 Change of basis (transition) matrices
3 Similar matrices
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1 Matrices of linear functions between non-trivial,
finite-dimensional vector spaces

Theorem 1.10.5
Let F be a field, and let f : Fm → Fn be a linear function. Then
there exists a unique matrix A (called the standard matrix of f )
s.t. for all x ∈ Fm, we have that f (x) = Ax. Moreover, the
standard matrix A of f is given by

A =
[

f (e1) . . . f (em)
]

,

where e1, . . . , em are the standard basis vectors of Fm.

Linear functions between general vector spaces do not have
standard matrices.
However, we can associate a matrix to a linear function
between non-trivial, finite-dimensional vector spaces, provided
we have first specified a basis of the domain and a basis of the
codomain.
First, we review some of the results from previous lectures.
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Theorem 3.2.7
Let V be a vector space over a field F, and let v1, . . . , vn ∈ V .
Then the following are equivalent:
(i) {v1, . . . , vn} is a basis of V ;
(ii) for all vectors v ∈ V , there exist unique scalars

α1, . . . , αn ∈ F s.t. v = α1v1 + · · ·+ αnvn.

Suppose B = {b1, . . . , bn} (n ≥ 1) is a basis of a vector space
V over a field F. Then by Theorem 3.2.7, to every vector
v ∈ V , we can associate a unique vector

[
v
]

B
:=

 α1
...

αn


in Fn s.t. v = α1b1 + · · ·+ αnbn; the vector

[
v
]

B
is called

the coordinate vector of v associated with the basis B.
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Remark: Suppose that F is a field, and that
En = {e1, . . . , en} is the standard basis of Fn.

Then for all vectors x =
[

x1 . . . xn
]T in Fn, we have that

x = x1e1 + · · ·+ xnen,

and consequently,[
x
]

En
=

[
x1 . . . xn

]T = x.



Proposition 3.2.9
Let B = {b1, . . . , bn} (n ≥ 1) be a basis of a vector space V over
a field F. Then for all i ∈ {1, . . . , n}, we have that

[
bi
]

B
= en

i .

Proof. Fix i ∈ {1, . . . , n}. Then

bi = 0b1 + · · ·+ 0bi−1 + 1bi + 0bi+1 + · · ·+ 0bn

and consequently,

[
bi
]

B =



0
...
0
1
0
...
0


← i-th entry

i.e.
[

bi
]

B
= en

i . □



Theorem 4.3.2
Let U and V be vector spaces over a field F, and assume that U is
finite-dimensional. Let B = {u1, . . . , un} be a basis of U, and let
v1, . . . , vn ∈ V .a Then there exists a unique linear function
f : U → V s.t. f (u1) = v1, . . . , f (un) = vn. Moreover, if the vector
space U is non-trivial (i.e. n ̸= 0), then this unique linear function
f : U → V satisfies the following: for all u ∈ U, we have that

f (u) = α1v1 + · · ·+ αnvn,

where
[

u
]

B
=
[

α1 . . . αn
]T

. On the other hand, if U is
trivial (i.e. U = {0}),b then f : U → V is given by f (0) = 0.

aHere, v1, . . . , vn are arbitrary vectors in V . They are not necessarily
pairwise distinct.

bNote that in this case, we have that n = 0 and B = ∅.



Corollary 4.3.3
Let U and V be vector spaces over a field F, and assume that U is
finite-dimensional. Let {u1, . . . , uk} be a linearly independent set
of vectors in U, and let v1, . . . , vk ∈ V .a Then there exists a linear
function f : U → V s.t. f (u1) = v1, . . . , f (uk) = vk . Moreover, if
V is non-trivial, then this linear function f is unique iff
{u1, . . . , uk} is a basis of U.

aHere, v1, . . . , vk are arbitrary vectors in V . They are not necessarily
pairwise distinct.



Standard matrices once again:

Theorem 1.10.5
Let F be a field, and let f : Fm → Fn be a linear function. Then
there exists a unique matrix A (called the standard matrix of f )
s.t. for all x ∈ Fm, we have that f (x) = Ax. Moreover, the
standard matrix A of f is given by

A =
[

f (e1) . . . f (em)
]

,

where e1, . . . , em are the standard basis vectors of Fm.

Let’s generalize this (next slide)!



Theorem 4.5.1
Let U and V be non-trivial, finite-dimensional vector spaces over a
field F. Let B = {b1, . . . , bm} be a basis of U, let
C = {c1, . . . , cn} be a basis of V , and let f : U → V be a linear
function. Then exists a unique matrix in Fn×m, denoted by

C

[
f
]

B
and called the matrix of f with respect to B and C, s.t.

for all u ∈ U, we have that

C

[
f
]

B

[
u
]

B
=

[
f (u)

]
C

.

Moreover, the matrix
C

[
f
]

B
is given by

C

[
f
]

B
=

[ [
f (b1)

]
C

. . .
[

f (bm)
]

C

]
.

First an example and a remark, then a proof.
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Example 4.5.2

Consider the basis B =
{[ 1

0

]
,

[
1
1

]}
of R2, and consider the

unique linear function f : R2 → R2 that satisfies the following:

f
( [ 1

0

] )
=
[

1
0

]
, f

( [ 1
1

] )
=
[

2
2

]
.

Compute the matrix
B

[
f
]

B
.

[
1
0

]

[
1
1

]

f
([

1
0

])
=

[
1
0

]

f
([

1
1

])
=

[
2
2

]

u

f(u)

f

x1 x1

x2 x2



[
1
0

]

[
1
1

]

f
([

1
0

])
=

[
1
0

]

f
([

1
1

])
=

[
2
2

]

u

f(u)

f

x1 x1

x2 x2

Remark: The fact that B =
{[ 1

0

]
,

[
1
1

]}
is a basis of R2

follows from the fact that rank
( [ 1 1

0 1

] )
= 2 and from the

Invertible Matrix Theorem. The existence and uniqueness of
the linear function f follows from Theorem 4.3.2.



Solution. Using the formula from Theorem 4.5.1, we compute:

B

[
f
]

B
=

[ [
f
( [ 1

0

] ) ]
B

[
f
( [ 1

1

] ) ]
B

]

=
[ [ [

1
0

] ]
B

[ [
2
2

] ]
B

]

=
[

1 0
0 2

]
.

□



Remark: Matrices of the form
C

[
f
]

B
are generalizations of

standard matrices.

Indeed, if F is a field and f : Fm → Fn is a linear function,
then the matrix

En

[
f
]

Em

is precisely the standard matrix of f , where as usual,
Em = {em

1 , . . . , em
m} is the standard basis of Fm, and

En = {en
1, . . . , en

n} is the standard basis of Fn.
Indeed, suppose that F be a field, that f : Fm → Fn is a linear
function, and that A is the standard matrix of f .
Then for all u ∈ Fm, we have the following:

A
[

u
]

Em
= Au = f (u) =

[
f (u)

]
En

.

Now the uniqueness part of Theorem 4.5.1 guarantees that
A = En

[
f
]

Em
, i.e. En

[
f
]

Em
is the standard matrix of f .
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Theorem 4.5.1
Let U and V be non-trivial, finite-dimensional vector spaces over a
field F. Let B = {b1, . . . , bm} be a basis of U, let
C = {c1, . . . , cn} be a basis of V , and let f : U → V be a linear
function. Then exists a unique matrix in Fn×m, denoted by

C

[
f
]

B
and called the matrix of f with respect to B and C, s.t.

for all u ∈ U, we have that

C

[
f
]

B

[
u
]

B
=

[
f (u)

]
C

.

Moreover, the matrix
C

[
f
]

B
is given by

C

[
f
]

B
=

[ [
f (b1)

]
C

. . .
[

f (bm)
]

C

]
.

Let’s prove the theorem!



Proof. Existence.

Fix u ∈ U. We must show that[ [
f (b1)

]
C

. . .
[

f (bm)
]

C

] [
u
]

B
=

[
f (u)

]
C

.

Set [
u
]

B
=

 β1
...

βm

 ,

so that
u = β1b1 + · · ·+ βmbm.

We then compute (next slide):
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Proof (continued).[ [
f (b1)

]
C . . .

[
f (bm)

]
C
] [

u
]

B

=
[ [

f (b1)
]

C . . .
[

f (bm)
]

C
]  β1

...
βm


= β1

[
f (b1)

]
C + · · ·+ βm

[
f (bm)

]
C

(∗)=
[

β1f (b1) + · · ·+ βmf (bm)
]

C

(∗∗)=
[

f
(
β1b1 + · · ·+ βmbm

) ]
C

=
[

f (u)
]

C ,

where (*) follows from the fact that
[
·
]

C
: V → Fn is an

isomorphism (and in particular, a linear function), and (**) follows
from the fact that f is linear.



Proof (continued). Uniqueness.

Fix any matrix
A =

[
a1 . . . am

]
in Fn×m that has the property that for all

u ∈ U, we have that

A
[

u
]

B
=

[
f (u)

]
C

.

We must show that

A =
[ [

f (b1)
]

C
. . .

[
f (bm)

]
C

]
.

We prove this by showing that the two matrices have the same
corresponding columns, that is, that ai =

[
f (bi)

]
C

for all indices
i ∈ {1, . . . , m}. Indeed, for all i ∈ {1, . . . , m}, we have the
following (next slide):
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Proof (continued).

ai = Aem
i by Proposition 1.4.4

= A
[

bi
]

B
because

[
bi
]

B = em
i

(by Proposition 3.2.9)

=
[

f (bi)
]

C by the choice of A.

This proves that A =
[ [

f (b1)
]

C
. . .

[
f (bm)

]
C

]
, and we

are done. □



Theorem 4.5.1
Let U and V be non-trivial, finite-dimensional vector spaces over a
field F. Let B = {b1, . . . , bm} be a basis of U, let
C = {c1, . . . , cn} be a basis of V , and let f : U → V be a linear
function. Then exists a unique matrix in Fn×m, denoted by

C

[
f
]

B
and called the matrix of f with respect to B and C, s.t.

for all u ∈ U, we have that

C

[
f
]

B

[
u
]

B
=

[
f (u)

]
C

.

Moreover, the matrix
C

[
f
]

B
is given by

C

[
f
]

B
=

[ [
f (b1)

]
C

. . .
[

f (bm)
]

C
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.



Remark: Suppose that U and V are non-trivial,
finite-dimensional vector spaces over a field F, that
B = {b1, . . . , bm} and C = {c1, . . . , cn} are bases of U and
V , respectively, and that f : U → V is a linear function, as in
Theorem 4.5.1.

Then the uniqueness part of Theorem 4.5.1 guarantees that if
A ∈ Fn×m is any matrix that satisfies the property that for all
u ∈ U, we have that

A
[

u
]

B =
[

f (u)
]

C ,

then we in fact have that A = C

[
f
]

B.
We will use this observation repeatedly.
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Reminder:

Proposition 4.1.7
Let U, V , and W be vector spaces over a field F. Then all the
following hold:

(a) for all linear functions f , g : U → V , the function f + g is
linear;

(b) for all linear functions f : U → V and scalars α ∈ F, the
function αf : U → V is linear;

(c) for all linear functions f : U → V and g : V →W , the
function g ◦ f is linear.

U V W

f g

g ◦ f

What about the matrices of sums, scalar multiples, and
compositions of linear functions?

Next slide!
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(b) for all linear functions f : U → V and scalars α ∈ F, the
function αf : U → V is linear;

(c) for all linear functions f : U → V and g : V →W , the
function g ◦ f is linear.

U V W

f g

g ◦ f

What about the matrices of sums, scalar multiples, and
compositions of linear functions?

Next slide!



Theorem 4.5.3
Let U, V , and W be non-trivial, finite-dimensional vector spaces
over a field F. Let B = {b1, . . . , bm} be a basis of U, let
C = {c1, . . . , cn} be a basis of V , and let D = {d1, . . . , dp} be a
basis of W . Then all the following hold:

(a) for all linear functions f , g : U → V , the function f + g is
linear, and moreover,

C

[
f + g

]
B = C

[
f
]

B + C

[
g
]

B ;

(b) for all linear functions f : U → V and scalars α ∈ U, the
function αf is linear, and moreover,

C

[
αf

]
B = α C

[
f
]

B ;

(c) for all linear functions f : U → V and g : V →W , the
function g ◦ f is linear, and moreover,

D

[
g ◦ f

]
B = D

[
g
]

C C

[
f
]

B .

We prove (c). The proofs of (a) and (b) are left as an exercise.
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Let U, V , and W be non-trivial, finite-dimensional vector spaces
over a field F. Let B = {b1, . . . , bm} be a basis of U, let
C = {c1, . . . , cn} be a basis of V , and let D = {d1, . . . , dp} be a
basis of W . Then all the following hold:

(a) for all linear functions f , g : U → V , the function f + g is
linear, and moreover,

C

[
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f
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[
g
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(b) for all linear functions f : U → V and scalars α ∈ U, the
function αf is linear, and moreover,

C
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αf

]
B = α C
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f
]
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Theorem 4.5.3
(c) for all linear functions f : U → V and g : V →W , the

function g ◦ f is linear, and moreover,

D

[
g ◦ f

]
B = D

[
g
]

C C

[
f
]

B .

U V W

f , C

[
f
]
B g, D

[
g
]
C

g ◦ f , D

[
g
]
C C

[
f
]
B

B C D

Proof. The fact that g ◦ f is linear follows from
Proposition 4.1.7(c).

It remains to show that

D

[
g ◦ f

]
B = D

[
g
]

C C

[
f
]

B .



Theorem 4.5.3
(c) for all linear functions f : U → V and g : V →W , the

function g ◦ f is linear, and moreover,

D

[
g ◦ f

]
B = D

[
g
]

C C

[
f
]

B .

U V W

f , C

[
f
]
B g, D

[
g
]
C

g ◦ f , D

[
g
]
C C

[
f
]
B

B C D

Proof. The fact that g ◦ f is linear follows from
Proposition 4.1.7(c). It remains to show that

D

[
g ◦ f

]
B = D

[
g
]

C C

[
f
]

B .



Proof (continued).
Claim. For all u ∈ U, we have that(

D

[
g
]

C C

[
f
]

B

) [
u
]

B
=

[
(g ◦ f )(u)

]
D

.

Proof of the Claim.

For all u ∈ U, we have the following:(
D

[
g
]

C C

[
f
]

B

) [
u
]

B = D

[
g
]

C

(
C

[
f
]

B

[
u
]

B

)
= D

[
g
]

C

[
f (u)

]
C

=
[

g
(
f (u)

) ]
D

=
[

(g ◦ f )(u)
]

D .

This proves the Claim. ♦



Proof (continued).
Claim. For all u ∈ U, we have that(

D

[
g
]

C C

[
f
]

B

) [
u
]

B
=

[
(g ◦ f )(u)

]
D

.

Proof of the Claim. For all u ∈ U, we have the following:(
D

[
g
]

C C

[
f
]

B

) [
u
]

B = D

[
g
]

C

(
C

[
f
]

B

[
u
]

B

)
= D

[
g
]

C

[
f (u)

]
C

=
[

g
(
f (u)

) ]
D

=
[

(g ◦ f )(u)
]

D .

This proves the Claim. ♦



Proof (continued).
Claim. For all u ∈ U, we have that(

D

[
g
]

C C

[
f
]

B

) [
u
]

B
=

[
(g ◦ f )(u)

]
D

.

The Claim and the uniqueness part of Theorem 4.5.1 now imply
that

D

[
g ◦ f

]
B

=
D

[
g
]

C C

[
f
]

B
,

which is what we needed to show. □



Proof (continued).
Claim. For all u ∈ U, we have that(

D

[
g
]

C C

[
f
]

B

) [
u
]

B
=

[
(g ◦ f )(u)

]
D

.

The Claim and the uniqueness part of Theorem 4.5.1 now imply
that

D

[
g ◦ f

]
B

=
D

[
g
]

C C

[
f
]

B
,

which is what we needed to show. □



Theorem 4.5.3
Let U, V , and W be non-trivial, finite-dimensional vector spaces
over a field F. Let B = {b1, . . . , bm} be a basis of U, let
C = {c1, . . . , cn} be a basis of V , and let D = {d1, . . . , dp} be a
basis of W . Then all the following hold:

(a) for all linear functions f , g : U → V , the function f + g is
linear, and moreover,

C

[
f + g

]
B = C

[
f
]

B + C

[
g
]

B ;

(b) for all linear functions f : U → V and scalars α ∈ U, the
function αf is linear, and moreover,

C

[
αf

]
B = α C

[
f
]

B ;

(c) for all linear functions f : U → V and g : V →W , the
function g ◦ f is linear, and moreover,

D

[
g ◦ f

]
B = D

[
g
]

C C

[
f
]

B .



We have already seen that it is possible to use the standard
matrix of a linear function f : Fn → Fm (where F is a field) in
order to determine various properties of f .

Our goal will be to generalize those results to linear functions
between arbitrary non-trivial, finite-dimensional vector spaces
and the matrices of those linear functions (see Theorem 4.5.4
in a couple of slides).
Let’s first review those old results (and some relevant
definitions).
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We have already seen that it is possible to use the standard
matrix of a linear function f : Fn → Fm (where F is a field) in
order to determine various properties of f .
Our goal will be to generalize those results to linear functions
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Definition
Given a linear function f : U → V , where U and V are vector
spaces over a field F, the kernel of f is defined to be the set

Ker(f ) := {u ∈ U | f (u) = 0}.

The image of f is the set

Im(f ) := {f (u) | u ∈ U}.

Im(f )
f

U V

Ker(f )

0

Reminder: By Theorem 4.2.3, Ker(f ) is a subspace of U, and
Im is a subspace of V .
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Given a linear function f : U → V , where U and V are vector
spaces over a field F, the kernel of f is defined to be the set

Ker(f ) := {u ∈ U | f (u) = 0}.

The image of f is the set

Im(f ) := {f (u) | u ∈ U}.

Im(f )
f

U V

Ker(f )

0

Reminder: By Theorem 4.2.3, Ker(f ) is a subspace of U, and
Im is a subspace of V .



Proposition 4.2.7
Let F be a field, let f : Fm → Fn be a linear function, and let
A ∈ Fn×m be the standard matrix of f . Then both the following
hold:

(a) rank(f ) = rank(A);
(b) dim

(
Ker(f )

)
= dim

(
Nul(A)

)
.

Theorem 1.10.8
Let F be a field, let f : Fm → Fn be a linear function, and let
A ∈ Fn×m be the standard matrix of f . Then both the following
hold:

(a) f is one-to-one iff rank(A) = m (i.e. A has full column rank);
(b) f is onto iff rank(A) = n (i.e. A has full row rank).



Proposition 4.2.7
Let F be a field, let f : Fm → Fn be a linear function, and let
A ∈ Fn×m be the standard matrix of f . Then both the following
hold:

(a) rank(f ) = rank(A);
(b) dim

(
Ker(f )
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(
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.

Theorem 1.10.8
Let F be a field, let f : Fm → Fn be a linear function, and let
A ∈ Fn×m be the standard matrix of f . Then both the following
hold:

(a) f is one-to-one iff rank(A) = m (i.e. A has full column rank);
(b) f is onto iff rank(A) = n (i.e. A has full row rank).



Theorem 1.11.9 (abridged)
Let F be a field, let A ∈ Fn×n be a square matrix, and let
f : Fn → Fn be given by f (x) = Ax for all x ∈ Fn. Then f is linear
and its standard matrix is A. Furthermore, the following are
equivalent:

(a) f is an isomorphism;
(b) A is invertible.

Moreover, in this case, f −1 is an isomorphism and its standard
matrix is A−1.

No matrices, but still relevant to our topic:

Theorem 4.2.4
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then f is one-to-one iff Ker(f ) = {0}.

Now let’s generalize these results!
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Theorem 1.11.9 (abridged)
Let F be a field, let A ∈ Fn×n be a square matrix, and let
f : Fn → Fn be given by f (x) = Ax for all x ∈ Fn. Then f is linear
and its standard matrix is A. Furthermore, the following are
equivalent:

(a) f is an isomorphism;
(b) A is invertible.

Moreover, in this case, f −1 is an isomorphism and its standard
matrix is A−1.

No matrices, but still relevant to our topic:

Theorem 4.2.4
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then f is one-to-one iff Ker(f ) = {0}.

Now let’s generalize these results!



Theorem 4.5.4
Let U and V be non-trivial, finite-dimensional vector spaces over a
field F. Let B = {b1, . . . , bm} be a basis of U, let
C = {c1, . . . , cn} be a basis of V , and let f : U → V be a linear
function.a Then all the following hold:

(a) rank(f ) = rank
(

C

[
f
]

B

)
;

(b) dim
(
Ker(f )

)
= dim

(
Nul

(
C

[
f
]

B

))
;

(c) f is one-to-one iff Nul
(

C

[
f
]

B

)
= {0};

(d) f is one-to-one iff rank
(

C

[
f
]

B

)
= m (i.e. the matrix

C

[
f
]

B
has full column rank);

(e) f is onto iff rank
(

C

[
f
]

B

)
= n (i.e. the matrix

C

[
f
]

B
has

full row rank);
aNote that this means that dim(U) = m, dim(V ) = n, and

C

[
f
]

B
∈ Fn×m.



Theorem 4.5.4 (continued)
Let U and V be non-trivial, finite-dimensional vector spaces over a
field F. Let B = {b1, . . . , bm} be a basis of U, let
C = {c1, . . . , cn} be a basis of V , and let f : U → V be a linear
function.a Then all the following hold:

(f) f is an isomorphism iff the matrix
C

[
f
]

B
is invertible (and

in particular, square);

(g) if f is an isomorphism, then
B

[
f −1

]
C

=
(

C

[
f
]

B

)−1
.

aNote that this means that dim(U) = m, dim(V ) = n, and
C

[
f
]

B
∈ Fn×m.

The full proof is in the Lecture Notes.
Here, we prove parts (a), (b), (c).
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Let U and V be non-trivial, finite-dimensional vector spaces over a
field F. Let B = {b1, . . . , bm} be a basis of U, let
C = {c1, . . . , cn} be a basis of V , and let f : U → V be a linear
function.a Then all the following hold:

(f) f is an isomorphism iff the matrix
C

[
f
]

B
is invertible (and

in particular, square);

(g) if f is an isomorphism, then
B

[
f −1

]
C

=
(

C

[
f
]

B

)−1
.

aNote that this means that dim(U) = m, dim(V ) = n, and
C

[
f
]
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The full proof is in the Lecture Notes.
Here, we prove parts (a), (b), (c).



Theorem 4.5.4
(a) rank(f ) = rank

(
C

[
f
]

B

)
;

Proof of (a).

By Theorem 4.5.1, we have that

C

[
f
]

B =
[ [

f (b1)
]

C . . .
[

f (bm)
]

C
]

.

We now compute:

rank(f ) = dim
(

Span
(
f (b1), . . . , f (bm)

))

= dim
(

Span
( [

f (b1)
]

C , . . . ,
[

f (bm)
]

C

))

= dim
(

Col
( [ [

f (b1)
]

C . . .
[

f (bm)
]

C
] ))

= dim
(

Col
(

C

[
f
]

B

))
= rank

(
C

[
f
]

B

)
.

□



Theorem 4.5.4
(a) rank(f ) = rank

(
C

[
f
]

B

)
;

Proof of (a). By Theorem 4.5.1, we have that

C

[
f
]

B =
[ [

f (b1)
]

C . . .
[

f (bm)
]

C
]

.

We now compute:

rank(f ) = dim
(

Span
(
f (b1), . . . , f (bm)

))

= dim
(

Span
( [

f (b1)
]

C , . . . ,
[

f (bm)
]

C

))

= dim
(

Col
( [ [

f (b1)
]

C . . .
[

f (bm)
]

C
] ))

= dim
(

Col
(

C

[
f
]

B

))
= rank

(
C

[
f
]

B

)
.

□



Theorem 4.5.4
(b) dim

(
Ker(f )

)
= dim

(
Nul

(
C

[
f
]

B

))
;

Proof of (b).

We first observe that

rank(f ) + dim
(
Ker(f )

) (∗)= dim(U) = m

(∗∗)= rank
(

C

[
f
]

B

)
+ dim

(
Nul

(
C

[
f
]

B

))
where (*) follows from the rank-nullity theorem for linear
functions, and (**) follows from the rank-nullity theorem for
matrices (since

C

[
f
]

B
is an n ×m matrix).

But by (a), we have that rank(f ) = rank
(

C

[
f
]

B

)
. Therefore,

dim
(
Ker(f )

)
= dim

(
Nul

(
C

[
f
]

B

))
. □
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Theorem 4.5.4
(b) dim

(
Ker(f )

)
= dim

(
Nul

(
C

[
f
]

B

))
;

Proof of (b). We first observe that

rank(f ) + dim
(
Ker(f )

) (∗)= dim(U) = m

(∗∗)= rank
(

C

[
f
]

B

)
+ dim

(
Nul

(
C

[
f
]

B

))
where (*) follows from the rank-nullity theorem for linear
functions, and (**) follows from the rank-nullity theorem for
matrices (since

C

[
f
]

B
is an n ×m matrix).

But by (a), we have that rank(f ) = rank
(

C

[
f
]

B

)
. Therefore,

dim
(
Ker(f )

)
= dim

(
Nul

(
C

[
f
]

B

))
. □



Theorem 4.5.4
(c) f is one-to-one iff Nul

(
C

[
f
]

B

)
= {0};

Proof of (c).

We have the following sequence of equivalent
statements:

f is one-to-one (∗)⇐⇒ Ker(f ) = {0}

⇐⇒ dim
(
Ker(f )

)
= 0

(∗∗)⇐⇒ dim
(
Nul

(
C

[
f
]

B

))
= 0

⇐⇒ Nul
(

C

[
f
]

B

)
= {0},

where (*) follows from Theorem 4.2.4, and (**) follows from
part (b). □



Theorem 4.5.4
(c) f is one-to-one iff Nul

(
C

[
f
]

B

)
= {0};

Proof of (c). We have the following sequence of equivalent
statements:

f is one-to-one (∗)⇐⇒ Ker(f ) = {0}

⇐⇒ dim
(
Ker(f )

)
= 0

(∗∗)⇐⇒ dim
(
Nul

(
C

[
f
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B
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⇐⇒ Nul
(

C

[
f
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B
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= {0},

where (*) follows from Theorem 4.2.4, and (**) follows from
part (b). □



Theorem 4.5.4
Let U and V be non-trivial, finite-dimensional vector spaces over a
field F. Let B = {b1, . . . , bm} be a basis of U, let
C = {c1, . . . , cn} be a basis of V , and let f : U → V be a linear
function.a Then all the following hold:

(a) rank(f ) = rank
(

C

[
f
]

B

)
;

(b) dim
(
Ker(f )

)
= dim

(
Nul

(
C

[
f
]

B

))
;

(c) f is one-to-one iff Nul
(

C

[
f
]

B

)
= {0};

(d) f is one-to-one iff rank
(

C

[
f
]

B

)
= m (i.e. the matrix

C

[
f
]

B
has full column rank);

(e) f is onto iff rank
(

C

[
f
]

B

)
= n (i.e. the matrix

C

[
f
]

B
has

full row rank);
aNote that this means that dim(U) = m, dim(V ) = n, and

C

[
f
]

B
∈ Fn×m.



Theorem 4.5.4 (continued)
Let U and V be non-trivial, finite-dimensional vector spaces over a
field F. Let B = {b1, . . . , bm} be a basis of U, let
C = {c1, . . . , cn} be a basis of V , and let f : U → V be a linear
function.a Then all the following hold:

(f) f is an isomorphism iff the matrix
C

[
f
]

B
is invertible (and

in particular, square);

(g) if f is an isomorphism, then
B

[
f −1

]
C

=
(

C

[
f
]

B

)−1
.

aNote that this means that dim(U) = m, dim(V ) = n, and
C

[
f
]

B
∈ Fn×m.



Suppose that U and V are non-trivial, finite-dimensional
vector spaces over a field F, that B = {b1, . . . , bm} is a basis
of U, and that C = {c1, . . . , cn} is a basis of V .

By Theorem 4.5.1, to every linear function f : U → V , we can
associate a unique matrix A ∈ Fn×m (which we denoted by

C

[
f
]

B
) s.t. for all u ∈ U, we have that

A
[

u
]

B
=

[
f (u)

]
C

.

How about the converse? Is it true that for every matrix
A ∈ Fn×m, there exists a linear function f : U → V s.t.
A =

C

[
f
]

B
?

As our next proposition shows, this is indeed true, but the
proof is not completely obvious: it relies on several different
theorems that we have proven so far.
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theorems that we have proven so far.
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Suppose that
f , g : U → V are linear functions s.t.

C

[
f
]

B
= A and

C

[
g
]

B
= A. WTS f = g . First of all, note that ∀i ∈ {1, . . . , m}:[

f (bi)
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C = C

[
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=A

[
bi
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B = C

[
g
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B︸ ︷︷ ︸
=A

[
bi
]

B =
[

g(bi)
]

C ,

and consequently, f (bi) = g(bi) (because
[
·
]

C
: V → Fn is an

isomorphism and therefore one-to-one). But now since
B = {b1, . . . , bm} is a basis of U and f , g : U → V are linear, the
uniqueness part of Theorem 4.3.2 guarantees that f = g . □
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Theorem 4.5.1
Let U and V be non-trivial, finite-dimensional vector spaces over a
field F. Let B = {b1, . . . , bm} be a basis of U, let
C = {c1, . . . , cn} be a basis of V , and let f : U → V be a linear
function. Then exists a unique matrix in Fn×m, denoted by

C

[
f
]

B
and called the matrix of f with respect to B and C, s.t.

for all u ∈ U, we have that

C

[
f
]

B

[
u
]

B =
[

f (u)
]

C .

Moreover, the matrix
C

[
f
]

B
is given by

C

[
f
]

B =
[ [

f (b1)
]

C . . .
[

f (bm)
]

C
]

.

Proposition 4.5.5
Let U and V be non-trivial, finite-dimensional vector spaces over a
field F, let B = {b1, . . . , bm} be a basis of U, and let
C = {c1, . . . , cn} be a basis of V . Then for every matrix A ∈ Fn×m,
there exists a unique linear function f : U → V s.t. A =

C

[
f
]

B
.



Remark: Suppose that U and V are non-trivial,
finite-dimensional vector spaces over a field F, and recall that
Hom(U, V ), the set of all linear functions from U to V , is a
vector space over the field F (vector addition and scalar
multiplication in this vector space are the usual addition and
scalar multiplication of functions).

Set m := dim(U) and n := dim(V ), and let B = {b1, . . . , bm}
and C = {c1, . . . , cn} be bases of U and V , respectively.
By Theorem 4.5.1 and Proposition 4.5.5,

C

[
·
]

B
: Hom(U, V )→ Fn×m is a bijection, and by

Theorem 4.5.3(a-b), it is also a linear function.
So,

C

[
·
]

B
: Hom(U, V )→ Fn×m is in fact an isomorphism.

By Theorem 4.2.14(c), it follows that
dim

(
Hom(U, V )

)
= dim(Fn×m) = nm.
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2 Change of basis (transition) matrices

Definition
Given a non-trivial, finite-dimensional vector space V over a field F,
and bases B and C of V , we call the matrix

C

[
IdV

]
B

the change
of basis matrix from B to C or the transition matrix from B to C.

Proposition 4.5.6
Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {b1, . . . , bn} and C = {c1, . . . , cn} be bases of V .
Then the change of basis matrix

C

[
IdV

]
B

satisfies:

C

[
IdV

]
B

[
v
]

B =
[

v
]

C ∀v ∈ V .

Moreover, this matrix is given by the formula

C

[
IdV

]
B =

[ [
b1
]

C . . .
[

bn
]

C
]

.
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Proof.

The first statement follows straight from the definition of a
change of basis matrix; indeed, for all vectors v ∈ V , we have that

C

[
IdV

]
B

[
v
]

B
=

[
IdV (v)

]
C

=
[

v
]

C
.
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Proposition 4.5.6
Let V be a non-trivial, finite-dimensional vector space over a field
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bn
]

C
]

.

Proof (continued). For the second statement, we observe that

C

[
IdV

]
B

(∗)=
[ [

IdV (b1)
]

C . . .
[

IdV (bm)
]

C
]

=
[ [

b1
]

C . . .
[

bm
]

C
]

where (*) follows from Theorem 4.5.1. □



Proposition 4.5.7
Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {b1, . . . , bn} and C = {c1, . . . , cn} be bases of V .
Then the change of basis matrices

C

[
IdV

]
B

and
B

[
IdV

]
C

are
invertible, and moreover, they are each other’s inverses.

Proof.

Clearly, IdV : V → V is an isomorphism, and so by
Theorem 4.5.4(f), matrices

C

[
IdV

]
B

and
B

[
IdV

]
C

are both
invertible. Moreover,

C

[
IdV

]
B

(∗)=
C

[
Id−1

V

]
B

(∗∗)=
(

B

[
IdV

]
C

)−1
,

where (*) follows from the fact that Id−1
V = IdV , and (**) follows

from Theorem 4.5.4(g). This completes the argument. □
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For the special case of Fn (where F is a field), we get a nice
formula for change of basis matrices (below).

Theorem 4.5.9
Let F be a field, and let B = {b1, . . . , bn} and C = {c1, . . . , cn} be
two bases of Fn. Set B :=

[
b1 . . . bn

]
and

C :=
[

c1 . . . cn
]
. Then the matrix

C

[
IdFn

]
B

is invertible,
and it is given by the formula

C

[
IdFn

]
B

= C−1B.

To prove Theorem 4.5.9, we need a technical lemma.
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Lemma 4.5.8
Let F be a field, let En = {e1, . . . , en} be the standard basis of Fn,
and let B = {b1, . . . , bn} be any basis of Fn. Set
B :=

[
b1 . . . bn

]
. Then B is invertible, and moreover,

En

[
IdFn

]
B

= B and
B

[
IdFn

]
En

= B−1.

Proof.

Let us first prove that
En

[
IdFn

]
B

= B. In view of the
uniqueness part of Theorem 4.5.1, it suffices to show that ∀v ∈ Fn:
B
[

v
]

B
=
[

v
]

En
. So, fix a vector v ∈ Fn, and set[

v
]

B
=
[

β1 . . . βn
]T

, so that v = β1b1 + · · ·+ βnbn. Then

B
[

v
]

B =
[

b1 . . . bn
]  β1

...
βn

 =
n∑

i=1
βibi = v =

[
v
]

En
.

This proves that
En

[
IdFn

]
B

= B.



Lemma 4.5.8
Let F be a field, let En = {e1, . . . , en} be the standard basis of Fn,
and let B = {b1, . . . , bn} be any basis of Fn. Set
B :=

[
b1 . . . bn

]
. Then B is invertible, and moreover,

En

[
IdFn

]
B

= B and
B

[
IdFn

]
En

= B−1.

Proof. Let us first prove that
En

[
IdFn

]
B

= B.

In view of the
uniqueness part of Theorem 4.5.1, it suffices to show that ∀v ∈ Fn:
B
[

v
]

B
=
[

v
]

En
. So, fix a vector v ∈ Fn, and set[

v
]

B
=
[

β1 . . . βn
]T

, so that v = β1b1 + · · ·+ βnbn. Then

B
[

v
]

B =
[

b1 . . . bn
]  β1

...
βn

 =
n∑

i=1
βibi = v =

[
v
]

En
.

This proves that
En

[
IdFn

]
B

= B.



Lemma 4.5.8
Let F be a field, let En = {e1, . . . , en} be the standard basis of Fn,
and let B = {b1, . . . , bn} be any basis of Fn. Set
B :=

[
b1 . . . bn

]
. Then B is invertible, and moreover,

En

[
IdFn

]
B

= B and
B

[
IdFn

]
En

= B−1.

Proof. Let us first prove that
En

[
IdFn

]
B

= B. In view of the
uniqueness part of Theorem 4.5.1, it suffices to show that ∀v ∈ Fn:
B
[

v
]

B
=
[

v
]

En
.

So, fix a vector v ∈ Fn, and set[
v
]

B
=
[

β1 . . . βn
]T

, so that v = β1b1 + · · ·+ βnbn. Then

B
[

v
]

B =
[

b1 . . . bn
]  β1

...
βn

 =
n∑

i=1
βibi = v =

[
v
]

En
.

This proves that
En

[
IdFn

]
B

= B.



Lemma 4.5.8
Let F be a field, let En = {e1, . . . , en} be the standard basis of Fn,
and let B = {b1, . . . , bn} be any basis of Fn. Set
B :=

[
b1 . . . bn

]
. Then B is invertible, and moreover,

En

[
IdFn

]
B

= B and
B

[
IdFn

]
En

= B−1.

Proof. Let us first prove that
En

[
IdFn

]
B

= B. In view of the
uniqueness part of Theorem 4.5.1, it suffices to show that ∀v ∈ Fn:
B
[

v
]

B
=
[

v
]

En
. So, fix a vector v ∈ Fn, and set[

v
]

B
=
[

β1 . . . βn
]T

, so that v = β1b1 + · · ·+ βnbn.

Then

B
[

v
]

B =
[

b1 . . . bn
]  β1

...
βn

 =
n∑

i=1
βibi = v =

[
v
]

En
.

This proves that
En

[
IdFn

]
B

= B.



Lemma 4.5.8
Let F be a field, let En = {e1, . . . , en} be the standard basis of Fn,
and let B = {b1, . . . , bn} be any basis of Fn. Set
B :=

[
b1 . . . bn

]
. Then B is invertible, and moreover,

En

[
IdFn

]
B

= B and
B

[
IdFn

]
En

= B−1.

Proof. Let us first prove that
En

[
IdFn

]
B

= B. In view of the
uniqueness part of Theorem 4.5.1, it suffices to show that ∀v ∈ Fn:
B
[

v
]

B
=
[

v
]

En
. So, fix a vector v ∈ Fn, and set[

v
]

B
=
[

β1 . . . βn
]T

, so that v = β1b1 + · · ·+ βnbn. Then

B
[

v
]

B =
[

b1 . . . bn
]  β1

...
βn

 =
n∑

i=1
βibi = v =

[
v
]

En
.

This proves that
En

[
IdFn

]
B

= B.



Lemma 4.5.8
Let F be a field, let En = {e1, . . . , en} be the standard basis of Fn,
and let B = {b1, . . . , bn} be any basis of Fn. Set
B :=

[
b1 . . . bn

]
. Then B is invertible, and moreover,

En

[
IdFn

]
B

= B and
B

[
IdFn

]
En

= B−1.

Proof (continued). Reminder:
En

[
IdFn

]
B

= B.

The fact that B is invertible and that
B

[
IdFn

]
En

= B−1 now
follows from Proposition 4.5.7. □
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Theorem 4.5.9
Let F be a field, and let B = {b1, . . . , bn} and C = {c1, . . . , cn} be
two bases of Fn. Set B :=

[
b1 . . . bn

]
and

C :=
[

c1 . . . cn
]
. Then the matrix

C

[
IdFn

]
B

is invertible,
and it is given by the formula

C

[
IdFn

]
B

= C−1B.

Proof.

The fact that
C

[
IdFn

]
B

is invertible follows from
Proposition 4.5.7. To prove that the formula for this matrix is
correct, we observe that

C

[
IdFn

]
B = C

[
IdFn ◦ IdFn

]
B

(∗)= C

[
IdFn

]
En En

[
IdFn

]
B

(∗∗)= C−1B,

where (*) follows from Theorem 4.5.3, and (**) follows from
Lemma 4.5.8. □
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The following proposition is simply a special case of
Theorem 4.5.3(c), but it is used for computation particularly
often.

Proposition 4.5.10
Let U and V be non-trivial, finite-dimensional vector spaces over a
field F, let B1 and B2 be bases of U, let C1 and C2 be bases of V ,
and let f : U → V be a linear function. Then

C2

[
f
]

B2
=

C2

[
IdV ◦ f ◦ IdU

]
B2

=
C2

[
IdV

]
C1 C1

[
f
]

B1 B1

[
IdU

]
B2

Proof. This follows immediately from Theorem 4.5.3(c). □
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Let us now return to the linear function f from Example 4.5.2:
we would like to compute its standard matrix.

Example 4.5.11

Consider the basis B =
{[ 1

0

]
,

[
1
1

]}
of R2, and consider the

unique linear function f : R2 → R2 that satisfies the following:

f
( [ 1

0

] )
=
[

1
0

]
; f

( [ 1
1

] )
=
[

2
2

]
.

Compute the standard matrix of the linear function f .

[
1
0

]

[
1
1

]

f
([

1
0

])
=

[
1
0

]

f
([

1
1

])
=

[
2
2

]

u

f(u)

f

x1 x1

x2 x2
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Solution. In Example 4.5.2, we saw that
B

[
f
]

B
=
[

1 0
0 2

]
.

Now, we set B :=
[

1 1
0 1

]
,1 and we compute B−1 =

[
1 −1
0 1

]
.

Then the standard matrix of f is

E2

[
f
]

E2
= E2

[
IdR2

]
B B

[
f
]

B B

[
IdR2

]
E2

by Prop. 4.5.10

= B B

[
f
]

B B−1 by Lemma 4.5.8

=
[

1 1
0 1

] [
1 0
0 2

] [
1 −1
0 1

]

=
[

1 1
0 2

]
.

1So, the columns of B are the vectors of the basis B, arranged from left to
right in the order in which they appear in B.



Solution (continued). Reminder:
E2

[
f
]

E2
=
[

1 1
0 2

]
.

Optional: Let us check that our answer is correct. Indeed, we
have that[

1 1
0 2

] [
1
0

]
=
[

1
0

]
= f

( [ 1
0

] )
;[

1 1
0 2

] [
1
1

]
=
[

2
2

]
= f

( [ 1
1

] )
.

So, our answer is correct. □
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Our next proposition essentially states that change of basis
matrices are precisely the invertible matrices.

Proposition 4.5.12
Let F be a field, let A ∈ Fn×n be a matrix, and let V be any
n-dimensional vector space over the field F. Then the following are
equivalent:

(a) A is invertible;
(b) for all bases B of V , there exists a basis C of V s.t.

A =
C

[
IdV

]
B

;
(c) for all bases C of V , there exists a basis B of V s.t.

A =
C

[
IdV

]
B

;

(d) there exist bases B and C of V s.t. A =
C

[
IdV

]
B

.
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Proof. Clearly, it is enough to prove the implications shown in the
diagram below.

(a)

(b) (d) (c)

Since V has at least one n-element basis (because dim(V ) = n),
we see that (b) implies (d), and that (c) implies (d). Further, by
Proposition 4.5.7, (d) implies (a). It remains to show that (a)
implies (b) and (c). We prove the former; the proof of the latter is
similar and is left as an exercise.
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Proof (continued). So, assume that (a) is true; we must prove (b).

Fix any basis B = {b1, . . . , bn} of V ; we must construct a basis
C = {c1, . . . , cn} of V s.t. A =

C

[
IdV

]
B

.

Using Proposition 4.5.5, we let f : V → V be the (unique) linear
function s.t. A =

B

[
f
]

B
.

Since A is invertible, Theorem 4.5.4(f) guarantees that f is an
isomorphism. Then by Proposition 4.4.1, f −1 : V → V is also an
isomorphism. For each index i ∈ {1, . . . , n}, we set

ci := f −1(bi).

Since f −1 : V → V is an isomorphism and B = {b1, . . . , bn} is a
basis of V , Theorem 4.4.4(c) implies that{
f −1(b1), . . . , f −1(bn)

}
= {c1, . . . , cn} =: C is also a basis of V .
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Proof (continued). Reminder: A =
C

[
IdV

]
B

;
C = {c1, . . . , cn} =

{
f −1(b1), . . . , f −1(bn)

}
.

Now, we claim that A =
C

[
IdV

]
B

. First, we note that

C

[
IdV

]
B = C

[
f −1 ◦ f

]
B

= C

[
f −1 ]

B B

[
f
]

B︸ ︷︷ ︸
=A

by Theorem 4.5.3(c)

= C

[
f −1 ]

B A.

It now suffices to show that
C

[
f −1

]
B

= In, for it will then

immediately follow that A =
C

[
IdV

]
B

, which is what we need.
We compute (next slide):
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We compute (next slide):



Proof (continued). Reminder: A =
C

[
IdV

]
B

;
C = {c1, . . . , cn} =

{
f −1(b1), . . . , f −1(bn)

}
.

Now, we claim that A =
C

[
IdV

]
B

. First, we note that

C

[
IdV

]
B = C

[
f −1 ◦ f

]
B

= C

[
f −1 ]

B B

[
f
]
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=A

by Theorem 4.5.3(c)

= C

[
f −1 ]

B A.
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C

[
f −1

]
B

= In, for it will then

immediately follow that A =
C

[
IdV

]
B

, which is what we need.
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Proof (continued). Reminder: B = {b1, . . . , bn},
C = {c1, . . . , cn} =

{
f −1(b1), . . . , f −1(bn)

}
.

C

[
f −1 ]

B
(∗)=

[ [
f −1(b1)

]
C . . .

[
f −1(bn)

]
C
]

=
[ [

c1
]

C . . .
[

cn
]

C
]

(∗∗)=
[

en
1 . . . en

n
]

= In,

where (*) follows from Theorem 4.5.1, and (**) follows from
Proposition 3.2.8. This proves (b), and we are done. □



3 Similar matrices

Definition
Let F be a field. Given matrices A, B ∈ Fn×n, we say that A is
similar to B if there exists an invertible matrix P ∈ Fn×n s.t.
B = P−1AP.

By Proposition 4.5.13 (below), matrix similarity is an
equivalence relation on Fn×n.

Proposition 4.5.13
Let F be a field. Then all the following hold:

(a) ∀A ∈ Fn×n: A is similar to A;
(b) ∀A, B ∈ Fn×n: if A is similar to B, then B is similar to A;
(c) ∀A, B, C ∈ Fn×n: if A is similar to B and B is similar to C ,

then A is similar to C .
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Let F be a field. Then all the following hold:
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(b) ∀A, B ∈ Fn×n: if A is similar to B, then B is similar to A;
(c) ∀A, B, C ∈ Fn×n: if A is similar to B and B is similar to C ,

then A is similar to C .

Proof.

(a) Fix a matrix A ∈ Fn×n. Then A = I−1
n AIn, and it

follows that A is similar to itself.

(b) Fix a matrices A, B ∈ Fn×n, and assume that A is similar to B.
Then there exists an invertible matrix P ∈ Fn×n s.t. B = P−1AP.
But then A = PBP−1 = (P−1)−1BP−1, and it follows that B is
similar to A.
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Proposition 4.5.13
(c) ∀A, B, C ∈ Fn×n: if A is similar to B and B is similar to C ,

then A is similar to C .

Proof (continued). (c) Fix matrices A, B, C ∈ Fn×n, and assume
that A is similar to B and that B is similar to C . Then there exist
invertible matrices P, Q ∈ Fn×n s.t. B = P−1AP and
C = Q−1BQ. But now

C = Q−1BQ

= Q−1(P−1AP)Q

= (Q−1P−1)A(PQ)

= (PQ)−1A(PQ),

and it follows that A is similar to C . □



Proposition 4.5.13
Let F be a field. Then all the following hold:

(a) ∀A ∈ Fn×n: A is similar to A;
(b) ∀A, B ∈ Fn×n: if A is similar to B, then B is similar to A;
(c) ∀A, B, C ∈ Fn×n: if A is similar to B and B is similar to C ,

then A is similar to C .

Remark: By Proposition 4.5.13(b), the similarity relation on
Fn×n (where F is a field) is symmetric.

Consequently, we may speak of matrices A, B ∈ Fn×n as being
similar or not being similar to each other.
In particular, in what follows, we will often write something
like “let A, B ∈ Fn×n be similar matrices.”

This means that A is similar to B and vice versa.
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Proposition 4.5.14
Let F be a field, and let A, B ∈ Fn×n be similar matrices, say
B = P−1AP for some invertible matrix P ∈ Fn×n. Then A is
invertible iff B is invertible, and in this case, B−1 = P−1A−1P and
A−1 = PB−1P−1.

Proof.

Since B = P−1AP, we have that A = PBP−1. Since P and
P−1 are invertible, Proposition 1.11.8(e) guarantees that A is
invertible iff B is invertible. Suppose now that A and B are
invertible. Then

B−1 = (P−1AP)−1 = P−1A−1(P−1)−1 = P−1A−1P.

But now since B−1 = P−1A−1P, we immediately get that
A−1 = PB−1P−1. This completes the argument. □
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Proposition 4.5.14
Let F be a field, and let A, B ∈ Fn×n be similar matrices, say
B = P−1AP for some invertible matrix P ∈ Fn×n. Then A is
invertible iff B is invertible, and in this case, B−1 = P−1A−1P and
A−1 = PB−1P−1.

Proposition 4.5.15
Let F be a field, and let A, B ∈ Fn×n be similar matrices, say
B = P−1AP for some invertible matrix P ∈ Fn×n. Then for all
non-negative integers m, we have that Bm = P−1AmP, and in
particular, Am and Bm are similar. Moreover, if A and B are
invertible,a then we in fact have that Bm = P−1AmP for all
integers m.

aBy Proposition 4.5.14, A is invertible iff B is invertible.
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Proposition 4.5.15
Let F be a field, and let A, B ∈ Fn×n be similar matrices, say
B = P−1AP for some invertible matrix P ∈ Fn×n. Then for all
non-negative integers m, we have that Bm = P−1AmP, and in
particular, Am and Bm are similar. Moreover, if A and B are
invertible, then we in fact have that Bm = P−1AmP for all integers
m.

Proof.

We first prove that Bm = P−1AmP for all non-negative
integers m. We proceed by induction on m.

For m = 0, we note that B0 = In and
P−1A0P = P−1InP = P−1P = In, and so B0 = P−1A0P.

Now, fix a non-negative integer m, and assume inductively that
Bm = P−1AmP. We then have that (next slide):
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non-negative integers m, we have that Bm = P−1AmP, and in
particular, Am and Bm are similar. Moreover, if A and B are
invertible, then we in fact have that Bm = P−1AmP for all integers
m.

Proof (continued).

Bm+1 = BmB ind. hyp.= (P−1AmP︸ ︷︷ ︸
=Bm

)(P−1AP︸ ︷︷ ︸
=B

)

= P−1Am(PP−1︸ ︷︷ ︸
=In

)AP

= P−1AmAP = P−1Am+1P,

This completes the induction.



Proposition 4.5.15
Let F be a field, and let A, B ∈ Fn×n be similar matrices, say
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Proof (continued). Reminder: Bm = P−1AmP ∀m ∈ N0.

Assume now that A and B are invertible. By Proposition 4.5.14,
we have that B−1 = P−1A−1P. But now by an argument
completely analogous to the above, we get that for all nonegative
integers m, we have that (B−1)m = P−1(A−1)mP, that is,
B−m = P−1A−mP. Combined with the above, this implies that
Bm = P−1AmP for all integers m. □
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Our next theorem essentially states that two n × n matrices
are similar iff they represent the same linear function from an
n-dimensional vector space to itself, but possibly with respect
to different bases.

Theorem 4.5.16
Let F be a field, let B, C ∈ Fn×n be matrices, and let V be an
n-dimensional vector space over the field F. Then the following are
equivalent:

(a) B and C are similar;
(b) for all bases B of V and linear functions f : V → V s.t.

B =
B

[
f
]

B
, there exists a basis C of V s.t. C =

C

[
f
]

C
;

(c) for all bases C of V and linear functions f : V → V s.t.
C =

C

[
f
]

C
, there exists a basis B of V s.t. B =

B

[
f
]

B
;

(d) there exist bases B and C of V and a linear function
f : V → V s.t. B =

B

[
f
]

B
and C =

C

[
f
]

C
.
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Proof. Clearly, it is enough to prove the implications shown in the
diagram below.

(a)

(b) (d) (c)

But since matrix similarity in Fn×n is symmetric (by
Proposition 4.5.13(b)), the proofs of the implications
“(a) =⇒ (b)” and “(a) =⇒ (c)” are completely analogous, as are
the proofs of the implications “(b) =⇒ (d)” and “(c) =⇒ (d).”
So, it is enough to prove the implications shown in the diagram
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Proof (continued). First, we assume (a) and prove (c).
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that C is a basis of V and that f : V → V is a linear function s.t.
C =

C

[
f
]

C
. WTS there exists a basis B of V s.t. B =

B

[
f
]

B
.

By (a), matrices B and C are similar, which by definition means
that there exists an invertible matrix P ∈ Fn×n s.t. B = P−1CP.
Since P is invertible, Proposition 4.5.12 guarantees that there
exists a basis B of V s.t. P =

C

[
IdV

]
B

. But now we have that

B = P−1CP =
(

C

[
IdV

]
B

)−1

C

[
f
]

C C

[
IdV

]
B

(∗)= B

[
IdV

]
C C

[
f
]

C C

[
IdV

]
B

(∗∗)= B

[
IdV ◦ f ◦ IdV

]
B = B

[
f
]

B ,

where (*) follows from Proposition 4.5.7, and (**) follows from
Theorem 4.5.3(c). This proves (c).
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Proof (continued). Next, we assume (c) and prove (d).

Since V is
an n-dimensional vector space, it has a basis C of size n. Next, by
Proposition 4.5.5, there exists a (unique) linear function
f : V → V s.t. C =

C

[
f
]

C
. But then by (c), there exists a basis

B of V s.t. B =
B

[
f
]

B
. This proves (d).

Remark: The implication “(c) =⇒ (d)” may seem trivial, but
in fact it is not!

To get this implication, we need to make sure that (c) is not
just “vacuously true” due to there not existing any C and f s.t.
C = C

[
f
]

C .
The existence of the basis C follows immediately from
dimension considerations, but the existence of a linear function
f : V → V s.t. C = C

[
f
]

C only follows from the not entirely
trivial Proposition 4.5.5.
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Proof (continued). Finally, we assume (d) and prove (a).

Using (d), we fix bases B and C of V and a linear function
f : V → V s.t. B =

B

[
f
]

B
and C =

C

[
f
]

C
. Set

P :=
B

[
IdV

]
C
. By Proposition 4.5.7, P is invertible and satisfies

P−1 =
C

[
IdV

]
B

. We now compute:

P−1BP = C

[
IdV

]
B B

[
f
]

B B

[
IdV

]
C

(∗)= C

[
IdV ◦ f ◦ IdV

]
C

= C

[
f
]

C = C ,

where (*) follows from Theorem 4.5.3(c). So, B and C are similar.
This proves (a), and we are done. □
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Theorem 4.5.16
Let F be a field, let B, C ∈ Fn×n be matrices, and let V be an
n-dimensional vector space over the field F. Then the following are
equivalent:

(a) B and C are similar;
(b) for all bases B of V and linear functions f : V → V s.t.

B =
B

[
f
]

B
, there exists a basis C of V s.t. C =

C

[
f
]

C
;

(c) for all bases C of V and linear functions f : V → V s.t.
C =

C

[
f
]

C
, there exists a basis B of V s.t. B =

B

[
f
]

B
;

(d) there exist bases B and C of V and a linear function
f : V → V s.t. B =

B

[
f
]

B
and C =

C

[
f
]

C
.



Corollary 4.5.17
Let F be a field, and let B, C ∈ Fn×n be similar matrices. Then
rank(B) = rank(C).

This follows immediately from the definition of matrix
similarity and from Proposition 3.3.14(c) (below).

Proposition 3.3.14
Let F be a field, and let A ∈ Fn×m. Then all the following hold:

(a) for all invertible matrices S ∈ Fn×n: rank(SA) = rank(A);
(b) for all invertible matrices S ∈ Fm×m: rank(AS) = rank(A);
(c) for all invertible matrices S1 ∈ Fn×n and S2 ∈ Fm×m:

rank(S1AS2) = rank(A).

However, let us give a different proof of Corollary 4.5.17, one
relying on Theorem 4.5.16 (in order to illustrate how
Theorem 4.5.16 can be used).
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Corollary 4.5.17
Let F be a field, and let B, C ∈ Fn×n be similar matrices. Then
rank(B) = rank(C).

Proof.

Since B and C are similar, Theorem 4.5.16 guarantees that
there exist bases B and C of Fn and a linear function f : Fn → Fn

such that B =
B

[
f
]

B
and C =

C

[
f
]

C
. But then

rank(B) = rank
(

B

[
f
]

B

)
because B = B

[
f
]

B

= rank(f ) by Theorem 4.5.4(a)

= rank
(

C

[
f
]

C

)
by Theorem 4.5.4(a)

= rank(C) because C = C

[
f
]

C ,

and we are done. □
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