Linear Algebra 2:
 HW\#9

Todor Antić \& Irena Penev
Summer 2024

due Monday, May 27, 2024, at 10 am (Prague time)

Submit your HW through the Postal Owl as a PDF attachment. Make sure your submission is printable: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do not send your HW by e-mail. Please write your name on top of the first page of your HW.

Exercise 1 (10 points). Consider the quadratic form q on \mathbb{R}^{3} given by the formula

$$
q(\mathbf{x})=x_{1}^{2}-2 x_{1} x_{2}+3 x_{1} x_{3}-4 x_{2}^{2}+5 x_{2} x_{3}-x_{3}^{2}
$$

for all $\mathbf{x}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{T}$ in \mathbb{R}^{3}. Compute the (symmetric) matrix of the quadratic form q with respect to the standard basis \mathcal{E}_{3} of \mathbb{R}^{3}.

Exercise 2 (15 points). Consider the bilinear form $\langle\cdot, \cdot\rangle$ on \mathbb{R}^{3} given by

$$
\langle\mathbf{x}, \mathbf{y}\rangle=2 x_{1} y_{1}+2 x_{1} y_{2}-x_{1} y_{3}+2 x_{2} y_{1}+3 x_{2} y_{2}+2 x_{2} y_{3}-x_{3} y_{1}+2 x_{3} y_{2}+4 x_{3} y_{3}
$$

for all $\mathbf{x}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}\right]^{T}$ in \mathbb{R}^{3}.
(a) Compute the matrix of the bilinear form $\langle\cdot, \cdot\rangle$ with respect to the standard basis \mathcal{E}_{3} of \mathbb{R}^{3}.
(b) Is the bilinear form $\langle\cdot, \cdot\rangle$ symmetric?
(c) Is the bilinear form $\langle\cdot, \cdot\rangle$ a scalar product in \mathbb{R}^{3} ?

Problem 1 (25 points). Consider the quadratic form q on \mathbb{R}^{4} given by the formula

$$
q(\mathbf{x})=-8 x_{1}^{2}+14 x_{1} x_{2}+8 x_{1} x_{3}+2 x_{1} x_{4}-3 x_{2}^{2}-2 x_{2} x_{3}+2 x_{2} x_{4}+2 x_{3} x_{4}+x_{4}^{2}
$$

for all $\mathbf{x}=\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]^{T}$ in \mathbb{R}^{4}. Compute the signature $\left(n_{+}, n_{-}, n_{0}\right)$ of q, a polar basis \mathcal{B} of \mathbb{R}^{4} associated with q, and the matrix D of q with respect to \mathcal{B}.

Remark: The relevant section for this problem is section 9.4 of the Lecture Notes. A "polar basis" is defined at the beginning of subsection 9.4.2 of the Lecture Notes.

Problem 2 (25 points). Let $A \in R^{n \times n}$ be a positive definite matrix. Prove that there exists a positive definite matrix $B \in R^{n \times n}$ such that $A=B^{2}$.

Problem 3 (25 points). Let A and B be symmetric matrices in $R^{n \times n}$, and assume that every eigenvalue of A is strictly greater than every eigenvalue of B. Prove that the matrix $A-B$ is positive definite.

Hint: Start with an orthonormal eigenbasis of \mathbb{R}^{n} associated with A, and an orthonormal eigenbasis of \mathbb{R}^{n} associated with B. (You must explain why such eigenbases exist, and note that the two eigenbases need not be the same!) Can you find a lower bound for the expression $\mathbf{x}^{T} A \mathbf{x}$ in terms of \mathbf{x} and the eigenvalues of A (where \mathbf{x} is an arbitrary vector in \mathbb{R}^{n})? And an upper bound for $\mathbf{x}^{T} B \mathbf{x}$ in terms of \mathbf{x} and the eigenvalues of B ? Now what?

