Linear Algebra 2:
 HW\#8

Todor Antić \& Irena Penev
Summer 2024

due Monday, May 20, 2024, at 10 am (Prague time)

Submit your HW through the Postal Owl as a PDF attachment. Make sure your submission is printable: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do not send your HW by e-mail. Please write your name on top of the first page of your HW.

Exercise 1 (10 points). Suppose you are given a matrix $A \in \mathbb{C}^{14 \times 14}$ for which your friend the calculator computes the characteristic polynomial

$$
p_{A}(\lambda)=(\lambda-2)^{4}(\lambda+3)^{4}(\lambda-4)^{6},
$$

and further helpfully computes the following:

- $\operatorname{rank}\left(\left(A-2 I_{14}\right)^{0}\right)=14$;
- $\operatorname{rank}\left(\left(A-4 I_{14}\right)^{0}\right)=14$;
- $\operatorname{rank}\left(\left(A-2 I_{14}\right)^{1}\right)=12$;
- $\operatorname{rank}\left(\left(A-4 I_{14}\right)^{1}\right)=11$;
- $\operatorname{rank}\left(\left(A-2 I_{14}\right)^{2}\right)=11$;
- $\operatorname{rank}\left(\left(A-4 I_{14}\right)^{2}\right)=10$;
- $\operatorname{rank}\left(\left(A-2 I_{14}\right)^{3}\right)=10$,
- $\operatorname{rank}\left(\left(A-4 I_{14}\right)^{3}\right)=9$;
- $\operatorname{rank}\left(\left(A-2 I_{14}\right)^{4}\right)=10$,
- $\operatorname{rank}\left(\left(A-4 I_{14}\right)^{4}\right)=8$;
- $\operatorname{rank}\left(\left(A+3 I_{14}\right)^{0}\right)=14$;
- $\operatorname{rank}\left(\left(A-4 I_{14}\right)^{5}\right)=8$.
- $\operatorname{rank}\left(\left(A+3 I_{14}\right)^{1}\right)=12$;
- $\operatorname{rank}\left(\left(A+3 I_{14}\right)^{2}\right)=10$;
- $\operatorname{rank}\left(\left(A+3 I_{14}\right)^{3}\right)=10$,

Compute the Jordan normal form of A.

Problem 1 (15 points). Consider all possible matrices in $\mathbb{C}^{14 \times 14}$ whose eigenvalues are (exactly) the following:

- $\lambda_{1}=3$ with algebraic multipicity 5 and geometric multiplicity 4;
- $\lambda_{2}=5$ with algebraic multiplicity 4 and geometric multiplicity 1;
- $\lambda_{3}=6$ with algebraic multiplicity 5 and geometric multiplicity 2 .

Are all such matrices similar? Make sure you fully justify your answer.
Hint: Jordan normal form.

Problem 2 (25 points). Orthogonally diagonalize the following symmetric matrix in $\mathbb{R}^{3 \times 3}$:

$$
A:=\left[\begin{array}{rrr}
1 & -2 & 2 \\
-2 & 4 & -4 \\
2 & -4 & 4
\end{array}\right]
$$

In other words, compute a diagonal matrix D and an orthogonal matrix Q, both in $\mathbb{R}^{3 \times 3}$, such that $D=Q^{T} A Q$.

Hint: This is very similar to Example 8.7.7 of the Lecture Notes.

Problem 3 (25 points). Let $A \in \mathbb{R}^{n \times m}$. Prove that there exists an orthonormal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ of \mathbb{R}^{m} such that vectors $A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{m}$ are pairwise orthogonal. (Here, orthogonality and orthonormality are assumed to be with respect to the standard scalar product \cdot and the induced norm $\|\cdot\|$. .)

Remark: It is possible that some of the $A \mathbf{v}_{i}$'s are zero.
Hint: Explain why \mathbb{R}^{m} has an orthonormal eigenbasis associated with $A^{T} A$, and then use that eigenbasis.

Problem 4 (25 points). Prove or disprove the following statement:
For every symmetric matrix $A \in \mathbb{R}^{n \times n}$, and all vectors $\mathbf{v} \in \operatorname{Col}(A)$ and $\mathbf{w} \in \operatorname{Nul}(A)$, we have that $\mathbf{v} \perp \mathbf{w}$.
(Here, orthogonality is assumed to be with respect to the standard scalar product • in \mathbb{R}^{n}.) First, state clearly whether the statement is true or false. If it is true, then prove it. If it is false, then construct a counterexample (and prove that your counterexample really is a counterexample).

