Linear Algebra 2:
 HW\#7

Todor Antić \& Irena Penev
Summer 2024

due Monday, May 6, 2024, at 10 am (Prague time)

Submit your HW through the Postal Owl as a PDF attachment. Make sure your submission is printable: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do not send your HW by e-mail. Please write your name on top of the first page of your HW.

Exercise 1 (20 points). Consider the following matrices in $\mathbb{C}^{6 \times 6}$:

$$
D=\left[\begin{array}{llllll}
7 & 0 & 0 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 & 0 & 0 \\
0 & 0 & 6 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 & 0 & 7
\end{array}\right], \quad P:=\left[\begin{array}{rrrrrr}
1 & 5 & -2 & 3 & 0 & 8 \\
0 & 0 & 3 & -2 & 1 & -2 \\
-4 & 2 & 1 & 1 & 1 & 5 \\
6 & -6 & -6 & 7 & 0 & 1 \\
9 & 1 & 9 & 1 & 9 & 1 \\
2 & 3 & 2 & 4 & 4 & 4
\end{array}\right] .
$$

You may assume that P is invertible $]^{1}$ Set $A:=P D P^{-1}\left(s o, D=P^{-1} A P\right)$. Compute the characteristic polynomial of A and the spectrum of A. Identify the eigevalues of A, and for each eigenvalue, specify its algebraic and geometric multiplicity. Find a basis of each eigenspace of A.

Hint: See Proposition 8.5.12 and Example 8.5.13 of the Lecture Notes.

Problem 1 (20 points). For what values of complex constants a, b, c does \mathbb{C}^{3} have an eigenbasis associated with the matrix A (below)? Make sure you prove that your answer is correct.

$$
A=\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 2
\end{array}\right]
$$

[^0]Problem 2 (20 points). Consider the following matrix in $\mathbb{C}^{4 \times 4}$:

$$
A:=\left[\begin{array}{rrrr}
20 & 0 & 9 & 0 \\
0 & -1 & 0 & 0 \\
-42 & 0 & -19 & 0 \\
-21 & 0 & -9 & -1
\end{array}\right]
$$

Diagonalize the matrix A, and then compute a formula for A^{m}, where m is a non-negative integer. Does your formula also work for negative integers m ? Why or why not?

Problem 3 (20 points). Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times n}$ be a square matrix such that \mathbb{F}^{n} has an eigenbasis associated with A. Prove that \mathbb{F}^{n} has an eigenbasis associated with A^{T}.

Hint: Diagonalization.

Problem 4 (20 points). In what follows, $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ are the standard basis vectors of \mathbb{C}^{n}. Prove or disprove the following statement:

If $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ are eigenvectors of a matrix $A \in \mathbb{C}^{n \times n}$, then A must be diagonal.

Remark: First, state clearly whether the statement is true or false. If it is true, then prove it. If it is false, then construct a counterexample (and prove that your counterexample really is a counterexample).

[^0]: ${ }^{1}$ Indeed, the calculator tells us that $\operatorname{det}(P)=4040 \neq 0$, and so P is invertible.

