Linear Algebra 2: HW#7

Todor Antić & Irena Penev Summer 2024

due Monday, May 6, 2024, at 10 am (Prague time)

Submit your HW through the **Postal Owl** as a **PDF attachment**. Make sure your submission is **printable**: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do **not** send your HW by e-mail. Please write your **name** on top of the first page of your HW.

Exercise 1 (20 points). Consider the following matrices in $\mathbb{C}^{6\times 6}$:

	7	0	0	0	0	0 -]		1	5	-2	3	0	8]	
D =	0	6	0	0	0	0	,	P :=	0	0	3	-2	1	-2	
	0	0	6	0	0	0			-4	2	1	1	1	5	
	0	0	0	0	0	0			6	-6	-6	7	0	1	
	0	0	0	0	6	0			9	1	9	1	9	1	
	0	0	0	0	0	7			2	3	2	4	4	4	

You may assume that P is invertible.¹ Set $A := PDP^{-1}$ (so, $D = P^{-1}AP$). Compute the characteristic polynomial of A and the spectrum of A. Identify the eigevalues of A, and for each eigenvalue, specify its algebraic and geometric multiplicity. Find a basis of each eigenspace of A.

Hint: See Proposition 8.5.12 and Example 8.5.13 of the Lecture Notes.

Problem 1 (20 points). For what values of complex constants a, b, c does \mathbb{C}^3 have an eigenbasis associated with the matrix A (below)? Make sure you prove that your answer is correct.

$$A = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 2 \end{bmatrix}$$

¹Indeed, the calculator tells us that $det(P) = 4040 \neq 0$, and so P is invertible.

Problem 2 (20 points). Consider the following matrix in $\mathbb{C}^{4\times 4}$:

$$A := \begin{bmatrix} 20 & 0 & 9 & 0 \\ 0 & -1 & 0 & 0 \\ -42 & 0 & -19 & 0 \\ -21 & 0 & -9 & -1 \end{bmatrix}.$$

Diagonalize the matrix A, and then compute a formula for A^m , where m is a non-negative integer. Does your formula also work for negative integers m? Why or why not?

Problem 3 (20 points). Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times n}$ be a square matrix such that \mathbb{F}^n has an eigenbasis associated with A. Prove that \mathbb{F}^n has an eigenbasis associated with A^T .

Hint: Diagonalization.

Problem 4 (20 points). In what follows, $\mathbf{e}_1, \ldots, \mathbf{e}_n$ are the standard basis vectors of \mathbb{C}^n . Prove or disprove the following statement:

If $\mathbf{e}_1, \ldots, \mathbf{e}_n$ are eigenvectors of a matrix $A \in \mathbb{C}^{n \times n}$, then A must be diagonal.

Remark: First, state clearly whether the statement is true or false. If it is true, then prove it. If it is false, then construct a counterexample (and prove that your counterexample really is a counterexample).