Linear Algebra 2:
 HW \#6

Todor Antić \& Irena Penev
Summer 2024

due Monday, April 29, 2024, at 10 am (Prague time)

Submit your HW through the Postal Owl as a PDF attachment. Make sure your submission is printable: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do not send your HW by e-mail. Please write your name on top of the first page of your HW.

Exercise 1 (20 points). Consider the following matrix in $\mathbb{C}^{4 \times 4}$:

$$
A:=\left[\begin{array}{llll}
2 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 1 \\
1 & 1 & 1 & 2
\end{array}\right]
$$

Compute the characteristic polynomial and the spectrum of A. For each eigenvalue λ of A, determine the algebraic and geometric multiplicity of λ, and compute a basis of the eigenspace $E_{\lambda}(A)$.

Problem 1 (20 points). Consider the linear function $f: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ given by

$$
f\left(a_{2} x^{2}+a_{1} x+a_{0}\right)=\left(-9 a_{1}-8 a_{2}\right) x^{2}+\left(7 a_{1}+6 a_{2}\right) x+\left(a_{0}+3 a_{1}+2 a_{2}\right)
$$

for all $a_{0}, a_{1}, a_{2} \in \mathbb{C}$. (You may assume that f is indeed linear, i.e. you do not need to prove that it is linear.) Compute the characteristic polynomial and the spectrum of f. For each eigenvalue λ of f, determine the algebraic and geometric multiplicity of λ, and compute a basis of the eigenspace $E_{\lambda}(f)$.

Hint: Imitate the solution of Example 8.2.16 from the Lecture Notes.

Problem 2 (20 points). Consider the linear function $f: \mathbb{C}^{2 \times 2} \rightarrow \mathbb{C}^{2 \times 2}$ given by

$$
f\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{ll}
a+d & b+c \\
b+c & a+d
\end{array}\right]
$$

for all $a, b, c, d \in \mathbb{C}$. (You may assume that f is indeed linear, i.e. you do not need to prove that it is linear.) Compute the characteristic polynomial and the spectrum of f. For each eigenvalue λ of f, determine the algebraic and geometric multiplicity of λ, and compute a basis of the eigenspace $E_{\lambda}(f)$.

Hint: Once again, this is similar to Example 8.2.16 from the Lecture Notes, except that it involves matrices rather than polynomials.

Problem 3 (20 points). Prove or disprove the following statement:
For all matrices $A, B \in \mathbb{C}^{2 \times 2}$ and vectors $\mathbf{v} \in \mathbb{C}^{2}$, if \mathbf{v} is an eigenvector of both A and B, then \mathbf{v} is an eigenvector of $A+B$.

First, state clearly whether the statement is true or false. If it is true, then prove it. If it is false, then construct a counterexample (and prove that your counterexample really is a counterexample).

Problem 4 (20 points). Prove or disprove the following statement:
For all matrices $A, B \in \mathbb{C}^{2 \times 2}$ and scalars $\lambda \in \mathbb{C}$, if λ is an eigenvalue of both A and B, then λ is an eigenvalue of $A+B$.

First, state clearly whether the statement is true or false. If it is true, then prove it. If it is false, then construct a counterexample (and prove that your counterexample really is a counterexample).

