Linear Algebra 2:
 HW \#5

Todor Antić \& Irena Penev
Summer 2024

due Monday, April 22, 2024, at 10 am (Prague time)

Submit your HW through the Postal Owl as a PDF attachment. Make sure your submission is printable: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do not send your HW by e-mail. Please write your name on top of the first page of your HW.

Exercise 1 (10 points). Consider the following matrix and vector, with entries understood to be in \mathbb{Z}_{3} :

$$
A=\left[\begin{array}{ll}
2 & 1 \\
2 & 2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Either use Cramer's rule to solve the matrix-vector equation $A \mathbf{x}=\mathbf{b}$, or explain why this equation cannot be solved using Cramer's rule. (If the equation cannot be solved using Cramer's rule, then you do not need to solve it.)

Exercise 2 (10 points). Compute the determinant of the following matrix (with entries understood to be in \mathbb{R}):

$$
A=\left[\begin{array}{rrrrr}
-2 & 1 & 1 & 0 & 2 \\
-3 & 2 & 1 & 0 & -1 \\
0 & -2 & 1 & 0 & 0 \\
1 & 3 & -1 & 2 & 3 \\
2 & -1 & 1 & 0 & 0
\end{array}\right] .
$$

You may use any method (or combination of methods) that you like, but make sure you show your work ${ }^{1}$

[^0]Exercise 3 (15 points). Consider the matrix

$$
A=\left[\begin{array}{rrr}
1 & 2 & -1 \\
0 & -2 & 2 \\
-1 & 0 & 1
\end{array}\right]
$$

with entries understood to be in \mathbb{R}. Compute:

1. $\operatorname{det}(A)$;
2. the cofactor matrix of A;
3. the adjugate matrix of A.

Is A invertible? If so, compute its inverse.

Problem 1 (15 points). Let a, b, c be positive real numbers. Compute the volume of the solid enclosed by the ellipsoid

$$
\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, x_{1}, x_{2}, x_{3} \in \mathbb{R}, \frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{c^{2}}=1\right\}
$$

Hint: Imitate the solution of Example 7.10.6 from the Lecture Notes.

Problem 2 (25 points). Let \mathbb{F} be a field, let $n \geq 2$ be an integer, and let $\mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ be linearly independent vectors in \mathbb{F}^{n}. Define the function $f: \mathbb{F}^{n} \rightarrow \mathbb{F}$ by setting

$$
f(\mathbf{x})=\left|\begin{array}{llll}
\mathbf{x} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}
\end{array}\right| \quad \text { for all } \mathbf{x} \in \mathbb{F}^{n}
$$

By Proposition 7.2.1 of the Lecture Notes, f is linear. Find a basis of $\operatorname{Ker}(f)$, and compute the dimension of $\operatorname{Ker}(f)$ and $\operatorname{Im}(f)$. Make sure you fully justify your answer.

Problem 3 (25 points). Let A be an invertible matrix in $\mathbb{R}^{n \times n}$, and assume that the entries of A are all integers. Prove that the entries of A^{-1} are all integers if and only if $\operatorname{det}(A)= \pm 1$.

Hint: Use the adjugate matrix.

[^0]: ${ }^{1}$ You should compute this by hand (and show your work!), but you can, and probably should, check your answer with a calculator

