Linear Algebra 2:
 HW\#4

Todor Antić \& Irena Penev
Summer 2024

due Monday, April 8, 2024, at 10 am (Prague time)

Submit your HW through the Postal Owl as a PDF attachment. Make sure your submission is printable: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do not send your HW by e-mail. Please write your name on top of the first page of your HW.

Exercise 1 (10 points). Consider the following matrix and vector, with entries understood to be in \mathbb{R} :

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right] .
$$

Find the least-squares solution(s) of the matrix-vector equation $A \mathbf{x}=\mathbf{b}$, and compute the associated least-squares error. Using your answer to the previous question, determine whether the equation $A \mathbf{x}=\mathbf{b}$ is consistent.

Exercise 2 (10 points). Fit a polynomial of degree at most 2 to the data points $(0,27),(1,0),(2,0),(3,0)$ using least squares.

Exercise 3 (5 points). Consider the following permutation in S_{7} :

$$
\pi=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
7 & 2 & 3 & 6 & 5 & 1 & 4
\end{array}\right) .
$$

Compute the matrix P_{π}, and compute $\operatorname{det}\left(P_{\pi}\right)$.
Hint: $\operatorname{det}\left(P_{\pi}\right)$ can be computed in various ways, but it is easiest to use Proposition 7.1.1 from the Lecture Notes.

Exercise 4 (5 points). Consider the following permutation matrix (with entries understood to be in some field \mathbb{F}):

$$
A=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Compute the permutation $\pi \in S_{6}$ such that $A=P_{\pi}$, and compute $\operatorname{det}(A)$.
Hint: Same hint as for the previous exercise.

Problem 1 (20 points). Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be an orthonormal basis of \mathbb{R}^{n}, and set $A=\left[\begin{array}{lll}\mathbf{u}_{1} & \ldots & \mathbf{u}_{n-1}\end{array}\right]$. Find the least-squares solution(s) of the matrix-vector equation $A \mathbf{x}=\mathbf{u}_{n}$. What is the associated least-squares error?

Problem 2 (20 points). Let $Q_{1}, Q_{2} \in \mathbb{R}^{n \times m}$ and $Q \in \mathbb{R}^{m \times m}$. Assume that matrices Q_{1} and Q_{2} have orthonormal columns (with respect to the standard scalar product \cdot and the induced norm $\|\cdot\|$ in $\left.\mathbb{R}^{n}\right),{ }^{1}$ and assume furthermore that $Q_{1}=Q_{2} Q$. Prove that the matrix Q is orthogonal.

Hint: Consider the product $Q_{1}^{T} Q_{1}=\left(Q_{2} Q\right)^{T}\left(Q_{2} Q\right)$

Problem 3 (30 points). Consider the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
3 \\
3 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{l}
3 \\
4 \\
1 \\
0
\end{array}\right]
$$

in \mathbb{R}^{4}, and set $C:=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right)$.
(a) Compute the standard matrix of orthogonal projection onto C.
(b) Compute an orthonormal basis for C and an orthonormal basis for C^{\perp}.
(c) Let $\mathbf{x}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$. Compute vectors $\mathbf{y} \in C$ and $\mathbf{z} \in C^{\perp}$ such that $\mathbf{x}=\mathbf{y}+\mathbf{z}$.

[^0]
[^0]: ${ }^{1}$ Remark: Despite Theorem 6.8.1 from the Lecture Notes, we cannot conclude that matrices Q_{1} and Q_{2} are orthogonal. This is because Q_{1} and Q_{2} are not necessarily square matrices. By definition, only square matrices can be orthogonal.

