Linear Algebra 2: HW#4

Todor Antić & Irena Penev Summer 2024

due Monday, April 8, 2024, at 10 am (Prague time)

Submit your HW through the **Postal Owl** as a **PDF attachment**. Make sure your submission is **printable**: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do **not** send your HW by e-mail. Please write your **name** on top of the first page of your HW.

Exercise 1 (10 points). Consider the following matrix and vector, with entries understood to be in \mathbb{R} :

	1	1			3
A =	1	0	,	$\mathbf{b} =$	3
	0	1			3

Find the least-squares solution(s) of the matrix-vector equation $A\mathbf{x} = \mathbf{b}$, and compute the associated least-squares error. Using your answer to the previous question, determine whether the equation $A\mathbf{x} = \mathbf{b}$ is consistent.

Exercise 2 (10 points). Fit a polynomial of degree at most 2 to the data points (0, 27), (1, 0), (2, 0), (3, 0) using least squares.

Exercise 3 (5 points). Consider the following permutation in S_7 :

 $\pi = \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 2 & 3 & 6 & 5 & 1 & 4 \end{array}\right).$

Compute the matrix P_{π} , and compute $det(P_{\pi})$.

Hint: $det(P_{\pi})$ can be computed in various ways, but it is easiest to use Proposition 7.1.1 from the Lecture Notes.

Exercise 4 (5 points). Consider the following permutation matrix (with entries understood to be in some field \mathbb{F}):

Compute the permutation $\pi \in S_6$ such that $A = P_{\pi}$, and compute det(A).

Hint: Same hint as for the previous exercise.

Problem 1 (20 points). Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ be an orthonormal basis of \mathbb{R}^n , and set $A = \begin{bmatrix} \mathbf{u}_1 & \ldots & \mathbf{u}_{n-1} \end{bmatrix}$. Find the least-squares solution(s) of the matrix-vector equation $A\mathbf{x} = \mathbf{u}_n$. What is the associated least-squares error?

Problem 2 (20 points). Let $Q_1, Q_2 \in \mathbb{R}^{n \times m}$ and $Q \in \mathbb{R}^{m \times m}$. Assume that matrices Q_1 and Q_2 have orthonormal columns (with respect to the standard scalar product \cdot and the induced norm $|| \cdot ||$ in \mathbb{R}^n),¹ and assume furthermore that $Q_1 = Q_2Q$. Prove that the matrix Q is orthogonal.

Hint: Consider the product $Q_1^T Q_1 = (Q_2 Q)^T (Q_2 Q)$

Problem 3 (30 points). Consider the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 3\\3\\0\\0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 3\\4\\1\\0 \end{bmatrix}$$

in \mathbb{R}^4 , and set $C := Span(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$.

- (a) Compute the standard matrix of orthogonal projection onto C.
- (b) Compute an orthonormal basis for C and an orthonormal basis for C^{\perp} .
- (c) Let $\mathbf{x} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$. Compute vectors $\mathbf{y} \in C$ and $\mathbf{z} \in C^{\perp}$ such that $\mathbf{x} = \mathbf{y} + \mathbf{z}$.

¹**Remark:** Despite Theorem 6.8.1 from the Lecture Notes, we cannot conclude that matrices Q_1 and Q_2 are orthogonal. This is because Q_1 and Q_2 are not necessarily square matrices. By definition, only square matrices can be orthogonal.