Linear Algebra 2: HW\#3

Todor Antić \& Irena Penev
Summer 2024

due Monday, March 18, 2024, at 10 am (Prague time)

Submit your HW through the Postal Owl as a PDF attachment. Make sure your submission is printable: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do not send your HW by e-mail. Please write your name on top of the first page of your HW.

Exercise 1 (15 points). In this exercise, we consider \mathbb{R}^{5} to be equipped with the standard scalar product \cdot and the induced norm $\|\cdot\|$. Consider the following linearly independent vectors in \mathbb{R}^{5} :

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
2 \\
1 \\
4 \\
-4 \\
2
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
5 \\
-4 \\
-3 \\
7 \\
1
\end{array}\right] .
$$

(You may assume that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ really are linearly independent.) Using the Gram-Schmidt orthogonalization process (either version), find an orthonormal basis of $U:=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$.

Exercise 2 (15 points). In this exercise, we assume that \mathbb{R}^{4} is equipped with the standard scalar product \cdot and the induced norm $\|\cdot\|$. Consider the following matrix in $\mathbb{R}^{4 \times 5}$:

$$
A=\left[\begin{array}{rrrrr}
3 & -5 & 1 & 1 & 4 \\
1 & 1 & 3 & 1 & 2 \\
-1 & 5 & 3 & -2 & -3 \\
3 & -7 & -1 & 8 & 11
\end{array}\right] .
$$

Compute an orthonormal basis of $\operatorname{Col}(A)$.

Problem 1 (20 points). Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Prove that

$$
\|\mathbf{x}-\mathbf{y}\|^{2}+\|\mathbf{x}+\mathbf{y}\|^{2}=2\|\mathbf{x}\|^{2}+2\|\mathbf{y}\|^{2}
$$

for all $\mathbf{x}, \mathbf{y} \in V$.

Problem 2 (20 points). The equality from Problem 1 holds for norms induced by scalar products, but it need not hold for other norms.
(a) Prove that the equality from Problem 1 does not hold for the Manhattan norm $\|\cdot\|_{1}$ on \mathbb{R}^{2}, that is, find some two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ such that

$$
\|\mathbf{x}-\mathbf{y}\|_{1}^{2}+\|\mathbf{x}+\mathbf{y}\|_{1}^{2} \neq 2\|\mathbf{x}\|_{1}^{2}+2\|\mathbf{y}\|_{1}^{2}
$$

(b) Prove that the equality from Problem 1 does not hold for the Chebyshev distance $\|\cdot\|_{\infty}$ on \mathbb{R}^{2}, that is, find some two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ such that

$$
\|\mathbf{x}-\mathbf{y}\|_{\infty}^{2}+\|\mathbf{x}+\mathbf{y}\|_{\infty}^{2} \neq 2\|\mathbf{x}\|_{\infty}^{2}+2\|\mathbf{y}\|_{\infty}^{2}
$$

Problem 3 (30 points). Let U and V be real vector spaces, equipped with scalar products $\langle\cdot, \cdot\rangle_{U}$ and $\langle\cdot, \cdot\rangle_{V}$, respectively. Let $f: U \rightarrow V$ be a function that satisfies the property that

$$
\langle f(\mathbf{u}), f(\mathbf{v})\rangle_{V}=\langle\mathbf{u}, \mathbf{v}\rangle_{U}
$$

for all $\mathbf{u}, \mathbf{v} \in U$. Prove that f is linear and one-to-one.
Hint: For linearity, consider

- $\langle f(\mathbf{u}+\mathbf{v})-f(\mathbf{u})-f(\mathbf{v}), f(\mathbf{u}+\mathbf{v})-f(\mathbf{u})-f(\mathbf{v})\rangle_{V}$
- $\langle f(\alpha \mathbf{u})-\alpha f(\mathbf{u}), f(\alpha \mathbf{u})-\alpha f(\mathbf{u})\rangle_{V}$
where $\mathbf{u}, \mathbf{v} \in U$ and $\alpha \in \mathbb{R}$.

