Linear Algebra 2: HW#3

Todor Antić & Irena Penev Summer 2024

due Monday, March 18, 2024, at 10 am (Prague time)

Submit your HW through the **Postal Owl** as a **PDF attachment**. Make sure your submission is **printable**: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do **not** send your HW by e-mail. Please write your **name** on top of the first page of your HW.

Exercise 1 (15 points). In this exercise, we consider \mathbb{R}^5 to be equipped with the standard scalar product \cdot and the induced norm $|| \cdot ||$. Consider the following linearly independent vectors in \mathbb{R}^5 :

\mathbf{v}_1 =	$\begin{bmatrix} 1\\ -1\\ -1\\ 1 \end{bmatrix},$	\mathbf{v}_2 =	$\begin{bmatrix} 2\\1\\-4\\-4 \end{bmatrix},$	$\mathbf{v}_3 =$	$\begin{bmatrix} 5\\ -4\\ -3\\ 7 \end{bmatrix}$	
			$\begin{bmatrix} -4\\2 \end{bmatrix}$			

(You may assume that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ really are linearly independent.) Using the Gram-Schmidt orthogonalization process (either version), find an orthonormal basis of $U := Span(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$.

Exercise 2 (15 points). In this exercise, we assume that \mathbb{R}^4 is equipped with the standard scalar product \cdot and the induced norm $|| \cdot ||$. Consider the following matrix in $\mathbb{R}^{4 \times 5}$:

$$A = \begin{bmatrix} 3 & -5 & 1 & 1 & 4 \\ 1 & 1 & 3 & 1 & 2 \\ -1 & 5 & 3 & -2 & -3 \\ 3 & -7 & -1 & 8 & 11 \end{bmatrix}$$

Compute an orthonormal basis of Col(A).

Problem 1 (20 points). Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Prove that

$$||\mathbf{x} - \mathbf{y}||^2 + ||\mathbf{x} + \mathbf{y}||^2 = 2||\mathbf{x}||^2 + 2||\mathbf{y}||^2$$

for all $\mathbf{x}, \mathbf{y} \in V$.

Problem 2 (20 points). The equality from Problem 1 holds for norms induced by scalar products, but it need not hold for other norms.

(a) Prove that the equality from Problem 1 does **not** hold for the Manhattan norm $|| \cdot ||_1$ on \mathbb{R}^2 , that is, find some two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ such that

 $||\mathbf{x} - \mathbf{y}||_1^2 + ||\mathbf{x} + \mathbf{y}||_1^2 \neq 2||\mathbf{x}||_1^2 + 2||\mathbf{y}||_1^2.$

(b) Prove that the equality from Problem 1 does **not** hold for the Chebyshev distance $|| \cdot ||_{\infty}$ on \mathbb{R}^2 , that is, find some two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ such that

$$||\mathbf{x} - \mathbf{y}||_{\infty}^{2} + ||\mathbf{x} + \mathbf{y}||_{\infty}^{2} \neq 2||\mathbf{x}||_{\infty}^{2} + 2||\mathbf{y}||_{\infty}^{2}.$$

Problem 3 (30 points). Let U and V be real vector spaces, equipped with scalar products $\langle \cdot, \cdot \rangle_U$ and $\langle \cdot, \cdot \rangle_V$, respectively. Let $f : U \to V$ be a function that satisfies the property that

$$\langle f(\mathbf{u}), f(\mathbf{v}) \rangle_V = \langle \mathbf{u}, \mathbf{v} \rangle_U$$

for all $\mathbf{u}, \mathbf{v} \in U$. Prove that f is linear and one-to-one.

Hint: For linearity, consider

•
$$\left\langle f(\mathbf{u} + \mathbf{v}) - f(\mathbf{u}) - f(\mathbf{v}), f(\mathbf{u} + \mathbf{v}) - f(\mathbf{u}) - f(\mathbf{v}) \right\rangle_{V}$$

• $\left\langle f(\alpha \mathbf{u}) - \alpha f(\mathbf{u}), f(\alpha \mathbf{u}) - \alpha f(\mathbf{u}) \right\rangle_{V}$

where $\mathbf{u}, \mathbf{v} \in U$ and $\alpha \in \mathbb{R}$.