Linear Algebra 2:
 HW\#2

Todor Antić \& Irena Penev
Summer 2024

due Monday, March 11, 2024, at 10 am (Prague time)

Submit your HW through the Postal Owl as a PDF attachment. Make sure your submission is printable: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do not send your HW by e-mail. Please write your name on top of the first page of your HW.

Exercise 1 (10 points). Compute the angle θ between the vectors

$$
\mathbf{u}=\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right] \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{r}
2 \\
-3 \\
2
\end{array}\right]
$$

in \mathbb{R}^{3}. (Your final answer may involve an inverse trigonometric function.) Is the angle θ acute, right, or obtuse?

Problem 1 (30 points). Let V be a real vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the norm $\|\cdot\|$ induced by $\langle\cdot, \cdot\rangle$. Prove that if vectors $\mathbf{x}, \mathbf{y} \in V$ satisfy

$$
\|\mathbf{x}+\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2},
$$

then they are orthogonal.
Remark: So, you are asked to prove the converse of the Pythagorean theorem for the case of real vector spaces.

Problem 2 (30 points). Consider the standard scalar product • on \mathbb{C}^{2}, and the induced norm $\|\cdot\|$. Find non-orthogonal vectors $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{2}$ that satisfy

$$
\|\mathbf{x}+\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2} .
$$

Remark: This shows that the converse of the Pythagorean theorem need not hold for complex vector spaces.

Definition. The trace of a square matrix $A=\left[a_{i, j}\right]_{n \times n}$ is defined to be

$$
\operatorname{trace}(A):=\sum_{i=1}^{n} a_{i, i}=a_{1,1}+a_{2,2}+\cdots+a_{n, n} .
$$

In other words, the trace of a square matrix is the sum of its entries on the main diagonal! \square^{\top}

Problem 3 (30 points). Consider the function $\langle\cdot, \cdot\rangle: \mathbb{R}^{n \times m} \times \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ given by

$$
\langle A, B\rangle=\operatorname{trace}\left(A^{T} B\right)
$$

for all $A, B \in \mathbb{R}^{n \times m}$. Prove that $\langle\cdot, \cdot\rangle$ is a scalar product on $\mathbb{R}^{n \times m}$.

[^0]
[^0]: ${ }^{1}$ For example, $\operatorname{trace}\left(\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\right)=1+5+9=15$.

