Linear Algebra 2: HW#2

Todor Antić & Irena Penev Summer 2024

due Monday, March 11, 2024, at 10 am (Prague time)

Submit your HW through the **Postal Owl** as a **PDF attachment**. Make sure your submission is **printable**: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do **not** send your HW by e-mail. Please write your **name** on top of the first page of your HW.

Exercise 1 (10 points). Compute the angle θ between the vectors

$$\mathbf{u} = \begin{bmatrix} 1\\2\\-1 \end{bmatrix} \quad and \quad \mathbf{v} = \begin{bmatrix} 2\\-3\\2 \end{bmatrix}$$

in \mathbb{R}^3 . (Your final answer may involve an inverse trigonometric function.) Is the angle θ acute, right, or obtuse?

Problem 1 (30 points). Let V be a real vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the norm $||\cdot||$ induced by $\langle \cdot, \cdot \rangle$. Prove that if vectors $\mathbf{x}, \mathbf{y} \in V$ satisfy

$$||\mathbf{x} + \mathbf{y}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2,$$

then they are orthogonal.

Remark: So, you are asked to prove the converse of the Pythagorean theorem for the case of **real** vector spaces.

Problem 2 (30 points). Consider the standard scalar product \cdot on \mathbb{C}^2 , and the induced norm $|| \cdot ||$. Find **non-orthogonal** vectors $\mathbf{x}, \mathbf{y} \in \mathbb{C}^2$ that satisfy

$$||\mathbf{x} + \mathbf{y}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2.$$

Remark: This shows that the converse of the Pythagorean theorem need not hold for **complex** vector spaces.

Definition. The trace of a square matrix $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times n}$ is defined to be

 $trace(A) := \sum_{i=1}^{n} a_{i,i} = a_{1,1} + a_{2,2} + \dots + a_{n,n}.$

In other words, the trace of a square matrix is the sum of its entries on the main diagonal.¹

Problem 3 (30 points). Consider the function $\langle \cdot, \cdot \rangle : \mathbb{R}^{n \times m} \times \mathbb{R}^{n \times m} \to \mathbb{R}$ given by

$$\langle A, B \rangle = trace(A^T B)$$

for all $A, B \in \mathbb{R}^{n \times m}$. Prove that $\langle \cdot, \cdot \rangle$ is a scalar product on $\mathbb{R}^{n \times m}$.

¹For example, trace $\left(\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \right) = 1 + 5 + 9 = 15.$