Linear Algebra 2

Complex Numbers

Irena Penev

February 21, 2024

- This mini-lecture is a quick review of complex numbers. - Almost all the proofs are omitted.
- This mini-lecture is a quick review of complex numbers.
- Almost all the proofs are omitted.
- The mini-lecture has two parts:
- This mini-lecture is a quick review of complex numbers.
- Almost all the proofs are omitted.
- The mini-lecture has two parts:
(1) Complex numbers: definition, basic properties, and examples
- This mini-lecture is a quick review of complex numbers.
- Almost all the proofs are omitted.
- The mini-lecture has two parts:
(1) Complex numbers: definition, basic properties, and examples
(2) The Fundamental Theorem of Algebra
(1) Complex numbers: definition, basic properties, and examples
(1) Complex numbers: definition, basic properties, and examples
- To define complex numbers, we first introduce the imaginary unit number, denoted by i, which satisfies

$$
i^{2}=-1
$$

(1) Complex numbers: definition, basic properties, and examples

- To define complex numbers, we first introduce the imaginary unit number, denoted by i, which satisfies

$$
i^{2}=-1
$$

- A complex number is any number of the form $z=a+b i$, where a and b are real numbers; the real part of the complex number z is the real number a, and the imaginary part of z is the real number b.
(1) Complex numbers: definition, basic properties, and examples
- To define complex numbers, we first introduce the imaginary unit number, denoted by i, which satisfies

$$
i^{2}=-1
$$

- A complex number is any number of the form $z=a+b i$, where a and b are real numbers; the real part of the complex number z is the real number a, and the imaginary part of z is the real number b.
- The real and imaginary part of a complex number z are denoted by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$, respectively.
- For example, we have the following:
- $\operatorname{Re}(2+i)=2$ and $\operatorname{Im}(2+i)=1$;
- $\operatorname{Re}(-3 i)=0$ and $\operatorname{Im}(-3 i)=-3$;
- $\operatorname{Re}(7)=7$ and $\operatorname{Im}(7)=0$.
(1) Complex numbers: definition, basic properties, and examples
- To define complex numbers, we first introduce the imaginary unit number, denoted by i, which satisfies

$$
i^{2}=-1
$$

- A complex number is any number of the form $z=a+b i$, where a and b are real numbers; the real part of the complex number z is the real number a, and the imaginary part of z is the real number b.
- The real and imaginary part of a complex number z are denoted by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$, respectively.
- For example, we have the following:
- $\operatorname{Re}(2+i)=2$ and $\operatorname{Im}(2+i)=1$;
- $\operatorname{Re}(-3 i)=0$ and $\operatorname{Im}(-3 i)=-3$;
- $\operatorname{Re}(7)=7$ and $\operatorname{Im}(7)=0$.
- Note that real numbers are precisely those complex numbers whose imaginary part is zero.
(1) Complex numbers: definition, basic properties, and examples
- To define complex numbers, we first introduce the imaginary unit number, denoted by i, which satisfies

$$
i^{2}=-1
$$

- A complex number is any number of the form $z=a+b i$, where a and b are real numbers; the real part of the complex number z is the real number a, and the imaginary part of z is the real number b.
- The real and imaginary part of a complex number z are denoted by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$, respectively.
- For example, we have the following:
- $\operatorname{Re}(2+i)=2$ and $\operatorname{Im}(2+i)=1$;
- $\operatorname{Re}(-3 i)=0$ and $\operatorname{Im}(-3 i)=-3$;
- $\operatorname{Re}(7)=7$ and $\operatorname{Im}(7)=0$.
- Note that real numbers are precisely those complex numbers whose imaginary part is zero.
- The set of all complex numbers is denoted by \mathbb{C}.
- Complex numbers can be visualized in the "complex plane." This plane has two axes: the real axis (denoted by $R e$) and the imaginary axis (denoted by $I m$).

- Complex numbers can be visualized in the "complex plane." This plane has two axes: the real axis (denoted by $R e$) and the imaginary axis (denoted by Im).

- Note that real numbers are precisely those complex numbers that lie on the real axis.
- We add/subtract complex numbers by adding/subtracting the real and imaginary parts.
- For example:

$$
\begin{aligned}
& \text { - }(2+3 i)+(3-5 i)=(2+3)+(3 i-5 i)=5-2 i ; \\
& \text { - }(2+3 i)-(3-5 i)=(2-3)+(3 i-(-5 i))=-1+8 i .
\end{aligned}
$$

- We add/subtract complex numbers by adding/subtracting the real and imaginary parts.
- For example:

$$
\begin{aligned}
& -(2+3 i)+(3-5 i)=(2+3)+(3 i-5 i)=5-2 i \\
& -(2+3 i)-(3-5 i)=(2-3)+(3 i-(-5 i))=-1+8 i
\end{aligned}
$$

- To multiply complex numbers, we must keep in mind that $i^{2}=-1$.
- For example:

$$
\begin{aligned}
(2+3 i)(3-5 i) & =2 \cdot 3+2(-5 i)+(3 i) 3+(3 i)(-5 i) \\
& =6-10 i+9 i-15 \underbrace{i^{2}}_{=-1} \\
& =21-i
\end{aligned}
$$

- We add/subtract complex numbers by adding/subtracting the real and imaginary parts.
- For example:

$$
\begin{aligned}
& -(2+3 i)+(3-5 i)=(2+3)+(3 i-5 i)=5-2 i \\
& -(2+3 i)-(3-5 i)=(2-3)+(3 i-(-5 i))=-1+8 i
\end{aligned}
$$

- To multiply complex numbers, we must keep in mind that $i^{2}=-1$.
- For example:

$$
\begin{aligned}
(2+3 i)(3-5 i) & =2 \cdot 3+2(-5 i)+(3 i) 3+(3 i)(-5 i) \\
& =6-10 i+9 i-15 \underbrace{i^{2}}_{=-1} \\
& =21-i
\end{aligned}
$$

- Division: later!

Proposition 0.3.1

All the following hold:
(a) addition and multiplication in \mathbb{C} are commutative, that is, for all $z_{1}, z_{2} \in \mathbb{C}$, we have that $z_{1}+z_{2}=z_{2}+z_{1}$ and $z_{1} z_{2}=z_{2} z_{1}$;
(D) addition and multiplication in \mathbb{C} are associative, that is, for all $z_{1}, z_{2}, z_{3} \in \mathbb{C}$, we have that $\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right)$ and $\left(z_{1} z_{2}\right) z_{3}=z_{1}\left(z_{2} z_{3}\right)$;
(0) multiplication is distributive over addition in \mathbb{C}, that is, for all $z_{1}, z_{2}, z_{3} \in \mathbb{C}$, we have that $z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3}$.

Proposition 0.3.1

All the following hold:
(a) addition and multiplication in \mathbb{C} are commutative, that is, for all $z_{1}, z_{2} \in \mathbb{C}$, we have that $z_{1}+z_{2}=z_{2}+z_{1}$ and $z_{1} z_{2}=z_{2} z_{1}$;
(b) addition and multiplication in \mathbb{C} are associative, that is, for all $z_{1}, z_{2}, z_{3} \in \mathbb{C}$, we have that $\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right)$ and $\left(z_{1} z_{2}\right) z_{3}=z_{1}\left(z_{2} z_{3}\right)$;
(0) multiplication is distributive over addition in \mathbb{C}, that is, for all $z_{1}, z_{2}, z_{3} \in \mathbb{C}$, we have that $z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3}$.

- Powers of complex numbers are defined in the usual way.
- For a complex number z, we define
- $z^{0}:=1$;
- $z^{m+1}:=z^{m} z$ for all non-negative integers m.

Proposition 0.3.1

All the following hold:
(a) addition and multiplication in \mathbb{C} are commutative, that is, for all $z_{1}, z_{2} \in \mathbb{C}$, we have that $z_{1}+z_{2}=z_{2}+z_{1}$ and $z_{1} z_{2}=z_{2} z_{1}$;
(D) addition and multiplication in \mathbb{C} are associative, that is, for all $z_{1}, z_{2}, z_{3} \in \mathbb{C}$, we have that $\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right)$ and $\left(z_{1} z_{2}\right) z_{3}=z_{1}\left(z_{2} z_{3}\right)$;
(0) multiplication is distributive over addition in \mathbb{C}, that is, for all $z_{1}, z_{2}, z_{3} \in \mathbb{C}$, we have that $z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3}$.

- Powers of complex numbers are defined in the usual way.
- For a complex number z, we define
- $z^{0}:=1$;
- $z^{m+1}:=z^{m} z$ for all non-negative integers m.
- So, for all positive integers m, we have the familiar expression

$$
z^{m}=\underbrace{z \ldots z}_{m}
$$

Definition

For a complex number $z=a+b i$ (where $a, b \in \mathbb{R}$):

- the complex conjugate of z is $\bar{z}:=a-b i$;
- the modulus (or absolute value) of z is $|z|:=\sqrt{a^{2}+b^{2}}$.

Definition

For a complex number $z=a+b i$ (where $a, b \in \mathbb{R}$):

- the complex conjugate of z is $\bar{z}:=a-b i$;
- the modulus (or absolute value) of z is $|z|:=\sqrt{a^{2}+b^{2}}$.
- Geometrically, the complex conjugate of a complex number z is obtained by reflecting z about the $R e$ axis.

Definition

For a complex number $z=a+b i$ (where $a, b \in \mathbb{R}$):

- the complex conjugate of z is $\bar{z}:=a-b i$;
- the modulus (or absolute value) of z is $|z|:=\sqrt{a^{2}+b^{2}}$.
- Geometrically, the complex conjugate of a complex number z is obtained by reflecting z about the $R e$ axis.

- Obviously, $\overline{\bar{z}}=z$.

Definition

For a complex number $z=a+b i$ (where $a, b \in \mathbb{R}$):

- the complex conjugate of z is $\bar{z}:=a-b i$;
- the modulus (or absolute value) of z is $|z|:=\sqrt{a^{2}+b^{2}}$.
- Geometrically, the complex conjugate of a complex number z is obtained by reflecting z about the $R e$ axis.

- Obviously, $\overline{\bar{z}}=z$.
- Note that $\bar{z}=z$ iff z is in fact a real number, i.e. $\operatorname{Im}(z)=0$.

Definition

For a complex number $z=a+b i$ (where $a, b \in \mathbb{R}$):

- the complex conjugate of z is $\bar{z}:=a-b i$;
- the modulus (or absolute value) of z is $|z|:=\sqrt{a^{2}+b^{2}}$.
- The modulus of a complex number z is the usual Pythagorean distance between z and the origin in the complex plane.

Definition

For a complex number $z=a+b i$ (where $a, b \in \mathbb{R}$):

- the complex conjugate of z is $\bar{z}:=a-b i$;
- the modulus (or absolute value) of z is $|z|:=\sqrt{a^{2}+b^{2}}$.
- The modulus of a complex number z is the usual Pythagorean distance between z and the origin in the complex plane.

- Note that $|z|$ is a non-negative real number, and moreover, we have that $|z|=0$ iff $z=0$.

Proposition 0.3.2

For all complex numbers $z=a+b i$ (with $a, b \in \mathbb{R}$), we have that

$$
z \bar{z}=a^{2}+b^{2}=|z|^{2} .
$$

Proposition 0.3.2

For all complex numbers $z=a+b i$ (with $a, b \in \mathbb{R}$), we have that

$$
z \bar{z}=a^{2}+b^{2}=|z|^{2}
$$

- Note that Proposition 0,3,2, in particular, establishes that multiplying a complex number z by its conjugate produces a real number; that real number is zero iff $z=0$.
- This is important for division!

Proposition 0.3.2

For all complex numbers $z=a+b i$ (with $a, b \in \mathbb{R}$), we have that

$$
z \bar{z}=a^{2}+b^{2}=|z|^{2} .
$$

- Let us now explain how division works in \mathbb{C}.

Proposition 0.3.2

For all complex numbers $z=a+b i$ (with $a, b \in \mathbb{R}$), we have that

$$
z \bar{z}=a^{2}+b^{2}=|z|^{2} .
$$

- Let us now explain how division works in \mathbb{C}.
- First of all, given a complex number $z=a+b i$ (with $a, b \in \mathbb{R}$) and a real number $r \neq 0$, we have

$$
\frac{z}{r}=\frac{a}{r}+\frac{b}{r} i
$$

Proposition 0.3.2

For all complex numbers $z=a+b i$ (with $a, b \in \mathbb{R}$), we have that

$$
z \bar{z}=a^{2}+b^{2}=|z|^{2} .
$$

- Let us now explain how division works in \mathbb{C}.
- First of all, given a complex number $z=a+b i$ (with $a, b \in \mathbb{R}$) and a real number $r \neq 0$, we have

$$
\frac{z}{r}=\frac{a}{r}+\frac{b}{r} i .
$$

- Now suppose that z_{1} and $z_{2} \neq 0$ are complex numbers.

Proposition 0.3.2

For all complex numbers $z=a+b i$ (with $a, b \in \mathbb{R}$), we have that

$$
z \bar{z}=a^{2}+b^{2}=|z|^{2} .
$$

- Let us now explain how division works in \mathbb{C}.
- First of all, given a complex number $z=a+b i$ (with $a, b \in \mathbb{R}$) and a real number $r \neq 0$, we have

$$
\frac{z}{r}=\frac{a}{r}+\frac{b}{r} i .
$$

- Now suppose that z_{1} and $z_{2} \neq 0$ are complex numbers.
- To compute $\frac{z_{1}}{z_{2}}$, we need to transform the denominator into a non-zero real number.

Proposition 0.3.2

For all complex numbers $z=a+b i$ (with $a, b \in \mathbb{R}$), we have that

$$
z \bar{z}=a^{2}+b^{2}=|z|^{2} .
$$

- Let us now explain how division works in \mathbb{C}.
- First of all, given a complex number $z=a+b i$ (with $a, b \in \mathbb{R}$) and a real number $r \neq 0$, we have

$$
\frac{z}{r}=\frac{a}{r}+\frac{b}{r} i .
$$

- Now suppose that z_{1} and $z_{2} \neq 0$ are complex numbers.
- To compute $\frac{z_{1}}{z_{2}}$, we need to transform the denominator into a non-zero real number.
- We do this by multiplying both the numerator and the denominator by $\overline{z_{2}}$, at which point (by Proposition 0.3.2) the denominator becomes $\left|z_{2}\right|^{2}$, which is a non-zero real number, and we can divide as above.

Proposition 0.3.2

For all complex numbers $z=a+b i$ (with $a, b \in \mathbb{R}$), we have that

$$
z \bar{z}=a^{2}+b^{2}=|z|^{2} .
$$

- Let us now explain how division works in \mathbb{C}.
- First of all, given a complex number $z=a+b i$ (with $a, b \in \mathbb{R}$) and a real number $r \neq 0$, we have

$$
\frac{z}{r}=\frac{a}{r}+\frac{b}{r} i
$$

- Now suppose that z_{1} and $z_{2} \neq 0$ are complex numbers.
- To compute $\frac{z_{1}}{z_{2}}$, we need to transform the denominator into a non-zero real number.
- We do this by multiplying both the numerator and the denominator by $\overline{z_{2}}$, at which point (by Proposition 0.3.2) the denominator becomes $\left|z_{2}\right|^{2}$, which is a non-zero real number, and we can divide as above.
- Let us take a look at an example.

Example 0.3.3

Compute the following quotients:
(2) $\frac{7-6 i}{3+2 i}$;
(b) $\frac{1}{2-i}$;
(c) $\frac{2-3 i}{5}$;
(1) $\frac{4-2 i}{2-i}$.

Solution.

Example 0.3.3

Compute the following quotients:
(a) $\frac{7-6 i}{3+2 i}$;
(b) $\frac{1}{2-i}$;
(c) $\frac{2-3 i}{5}$;
(a) $\frac{4-2 i}{2-i}$.

Solution. (a) We multiply both the numerator and the denominator by $\overline{3+2 i}=3-2 i$, and we obtain

$$
\frac{7-6 i}{3+2 i}=\frac{(7-6 i)(3-2 i)}{(3+2 i)(3-2 i)}=\frac{9-32 i}{9+4}=\frac{9}{13}-\frac{32}{13} i
$$

Example 0.3.3

Compute the following quotients:
(a) $\frac{7-6 i}{3+2 i}$;
(b) $\frac{1}{2-i}$;
(c) $\frac{2-3 i}{5}$;
(a) $\frac{4-2 i}{2-i}$.

Solution. (a) We multiply both the numerator and the denominator by $\overline{3+2 i}=3-2 i$, and we obtain

$$
\frac{7-6 i}{3+2 i}=\frac{(7-6 i)(3-2 i)}{(3+2 i)(3-2 i)}=\frac{9-32 i}{9+4}=\frac{9}{13}-\frac{32}{13} i
$$

(b) We multiply both the numerator and the denominator by $\overline{2-i}=2+i$, and we obtain

$$
\frac{1}{2-i}=\frac{2+i}{(2-i)(2+i)}=\frac{2+i}{4+1}=\frac{2}{5}+\frac{1}{5} i
$$

Example 0.3.3

Compute the following quotients:
(a) $\frac{7-6 i}{3+2 i}$;
(D) $\frac{1}{2-i}$;
(c) $\frac{2-3 i}{5}$;
(d) $\frac{4-2 i}{2-i}$.

Solution (continued). (c) The denominator is a real number, and so we have

$$
\frac{2-3 i}{5}=\frac{2}{5}-\frac{3}{5} i
$$

Example 0.3.3

Compute the following quotients:
(a) $\frac{7-6 i}{3+2 i}$;
(b) $\frac{1}{2-i}$;
(c) $\frac{2-3 i}{5}$;
(a) $\frac{4-2 i}{2-i}$.

Solution (continued). (c) The denominator is a real number, and so we have

$$
\frac{2-3 i}{5}=\frac{2}{5}-\frac{3}{5} i
$$

(d) We could multiply both the numerator and the denominator by $\overline{2-i}=2+i$. However, in this particular case, it is easier to compute as follows:

$$
\frac{4-2 i}{2-i}=\frac{2(2-i)}{2-i} \stackrel{(*)}{=} 2
$$

where $\left(^{*}\right)$ was obtained by canceling out the common factor 2 - i in the numerator and the denominator. \square

Proposition 0.3.4

For all $z_{1}, z_{2} \in \mathbb{C}$, the following hold:
(0) $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$;
(D) $\overline{z_{1}-z_{2}}=\overline{z_{1}}-\overline{z_{2}}$;
(0) $\overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}$;
(0) if $z_{2} \neq 0$, then $\overline{z_{1} / z_{2}}=\overline{z_{1}} / \overline{z_{2}}$.

Moreover, for all $z \in \mathbb{C}$ and non-negative integers m, we have that (0) $\overline{z^{m}}=(\bar{z})^{m}$.

Proposition 0.3.5

For all $z_{1}, z_{2} \in \mathbb{C}$, the following hold:
(3) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$;
(D) if $z_{2} \neq 0$, then $\left|z_{1} / z_{2}\right|=\left|z_{1}\right| /\left|z_{2}\right|$.

Moreover, for all $z \in \mathbb{C}$, the following hold:
(c) $|-z|=|z|$;
(0) for all non-negative integers m, we have $\left|z^{m}\right|=|z|^{m}$.
(2) The Fundamental Theorem of Algebra
(2) The Fundamental Theorem of Algebra

- A root of a polynomial $p(x)$ with complex coefficients is a complex number c such that $p(c)=0$.
(2) The Fundamental Theorem of Algebra
- A root of a polynomial $p(x)$ with complex coefficients is a complex number c such that $p(c)=0$.
- For example, $1+i$ is a root of the polynomial $p(x)=x^{2}-2 x+2$ because

$$
p(1+i)=(1+i)^{2}-2(1+i)+2=0 .
$$

(2) The Fundamental Theorem of Algebra

- A root of a polynomial $p(x)$ with complex coefficients is a complex number c such that $p(c)=0$.
- For example, $1+i$ is a root of the polynomial $p(x)=x^{2}-2 x+2$ because

$$
p(1+i)=(1+i)^{2}-2(1+i)+2=0 .
$$

- In the particular case of $p(x)=x^{2}-2 x+2$, the roots could have been found via the familiar quadratic equation.
(2) The Fundamental Theorem of Algebra
- A root of a polynomial $p(x)$ with complex coefficients is a complex number c such that $p(c)=0$.
- For example, $1+i$ is a root of the polynomial $p(x)=x^{2}-2 x+2$ because

$$
p(1+i)=(1+i)^{2}-2(1+i)+2=0 .
$$

- In the particular case of $p(x)=x^{2}-2 x+2$, the roots could have been found via the familiar quadratic equation.
- There exist formulas for finding the complex roots of all third and fourth degree polynomials with complex coefficients, but no such formula exists for polynomials of degree five or more (although in some special cases, we may be able to use various tricks to find the roots of these higher-degree polynomials).
- Nevertheless, we do have the following existence result.
- A constant polynomial is a polynomial of the form $p(x)=c$, where c is a fixed constant/number.

The Fundamental Theorem of Algebra

Any non-constant polynomial with complex coefficients has a complex root.

The Fundamental Theorem of Algebra

Any non-constant polynomial with complex coefficients has a complex root.

- Remark: The Fundamental Theorem of Algebra is an existence result in the sense that it guarantees the existence of a complex root for any non-constant polynomial with complex coefficients, even though we might not be able to actually compute this root.

The Fundamental Theorem of Algebra

Any non-constant polynomial with complex coefficients has a complex root.

- Remark: The Fundamental Theorem of Algebra is an existence result in the sense that it guarantees the existence of a complex root for any non-constant polynomial with complex coefficients, even though we might not be able to actually compute this root.
- Of course, every real number is complex.
- So, the Fundamental Theorem of Algebra, in particular, implies that every non-constant polynomial with real coefficients has a complex root (which may or may not be a real number).

The Fundamental Theorem of Algebra

Any non-constant polynomial with complex coefficients has a complex root.

- Remark: The Fundamental Theorem of Algebra is an existence result in the sense that it guarantees the existence of a complex root for any non-constant polynomial with complex coefficients, even though we might not be able to actually compute this root.
- Of course, every real number is complex.
- So, the Fundamental Theorem of Algebra, in particular, implies that every non-constant polynomial with real coefficients has a complex root (which may or may not be a real number).
- For instance, the polynomial $p(x)=x^{2}+1$ is a non-constant polynomial with real (in fact, rational) coefficients, but it has no real roots. It does, of course, have two complex roots, namely i and $-i$.

The Fundamental Theorem of Algebra

Any non-constant polynomial with complex coefficients has a complex root.

- We omit the proof of the Fundamental Theorem of Algebra.
- There are no known elementary proofs of this theorem: all the known proofs of the Fundamental Theorem of Algebra rely on advanced mathematics, such as complex analysis or topology.
- The Fundamental Theorem of Algebra implies that any polynomial $p(x)$ with complex coefficients and of degree $n \geq 1$ can be factored into n linear factors.
- The Fundamental Theorem of Algebra implies that any polynomial $p(x)$ with complex coefficients and of degree $n \geq 1$ can be factored into n linear factors.
- More precisely, for such a polynomial $p(x)$, there exist complex numbers $a, \alpha_{1}, \ldots, \alpha_{\ell}$ such that $a \neq 0$ and such that $\alpha_{1}, \ldots, \alpha_{\ell}$ are pairwise distinct, and positive integers n_{1}, \ldots, n_{ℓ} satisfying $n_{1}+\cdots+n_{\ell}=n$, such that

$$
p(x)=a\left(x-\alpha_{1}\right)^{n_{1}} \ldots\left(x-\alpha_{\ell}\right)^{n_{\ell}}
$$

and moreover, this factorization into linear factors is unique up a permutation of the α_{i} 's and the corresponding n_{i} 's.

- The Fundamental Theorem of Algebra implies that any polynomial $p(x)$ with complex coefficients and of degree $n \geq 1$ can be factored into n linear factors.
- More precisely, for such a polynomial $p(x)$, there exist complex numbers $a, \alpha_{1}, \ldots, \alpha_{\ell}$ such that $a \neq 0$ and such that $\alpha_{1}, \ldots, \alpha_{\ell}$ are pairwise distinct, and positive integers n_{1}, \ldots, n_{ℓ} satisfying $n_{1}+\cdots+n_{\ell}=n$, such that

$$
p(x)=a\left(x-\alpha_{1}\right)^{n_{1}} \ldots\left(x-\alpha_{\ell}\right)^{n_{\ell}}
$$

and moreover, this factorization into linear factors is unique up a permutation of the α_{i} 's and the corresponding n_{i} 's.

- Here, a is the leading coefficient of $p(x)$, i.e. the coefficient in front of x^{n}. Complex numbers $\alpha_{1}, \ldots, \alpha_{\ell}$ are the roots of $p(x)$ with multiplicities n_{1}, \ldots, n_{ℓ}, respectively.
- The Fundamental Theorem of Algebra implies that any polynomial $p(x)$ with complex coefficients and of degree $n \geq 1$ can be factored into n linear factors.
- More precisely, for such a polynomial $p(x)$, there exist complex numbers $a, \alpha_{1}, \ldots, \alpha_{\ell}$ such that $a \neq 0$ and such that $\alpha_{1}, \ldots, \alpha_{\ell}$ are pairwise distinct, and positive integers n_{1}, \ldots, n_{ℓ} satisfying $n_{1}+\cdots+n_{\ell}=n$, such that

$$
p(x)=a\left(x-\alpha_{1}\right)^{n_{1}} \ldots\left(x-\alpha_{\ell}\right)^{n_{\ell}}
$$

and moreover, this factorization into linear factors is unique up a permutation of the α_{i} 's and the corresponding n_{i} 's.

- Here, a is the leading coefficient of $p(x)$, i.e. the coefficient in front of x^{n}. Complex numbers $\alpha_{1}, \ldots, \alpha_{\ell}$ are the roots of $p(x)$ with multiplicities n_{1}, \ldots, n_{ℓ}, respectively.
- If we think of each α_{i} as being a root " n_{i} times" (due to its multiplicity), then we see that the n-th degree polynomial $p(x)$ has exactly n complex roots.
- The Fundamental Theorem of Algebra implies that any polynomial $p(x)$ with complex coefficients and of degree $n \geq 1$ can be factored into n linear factors.
- More precisely, for such a polynomial $p(x)$, there exist complex numbers $a, \alpha_{1}, \ldots, \alpha_{\ell}$ such that $a \neq 0$ and such that $\alpha_{1}, \ldots, \alpha_{\ell}$ are pairwise distinct, and positive integers n_{1}, \ldots, n_{ℓ} satisfying $n_{1}+\cdots+n_{\ell}=n$, such that

$$
p(x)=a\left(x-\alpha_{1}\right)^{n_{1}} \ldots\left(x-\alpha_{\ell}\right)^{n_{\ell}}
$$

and moreover, this factorization into linear factors is unique up a permutation of the α_{i} 's and the corresponding n_{i} 's.

- Here, a is the leading coefficient of $p(x)$, i.e. the coefficient in front of x^{n}. Complex numbers $\alpha_{1}, \ldots, \alpha_{\ell}$ are the roots of $p(x)$ with multiplicities n_{1}, \ldots, n_{ℓ}, respectively.
- If we think of each α_{i} as being a root " n_{i} times" (due to its multiplicity), then we see that the n-th degree polynomial $p(x)$ has exactly n complex roots.
- This is often summarized as follows: "every n-th degree polynomial (with $n \geq 1$) with complex coefficients has exactly n complex roots, when multiplicities are taken into account."
- As we already mentioned, there are formulas that allow us to compute the roots of polynomials with complex coefficients of degree at most four.
- As we already mentioned, there are formulas that allow us to compute the roots of polynomials with complex coefficients of degree at most four.
- However, no such formulas exist for polynomials (with complex coefficients) of degree $n \geq 5$: we know that all such polynomials have n complex roots (when multiplicities are taken into account), but in general, there is no formula for computing these roots.
- As we already mentioned, there are formulas that allow us to compute the roots of polynomials with complex coefficients of degree at most four.
- However, no such formulas exist for polynomials (with complex coefficients) of degree $n \geq 5$: we know that all such polynomials have n complex roots (when multiplicities are taken into account), but in general, there is no formula for computing these roots.
- In fact, not only is no such formula known, but using Galois theory, one can show that no such formula can exist for polynomials of degree at least five.
- As we already mentioned, there are formulas that allow us to compute the roots of polynomials with complex coefficients of degree at most four.
- However, no such formulas exist for polynomials (with complex coefficients) of degree $n \geq 5$: we know that all such polynomials have n complex roots (when multiplicities are taken into account), but in general, there is no formula for computing these roots.
- In fact, not only is no such formula known, but using Galois theory, one can show that no such formula can exist for polynomials of degree at least five.
- Once again, we may be able to use various tricks to compute the roots of some special high-degree polynomials. However, none of these tricks will work in the general case.
- Recall that, geometrically, the complex conjugate of a complex number z is obtained by reflecting z about the $R e$ axis in the complex plane.

- Recall that, geometrically, the complex conjugate of a complex number z is obtained by reflecting z about the $R e$ axis in the complex plane.

Theorem 0.3.6

Let $p(x)$ be any polynomial with real coefficients, and let $z \in \mathbb{C}$. Then z is a root of $p(x)$ iff \bar{z} is a root of $p(x)$.

- First a remark, then a proof.

Theorem 0.3.6

Let $p(x)$ be any polynomial with real coefficients, and let $z \in \mathbb{C}$. Then z is a root of $p(x)$ iff \bar{z} is a root of $p(x)$.

- Remark: Note that Theorem 0.3.6 implies that the complex roots of a non-constant polynomial are symmetric about the Re axis in the complex plane.
- Some (or perhaps all) of those roots may lie on the Re axis, i.e. they may be real numbers.

Theorem 0.3.6

Let $p(x)$ be any polynomial with real coefficients, and let $z \in \mathbb{C}$. Then z is a root of $p(x)$ iff \bar{z} is a root of $p(x)$.

Proof. Set $p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$, where $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$. Then we have the following sequence of equivalences:

$$
\begin{aligned}
p(z)=0 & \Longleftrightarrow \overline{p(z)}=\overline{0} \\
& \Longleftrightarrow \overline{a_{n} z^{n}+\cdots+a_{1} z+a_{0}}=\overline{0} \\
& \Longleftrightarrow \bar{a}_{n}(\bar{z})^{n}+\cdots+\overline{a_{1}}(\bar{z})+\overline{a_{0}}=\overline{0} \\
& \Longleftrightarrow a_{n}(\bar{z})^{n}+\cdots+a_{1} \bar{z}+a_{0}=0 \\
& \Longleftrightarrow p(\bar{z})=0
\end{aligned}
$$

where $\left(^{*}\right)$ follows from Proposition 0.3.4, and $\left({ }^{* *}\right)$ follows from the fact that $a_{0}, a_{1}, \ldots, a_{n}$ and 0 are real numbers. \square

