
Linear Algebra 2

Complex Numbers

Irena Penev

February 21, 2024



This mini-lecture is a quick review of complex numbers.
Almost all the proofs are omitted.

The mini-lecture has two parts:

1 Complex numbers: definition, basic properties, and examples
2 The Fundamental Theorem of Algebra
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1 Complex numbers: definition, basic properties, and examples

To define complex numbers, we first introduce the imaginary
unit number, denoted by i , which satisfies

i2 = −1.

A complex number is any number of the form z = a + bi ,
where a and b are real numbers; the real part of the complex
number z is the real number a, and the imaginary part of z is
the real number b.
The real and imaginary part of a complex number z are
denoted by Re(z) and Im(z), respectively.

For example, we have the following:
Re(2 + i) = 2 and Im(2 + i) = 1;
Re(−3i) = 0 and Im(−3i) = −3;
Re(7) = 7 and Im(7) = 0.

Note that real numbers are precisely those complex numbers
whose imaginary part is zero.
The set of all complex numbers is denoted by C.
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Complex numbers can be visualized in the “complex plane.”
This plane has two axes: the real axis (denoted by Re) and
the imaginary axis (denoted by Im).

b

a

z = a + ib

Re

Im

Note that real numbers are precisely those complex numbers
that lie on the real axis.
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We add/subtract complex numbers by adding/subtracting the
real and imaginary parts.

For example:
(2 + 3i) + (3 − 5i) = (2 + 3) + (3i − 5i) = 5 − 2i ;

(2 + 3i) − (3 − 5i) = (2 − 3) +
(
3i − (−5i)

)
= −1 + 8i .

To multiply complex numbers, we must keep in mind that
i2 = −1.

For example:

(2 + 3i)(3 − 5i) = 2 · 3 + 2(−5i) + (3i)3 + (3i)(−5i)

= 6 − 10i + 9i − 15 i2︸︷︷︸
=−1

= 21 − i .

Division: later!
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Proposition 0.3.1
All the following hold:

(a) addition and multiplication in C are commutative, that is, for
all z1, z2 ∈ C, we have that z1 + z2 = z2 + z1 and z1z2 = z2z1;

(b) addition and multiplication in C are associative, that is, for all
z1, z2, z3 ∈ C, we have that (z1 + z2) + z3 = z1 + (z2 + z3)
and (z1z2)z3 = z1(z2z3);

(c) multiplication is distributive over addition in C, that is, for all
z1, z2, z3 ∈ C, we have that z1(z2 + z3) = z1z2 + z1z3.

Powers of complex numbers are defined in the usual way.
For a complex number z , we define

z0 := 1;
zm+1 := zmz for all non-negative integers m.

So, for all positive integers m, we have the familiar expression
zm = z . . . z︸ ︷︷ ︸

m
.
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Definition
For a complex number z = a + bi (where a, b ∈ R):

the complex conjugate of z is z := a − bi ;
the modulus (or absolute value) of z is |z | :=

√
a2 + b2.

Geometrically, the complex conjugate of a complex number z
is obtained by reflecting z about the Re axis.
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z = a + ib

z = a− ib

Re

Im

Obviously, z = z .
Note that z = z iff z is in fact a real number, i.e. Im(z) = 0.
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the complex conjugate of z is z := a − bi ;
the modulus (or absolute value) of z is |z | :=

√
a2 + b2.

The modulus of a complex number z is the usual Pythagorean
distance between z and the origin in the complex plane.
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|z| =
√
a2 + b2

Note that |z | is a non-negative real number, and moreover, we
have that |z | = 0 iff z = 0.
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Proposition 0.3.2
For all complex numbers z = a + bi (with a, b ∈ R), we have that

zz = a2 + b2 = |z |2.

Note that Proposition 0,3,2, in particular, establishes that
multiplying a complex number z by its conjugate produces a
real number; that real number is zero iff z = 0.

This is important for division!
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Proposition 0.3.2
For all complex numbers z = a + bi (with a, b ∈ R), we have that

zz = a2 + b2 = |z |2.

Let us now explain how division works in C.

First of all, given a complex number z = a + bi (with
a, b ∈ R) and a real number r ̸= 0, we have

z
r = a

r + b
r i .

Now suppose that z1 and z2 ̸= 0 are complex numbers.

To compute z1
z2

, we need to transform the denominator into a
non-zero real number.
We do this by multiplying both the numerator and the
denominator by z2, at which point (by Proposition 0.3.2) the
denominator becomes |z2|2, which is a non-zero real number,
and we can divide as above.

Let us take a look at an example.
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Example 0.3.3
Compute the following quotients:

(a) 7−6i
3+2i ; (b) 1

2−i ; (c) 2−3i
5 ; (d) 4−2i

2−i .

Solution.

(a) We multiply both the numerator and the
denominator by 3 + 2i = 3 − 2i , and we obtain

7−6i
3+2i = (7−6i)(3−2i)

(3+2i)(3−2i) = 9−32i
9+4 = 9

13 − 32
13 i .

(b) We multiply both the numerator and the denominator by
2 − i = 2 + i , and we obtain

1
2−i = 2+i

(2−i)(2+i) = 2+i
4+1 = 2

5 + 1
5 i .
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Solution (continued). (c) The denominator is a real number, and
so we have

2−3i
5 = 2

5 − 3
5 i .

(d) We could multiply both the numerator and the denominator by
2 − i = 2 + i . However, in this particular case, it is easier to
compute as follows:

4−2i
2−i = 2(2−i)

2−i
(∗)= 2,

where (*) was obtained by canceling out the common factor 2 − i
in the numerator and the denominator. □
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Proposition 0.3.4
For all z1, z2 ∈ C, the following hold:

(a) z1 + z2 = z1 + z2;
(b) z1 − z2 = z1 − z2;
(c) z1z2 = z1 z2;
(d) if z2 ̸= 0, then z1/z2 = z1/z2.

Moreover, for all z ∈ C and non-negative integers m, we have that
(e) zm = (z)m.



Proposition 0.3.5
For all z1, z2 ∈ C, the following hold:

(a) |z1z2| = |z1||z2|;
(b) if z2 ̸= 0, then |z1/z2| = |z1|/|z2|.

Moreover, for all z ∈ C, the following hold:
(c) | − z | = |z |;
(d) for all non-negative integers m, we have |zm| = |z |m.



2 The Fundamental Theorem of Algebra

A root of a polynomial p(x) with complex coefficients is a
complex number c such that p(c) = 0.
For example, 1 + i is a root of the polynomial
p(x) = x2 − 2x + 2 because

p(1 + i) = (1 + i)2 − 2(1 + i) + 2 = 0.

In the particular case of p(x) = x2 − 2x + 2, the roots could
have been found via the familiar quadratic equation.
There exist formulas for finding the complex roots of all third
and fourth degree polynomials with complex coefficients, but
no such formula exists for polynomials of degree five or more
(although in some special cases, we may be able to use various
tricks to find the roots of these higher-degree polynomials).



2 The Fundamental Theorem of Algebra

A root of a polynomial p(x) with complex coefficients is a
complex number c such that p(c) = 0.

For example, 1 + i is a root of the polynomial
p(x) = x2 − 2x + 2 because

p(1 + i) = (1 + i)2 − 2(1 + i) + 2 = 0.

In the particular case of p(x) = x2 − 2x + 2, the roots could
have been found via the familiar quadratic equation.
There exist formulas for finding the complex roots of all third
and fourth degree polynomials with complex coefficients, but
no such formula exists for polynomials of degree five or more
(although in some special cases, we may be able to use various
tricks to find the roots of these higher-degree polynomials).



2 The Fundamental Theorem of Algebra

A root of a polynomial p(x) with complex coefficients is a
complex number c such that p(c) = 0.
For example, 1 + i is a root of the polynomial
p(x) = x2 − 2x + 2 because

p(1 + i) = (1 + i)2 − 2(1 + i) + 2 = 0.

In the particular case of p(x) = x2 − 2x + 2, the roots could
have been found via the familiar quadratic equation.
There exist formulas for finding the complex roots of all third
and fourth degree polynomials with complex coefficients, but
no such formula exists for polynomials of degree five or more
(although in some special cases, we may be able to use various
tricks to find the roots of these higher-degree polynomials).



2 The Fundamental Theorem of Algebra

A root of a polynomial p(x) with complex coefficients is a
complex number c such that p(c) = 0.
For example, 1 + i is a root of the polynomial
p(x) = x2 − 2x + 2 because

p(1 + i) = (1 + i)2 − 2(1 + i) + 2 = 0.

In the particular case of p(x) = x2 − 2x + 2, the roots could
have been found via the familiar quadratic equation.

There exist formulas for finding the complex roots of all third
and fourth degree polynomials with complex coefficients, but
no such formula exists for polynomials of degree five or more
(although in some special cases, we may be able to use various
tricks to find the roots of these higher-degree polynomials).



2 The Fundamental Theorem of Algebra

A root of a polynomial p(x) with complex coefficients is a
complex number c such that p(c) = 0.
For example, 1 + i is a root of the polynomial
p(x) = x2 − 2x + 2 because

p(1 + i) = (1 + i)2 − 2(1 + i) + 2 = 0.

In the particular case of p(x) = x2 − 2x + 2, the roots could
have been found via the familiar quadratic equation.
There exist formulas for finding the complex roots of all third
and fourth degree polynomials with complex coefficients, but
no such formula exists for polynomials of degree five or more
(although in some special cases, we may be able to use various
tricks to find the roots of these higher-degree polynomials).



Nevertheless, we do have the following existence result.
A constant polynomial is a polynomial of the form p(x) = c,
where c is a fixed constant/number.

The Fundamental Theorem of Algebra
Any non-constant polynomial with complex coefficients has a
complex root.



The Fundamental Theorem of Algebra
Any non-constant polynomial with complex coefficients has a
complex root.

Remark: The Fundamental Theorem of Algebra is an
existence result in the sense that it guarantees the existence
of a complex root for any non-constant polynomial with
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For instance, the polynomial p(x) = x2 + 1 is a non-constant
polynomial with real (in fact, rational) coefficients, but it has
no real roots. It does, of course, have two complex roots,
namely i and −i .
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The Fundamental Theorem of Algebra
Any non-constant polynomial with complex coefficients has a
complex root.

We omit the proof of the Fundamental Theorem of Algebra.
There are no known elementary proofs of this theorem: all the
known proofs of the Fundamental Theorem of Algebra rely on
advanced mathematics, such as complex analysis or topology.



The Fundamental Theorem of Algebra implies that any
polynomial p(x) with complex coefficients and of degree
n ≥ 1 can be factored into n linear factors.

More precisely, for such a polynomial p(x), there exist
complex numbers a, α1, . . . , αℓ such that a ̸= 0 and such that
α1, . . . , αℓ are pairwise distinct, and positive integers
n1, . . . , nℓ satisfying n1 + · · · + nℓ = n, such that

p(x) = a(x − α1)n1 . . . (x − αℓ)nℓ ,

and moreover, this factorization into linear factors is unique
up a permutation of the αi ’s and the corresponding ni ’s.

Here, a is the leading coefficient of p(x), i.e. the coefficient in
front of xn. Complex numbers α1, . . . , αℓ are the roots of p(x)
with multiplicities n1, . . . , nℓ, respectively.
If we think of each αi as being a root “ni times” (due to its
multiplicity), then we see that the n-th degree polynomial p(x)
has exactly n complex roots.
This is often summarized as follows: “every n-th degree
polynomial (with n ≥ 1) with complex coefficients has exactly
n complex roots, when multiplicities are taken into account.”
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As we already mentioned, there are formulas that allow us to
compute the roots of polynomials with complex coefficients of
degree at most four.

However, no such formulas exist for polynomials (with
complex coefficients) of degree n ≥ 5: we know that all such
polynomials have n complex roots (when multiplicities are
taken into account), but in general, there is no formula for
computing these roots.
In fact, not only is no such formula known, but using Galois
theory, one can show that no such formula can exist for
polynomials of degree at least five.

Once again, we may be able to use various tricks to compute
the roots of some special high-degree polynomials. However,
none of these tricks will work in the general case.
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Recall that, geometrically, the complex conjugate of a
complex number z is obtained by reflecting z about the Re
axis in the complex plane.
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Theorem 0.3.6
Let p(x) be any polynomial with real coefficients, and let z ∈ C.
Then z is a root of p(x) iff z is a root of p(x).

First a remark, then a proof.
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Theorem 0.3.6
Let p(x) be any polynomial with real coefficients, and let z ∈ C.
Then z is a root of p(x) iff z is a root of p(x).

Remark: Note that Theorem 0.3.6 implies that the complex
roots of a non-constant polynomial are symmetric about the
Re axis in the complex plane.

Some (or perhaps all) of those roots may lie on the Re axis,
i.e. they may be real numbers.
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Theorem 0.3.6
Let p(x) be any polynomial with real coefficients, and let z ∈ C.
Then z is a root of p(x) iff z is a root of p(x).

Proof. Set p(x) = anxn + · · · + a1x + a0, where a0, a1, . . . , an ∈ R.
Then we have the following sequence of equivalences:

p(z) = 0 ⇐⇒ p(z) = 0

⇐⇒ anzn + · · · + a1z + a0 = 0

(∗)⇐⇒ an(z)n + · · · + a1(z) + a0 = 0

(∗∗)⇐⇒ an(z)n + · · · + a1z + a0 = 0

⇐⇒ p(z) = 0,

where (*) follows from Proposition 0.3.4, and (**) follows from
the fact that a0, a1, . . . , an and 0 are real numbers. □


