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@ Tato prednaska ma t¥i Casti:

© Isomorfismy mezi vektorovymi prostory

@ Matice lineadrnich zobrazeni

© Ovérovani existence a jednoznacnosti linedrnich zobrazeni se
zadanymi vlastnostmi: pfiklady s polynomy a maticemi



@ Isomorfismy mezi vektorovymi prostory

Necht U a V jsou vektorové prostory nad télesem F. Zobrazeni
f: U — V je linearni pokud spliuje nasledujici axiomy:

Q Vui,upy € U: f(ug +up) = f(uy) + f(up);

@ Vuec U, a €F: f(au) = af(u).

Necht U a V jsou vektorové prostory nad télesem F. Zobrazeni
f: U — V je isomorfismus, pokud je linedrni a zaroven bijektivni.
Existuje-li isomorfismus mezi U a V/, pak fikdme, ze U a V jsou
isomorfni.

@ Intuice: Isomorfismus je , pfejmenovani” prvki prostoru.
o Neformalné: vektor u se po ,prejmenovani” isomorfismem
f:U— V nazyva f(u).
e Jak uvidime, isomorfismy zachovavaji ,strukturaini” vlastnosti
vektorovych prostord (véetné dimenze).



@ Pripomenuti:

Tvrzeni 21 z Prednasky ¢.10

Necht U, V, W jsou vektorové prostory nad télesem . Pak plati

nasledujici tvrzent:

@ pro vsechna linearni zobrazeni f, g : U — V je zobrazeni f + g
linearni;?

@ pro vsechna linearni zobrazeni f : U — V a skalary a € FF je
zobrazeni af : U — V je linearni;?

@ pro vsechna linearni zobrazeni f: U -V ag:V — W je
zobrazeni g o f lineérni.c

‘gof: U — W je definovano predpisem (g o f)(u) = g(f(u)) Yu e U.




@ Pripomenuti:

Véta 8 z prednasky ¢.5

Necht f : F" — F" je isomorfismus (kde F je téleso). Pak je i
f~1:F" — F" isomorfismem.

@ Podobné (s velmi podobnym dikazem) plati:

Necht U a V jsou vektorové prostory nad télesem Fa f: U — V
je isomorfismus. Pak je i f~1: V — U isomorfismem.

@ Pro formalni diikaz viz skripta (Penev, Proposition 4.4.1).



Necht U a V jsou vektorové prostory nad télesem F. Rekneme, Ze

U je isomorfni's V, coz znacime U = V/, pokud existuje
isomorfismus f : U — V.

Necht U, V a W jsou vektorové prostory nad télesem F. Pak plati:
@ U=U;

@ U=V=V=2U

@ (UEVAVEZW)=U=W

Diikaz (nastin). (a) Idy : U — U je isomorfismus.

(b) Je-li f : U — V isomorfismus, pak jei f~1:V — U
isomorfismem.

(c) Jsou-li f : U — V a g:V — W isomorfismy, pak je i
gof:U— W isomorfismem. J



@ PYipomenuti:

Véta 14 z Prednasky ¢.11

Necht U a V jsou vektorové prostory a f : U — V je linearn{
zobrazeni. Pak plati:

@ je-li f prosté, pak dim(U) < dim(V);
@ je-li f na, pak dim(U) > dim(V);
@ je-li f izomorfismem, pak dim(U) = dim(V).

o Tedy: U=V = dim(U) = dim(V).
@ Pro kone¢nédimenzionalni vektorové prostory plati i
obraceni Véty 14(c) z Pfednasky ¢&.11.

Pro libovolné konec¢nédimenzionalni vektorové prostory U a V
nad télesem I plati: U = V <= dim(U) = dim(V).

@ Abychom dokéazali Vétu 3 potrebujeme jednoduhé tvrzeni.



Véta 6 z Prednasky ¢.8
Necht V je vektorovy prostor nad télesem [F, a necht
Vi,...,Vp € V. Pak jsou nasledujici tvrzeni ekvivalentni:

(i) {v1,...,vn} je bazi V;
(i) e VIlag,...,ap e Ft.z. v=aqvi + - - - + apv,.

o Je-li B={vy,...,v,} baze vektorového prostoru V nad
télesem T, a plati-li pro vektor v € V

vV = ovi+ -+ apvp,

pak nazyvame vektor

v =

souradnicovym vektorem vektoru v vzhledem k bazi B.

aq

Qp



Necht V je netrivialni, konecnédimenzionalni vektorovy prostor nad

télesem F. Polozme n := dim(V) a necht B = {v1,...,v,} je
libovolna baze prostoru V. Pak je [ - |, : V — F” isomorfismem, a
tedy V = F".

e Diikaz je jednoduchy, viz skripta (Penev, Proposition 4.3.1).

Pro libovolné koneénédimenzionalni vektorové prostory U a V
nad télesem F plati: U = V <= dim(U) = dim(V).

Dikaz. Implikace ,—" plyne z Véty 14(c) z Pfednasky ¢&.11.

Zbyva dokazat obracenou implikaci (,,<="). Predpokladejme, ze
plati n := dim(U) = dim(V).

Jestlize n =0, pak plati U={0y} a V ={0y}, atedy U= V.

Predpokladejme nyni, ze n > 1. Podle Tvrzeni 4 plati, ze U= F" a
V 2 F" Nyni plyne z Tvrzeni 2, ze U= V. O



@ Uvedte matici A € R3*3, pro kterou plati Col(A) = Nul(A),
nebo dokazte, Ze takova matice neexistuje.

@ Uvedte matici B € Z$**, pro kterou plati Row(B) = Nul(B),
nebo dokazte, ze takovd matice neexistuje.

e Poznamka: Pro libovolnou matici A € F"*™ (kde I je téleso)
plati:
@ Col(A) = Nul(A) <> dim(Col(A)) = dim(Nul(A)),
=rank(A)

g rank(A) + dlm(NuI(A)) ral‘lk—;ullity m

a podobné pro Row(A), protoze dim(Row(A)) = rank(A).



@ Uvedte matici A € R3*®, pro kterou plati Col(A) = Nul(A),
nebo dokazte, ze takova matice neexistuje.

@ Uvedte matici B € Z$**, pro kterou plati Row(B) = Nul(B),
nebo dokazte, zZe takova matice neexistuje.

Reseni. (a) Takova matice A neexistuje. Vskutku, predpokladejme
pro spor, e pro n&jakou matici A € R3*5 plati Col(A) = Nul(A).
Pak plati

rank(A) = dim(Col(A)) = dim(Nul(A)),

a zaroven plati
rank(A) + dim(Nul(A))

Plyne tedy, ze

rank-nullity

2rank(A) = b5,

a tedy rank(A) = % coz je spor, protoze rank(A) musi byt celé
cislo.



@ Uvedte matici A € R3*®, pro kterou plati Col(A) = Nul(A),
nebo dokazte, ze takova matice neexistuje.

@ Uvedte matici B € Z5**, pro kterou plati Row(B) = Nul(B),
nebo dokazte, ze takova matice neexistuje.

Resenf (pokracovani). (b) Uvazujme matici:
1 0

O O O O o
O OO oo
OO OO oo

0
0
0
0
0
Pak plati dim(Row(B)) = rank(B) = 2.

Na druhou stranu plati

rank-nullity

rank(B) + dim(Nul(B)) 4,

a tedy dim(Nul(B)) = 4 — rank(B) = 2. Plyne tedy, Ze
dim(Row(B)) = dim(Nul(B)) = 2, a tedy Row(B) = Nul(B). O



@ Pripomenuti:
@ Schematicka (a trochu neformaln{) formulace Véty 13 z
Prednagky 14:

FU linearni v
Ug,..., U jsou kdyz f je prosté f(ul),...,f(Uk) _jSOU
(a)-(b) linedrné nezavislé linedrné nezavislé
ve prostoru U vidy ve prostoru V
kdyz f je na
(0)-(d) ug,...,Ug =L f(uy),...,f(uk)
generuji U — generuji V

kdyz f je prosté

@ Je-li f: U — V isomorfismus, pak je f linearni, prosté a na, a
tedy plati vSechny implikace z diagramu vyse.

@ Z toho dostavame Vétu 5 (na néasledujicim slajdu).



Necht U a V jsou vektorové prostory nad télesem [, necht
f: U — V je isomorfismus a necht uy,...,u, € U. Pak plati
nasledujici tvrzenf:

@ vektory ug,...,u, jsou linedrné nezavislé v U <= vektory
f(u1),...,f(uk) jsou linedrné nezavislé v V;

@ vektory ug,...,u, generuji U <= vektory f(uy),..., f(ug)
generuji V;

@ {ui,...,ux} je bazi prostoru U <= {f(u1),...,f(uk)} je
bazi prostoru V.




@ Pripomenuti:

Necht V je netrivialni, konecnédimenzionalni vektorovy prostor nad
télesem F. Polozme n:=dim(V) a necht B = {v1,...,v,} je

libovolna baze prostoru V. Pak je [ - |, : V — F” isomorfismem, a

tedy V = F".

o Poznamka: Pomoci | - |, Ize vektory z V prelozit do vektori
z .
e Uz vime, jak lze zjistit, zda je kone¢nd mnozina vektord z F":
o linedrné nezavisla,
e generujicf,
e bazi.
e Tim padem dostdvame Tvrzeni 6 (na nasledujicim slajdu).



Necht V je netrivialni, konecnédimenzionalni vektorovy prostor nad
télesem I a necht B = {by,...,b,} je baze prostoru V. Necht

Vi,...,Vm (m>1) jsou vektory z V a pro kazdé i € {1,...,n}
poloZzme a; := | v; ]B. Dale polozme A:=[ a; ... an |. Pak
plati:

@ vektory vi, ...,V jsou linedrné nezdvislé v V <—-

rank(A) = m (tj. A méa plnou sloupcovou hodnost);

@ vektory vi,...,vy, generuji V <= rank(A) = n (tj. A ma
plnou ¥adkovou hodnost);

@ {vi,...,vm} je bazi prostoru V <= rank(A)=n=m (tj. A
je ¢tvercova matice plné hodnosti).

@ Pro formalni dikaz viz skripta (Penev, Proposition 4.4.8).




UvaZzujme nasledujici mnoZzinu polynomi (s redlnymi koeficienty):
A = {P+x,x3+1,x,x2+1}

Rozhodnéte, zda mnozina A:
@ je linearn& nezévisla v P3;
@ generuje P3;

@ je bazi prostoru P},

Reseni. Uvazujme bazi P = {1, x,x2,x3} prostoru P3. Polozme:

@a=[x+x],=[0 11 O}T;

©a=[x+1],=[1 00 1}T;
®a;=[x],=[0 10 0]
ea;=[x+1],=[10 1 0]



UvaZujme nasledujici mnoZzinu polynomi (s redlnymi koeficienty):

A = P+x,x3+1,x,x2+1}
Rozhodnéte, zda mnoZina A:
@ je linedrné nezavisla v ]P’f{;

@ generuje P3;

@ je bazi prostoru ]P’%.

Reseni (pokracovani). Déle polozme
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Gaussovou-Jordanovou eliminaci dostdvame RREF(A) = I4, a tedy
rank(A) = 4. Vidime, ze A je ¢tvercova matice plné hodnosti.
Plyne, Ze A je bazi prostoru P3, z &eho? podle definice vyplyva, ze
A je linedrn& nezévisl4 mnozina generujici prostor P3. [



UvaZujme nasledujici matice z prostoru Z3*?:

m=[3 0] m-[3 8] wm-[38] wm-[33]
Najdéte bazi By podprostoru U := Span(M;, My, M3, M) a
rozitte ji na bazi B prostoru Z3*2. Pro kazdé i € {1,2,3,4} t.%.
M; ¢ B vyjadrete M; jako linearni kombinaci vektorti z B a poté
vypocitejte soufadnicovy vektor [ M; |

B

@ Poznamka: Ptiklady tohoto druhu jsme uz vidéli, ale pouze s
vektory z F".
e Nyni pouzijeme soutadnicové vektory, abychom , prelozili”
matice z Z3*? do vektorti z Z4 (a zpétky).



Uvazujme nasledujici matice z prostoru ngz:

m=[s o] wm=[3 8] m-[3 8] wm-[3)]
Najdéte bazi By podprostoru U := Span(My, My, M3, M) a
rozsifte ji na bazi B prostoru ngz_ Pro kazdé j € {1,2,3,4} t.z.
M; ¢ B vyjadrete M; jako linearni kombinaci vektorti z B a poté
vypoditejte soufadnicovy vektor [ M; |

B

Regeni. PoloZme

we[os] w=[od] a=[2 8] a=[3¢]
Vime, ze
A = {A1, A, A3, As}

je bazi Z§X2. Oznacme V obraz podprostoru U pfi isomorfismu

['}A'



Reseni (pokracovani). Dale uvazujme (kanonickou) bazi
54 = {e17e27e37e4} = {[Al ]Av[AZ ]A7[A3 ]Aa[A4 }A}

prostoru Z3. Nyni sestrojime matici C typu 4 x 8, jejiz sloupce
jsou souradnicové vektory matic

My, My, Ms, My, A1, Az, A3z, A4
vzhledem k bazi A, neboli

c = [ [ M 4 [ M 4 [ M 4 [ S D N B Y [ A s [ A 4 [ A s 1.
Tedy
2 1 1 2'1T 0 0 0
c - 00 0 010 1 0 0
= 000 2 2,0 0 1 0
00 2 2,0 0 0 1

Gaussovou-Jordanovou eliminaci dostdvame:

RREF(C) =

o+~ oo
—ooo
NO NN

kde jsme obarvili bazické sloupce.



Reseni (pokracovani). Pripomenuti:

¢ = L[ M, [ My LMy M b DA L [ A 4 [ A 14 LA 4]

RREF(C) = [

{Im ] 6l ms],)

oo o~
coonNn
coro
[N =Rl S)
o+ oo
- ooo
NO NN
| S

Tedy je

bazi V, zatimco je

{IM ]I Ms ][ A2 ][ As 1)

bazi Zg‘, kterd rozsifuje bazi podprostoru V. JelikoZ je | -
isomorfismus, vidime, Ze

BU = {Ml, M3}

L4

je bazi U, zatimco
B = {Miy, Ms, Az, Az}

je bazi Z%“, ktera rozsifuje bazi By podprostoru U.



Reseni (pokracovani). Pfipomenuti:

c = L0 M, [ Mo 1M s [Meda LA [ A . LA e LA L]

oo or
coonN
ocoro
o+ oo
= o oo

RREF(C) = [

N O NN
| IS

Z RREF(C) lze vyc¢ist:
o My, =2M;y,
o My =2M; + M;.

Na konci lze vycist souradnicové vektory:
o [M ],=[1 00 0],

o [M],=[20 0 0],
o [Ms],=[0 10 0],
o [Mi],=[2 10 0] 0



e Pro dalsi podobné priklady viz skripta (Penev, oddil 4.4.3).



@ Matice linearnich zobrazeni

o V této ¢asti prednasky kvili omezenému ¢asu vynechdme
skoro vSechny diikazy.
o Dukazy naleznete ve skriptech (Penev, oddil 4.5 - nepovinna
Cetba).

@ Soustfedime se na nejdilezitéjsi definice, véty a priklady.



@ Pripomenuti:

Véta 5 z Prednasky ¢.4

Necht I je téleso. Necht a;, ..., a,, jsou libovolné vektory z F" a
polome A:=| a; ... a, |. Pak existuje jediné linedrni
zobrazeni f : F™ — F", které spliiuje f(e1) = ai,...,f(em) = am,
kde eq, ..., en jsou kanonické jednotkové vektory z F™. Navic je
toto linedrni zobrazeni f dano predpisem f(x) = Ax Vx € F".

@ Nyni tuto Vétu zobecnimel!



Necht U a V jsou netrividlni, konecnédimenzionalni vektorové
prostory nad télesem F. Necht B = {b;,...,b,} je baze prostoru
U, necht C = {ci,...,c,} je baze prostoru V anecht f: U — V
je linearni zobrazeni. Pak existuje pravé jedna matice z F"*"™,
kterou znacime c[ f |, a nazyvdme ji matici zobrazeni f vzhledem
k bazim B a C, takova, ze pro vSechna u € U plati

C[f]B [U}B = [f(”)]C'

Navic je matice ,[ f |, dana predpisem

lfls = [[fb)]e o [flbw) ] ]

e Ditikaz: vynechan. Viz skripta (Penev, Theorem 4.5.1).



e Pripomenuti:

Véta 1 z Prednasky ¢.11

Necht U a V jsou vektorové prostory nad télesem F a
predpokladejme, ze U je konecnédimenzionalni. Necht

B = {ui,...,u,} je libovolna baze prostoru U a vy,...,v, € V.2
Pak existuje jediné linearni zobrazeni f : U — V t.z.

f(u1) =vi,...,f(u,) = v,. Navic je-li U netrivialni (tj. n # 0),
pak je f urceno nasledujicim predpisem: pro vSechna u € U plati

flu) = i+ +apw, kde[u],=[a ... a ]’

Na druhou stranu, je-li U trividlni (tj. U = {0}, atedy n=0 a
B = 0), pak je zobrazeni f : U — V ur&eno predpisem f(0) = 0.

?Zde jsou vi, ..., v, libovolné vektory z V.




Uvazujme bazi B = { } [ ] prostoru R? a (jediné) linearni

A([4])-[4]
([ 1]) H

Vypocitejte matici B[ f]

zobrazeni f : R? — R?, které spliiuje:
1
0
2
2




Uvazujme bazi B = { { } [ ] prostoru R? a (jediné) linedrni

zobrazeni f : R? — R?, které spliiuje:

*([s]=s)
+A([1]) M

Vypoditejte matici [ f |

B

Reseni. Podle vzorce z Véty 7 plati:

i - ;wm (D).




Necht U a V jsou netrivialni, konecnédimenzionalni vektorové
prostory nad télesem F. Necht B = {by,...,b,,} je baze prostoru
U, necht C = {ci,...,c,} je baze prostoru V anecht f: U — V

je linearni zobrazeni. Pak existuje pravé jedna matice z F"*"™,

kterou znacime c[ f |, a nazyvdme ji matici zobrazeni f vzhledem
k bazim B a C, takova, ze pro vSechna u € U plati

c[f]s [“}B = [f(”)]C'

Navic je matice ,[ f |, dana predpisem

lfls = [[fl)]e oo [flbm) ] ]

@ Poznamka: Necht I je téleso a f : ™ — F” je linearn{
zobrazeni. Necht &, a £, jsou kanonické baze prostord F a
F" respektivé.

o Pak je Sn[ f ]5m matici linedrniho zobrazen{ f vzhledem ke
kanonickym bazim. Vskutku, pro kazdy vektor u € F™ plati:

£n[f]smu = sn[f}sm [“]gm = [ f(w ]gn = f(u).



Véta 8

Necht U, V a W jsou netrivialni, kone¢nédimenzionalni vektorové
prostory nad télesem F. Necht B = {b;,...,b,} je baze prostoru
U, necht C = {cy,...,cy} je baze prostoru V' a necht

D ={dy,...,dp} je baze prostoru W. Pak plati nasledujici tvrzeni:
@ pro vsechna linearni zobrazeni f,g : U — V je zobrazeni f + g
linedrni,? a navic plati

c[ f+g]5 = c[ f]s"_c[g]s;

@ pro vsechna linearni zobrazeni f : U — V' a vSechna skalarni
¢isla o € F je zobrazeni af linedrni,® a navic plati

clof lg = o[ flg:

?Jako obvykle je zobrazeni f + g : U — V definovano vztahem
(f + g)(u) = f(u) + g(u) pro véechna u € U.

b Jako obvykle je zobrazeni af : U — V definovano vztahem
(af)(u) = a(f(u)) pro viechna u € U.




Véta 8 (pokracovan)

@ pro vsechna linearni zobrazeni f: U —+ V ag:V — W je
zobrazeni g o f linearni,? a navic plati

D[gof]B = D[g}c C[f]B'

C B D c
U V w
B C D

?Jako obvykle je zobrazeni go f : U — W definovano vztahem
(gof)(u) = g(f(u)) pro vsechna u € U.

e Diikaz: vynechan. Viz skripta (Penev, Theorem 4.5.3).



Necht U a V jsou netrivialni, kone¢nédimenzionalni vektorové
prostory nad télesem F. Necht B = {by,...,b,,} je baze prostoru

U

a necht C = {cy,...,c,} je baze prostoru V. Necht f : U — V

je linearni zobrazeni.? Pak plati:

Q

Q@
@
Q@

©

rank(f) = rank(c[ f ]B);

dim (Ker(f)) = dim (Nul ([ £ 1))

f je prosté <— Nul(c[ f ]B) ={0};

f je prosté <— rank(c[ f ]B> = m (tj. matice ,[ f ], ma
plnou sloupcovou hodnost);

f je na < rank(c[ f ]B> = n (tj. matice ,[ f |, ma plnou
fadkovou hodnost);

“Tedy plati dim(U) = m, dim(V) =n a c[ f ]B e,




Véta 9 (pokracovani)

@ f je isomorfismus <= matice ,[ f |, je regularni (a zejména
tvercova);

@ je-li f isomorfismus, pak B[ =1 }c = (c[ f }B)il.

e Dukaz: vynechan. Viz skripta (Penev, Theorem 4.5.4).



Necht U a V jsou redlné vektorové prostory. Necht
B = {b1,by, b3} je baze prostoru U a C = {c;,cp,c3} je baze
prostoru V. Necht f : U — V je (jediné) linearni zobrazeni, které
splnuje:

o f(by) = —2¢1 + c3;

° f(bz) = c1 + 3¢y + c3;

o f(b3) =cy — 2cs.
(Existence a jedine¢nost linedrniho zobrazeni f plynou z Véty 1 z
Prednasky ¢.11.)

o Vypoditejte matici [ f |,.

o Vypoditejte rank(f) a dim(Ker(f)).

@ Je zobrazeni f prosté? Je f na? Je f isomorfismus?




Reseni. Podle Véty 7 plati:
clflsg = [[fb)]e [flb2) ] [Flbs) ] ]

= [[2a+c ], [a+3c+c ], [c-2ca], ]

e

Gaussovou-Jordanovou eliminaci dostdvame RREF( [ f |;) =k, a
tedy rank(c[ f ]B) =3.

I
= O N
—_ W =

Z Véty 9 nyni vyplyva, Ze rank(f) =rank(,[ f ]|;) =3, a tedy
dim (Ker(£)) "2 dim(U) — rank(f) =3 — 3 = 0.

Z Véty 9 déle plyne, Ze f je prosté, na i isomorfismus. [J



@ PYipomenuti:

Necht U a V jsou netrivialni, konecnédimenzionalni vektorové
prostory nad télesem F. Necht B = {by,...,b,,} je baze prostoru
U, necht C = {cy,...,cp} je baze prostoru V a necht f: U — V
je linedrni zobrazeni. Pak existuje pravé jedna matice z F"*"™,
kterou znaCime ,[ f |, a nazyvame ji matici zobrazeni f vzhledem
k bazim B a C, takova, ze pro vSechna u € U plati

c[f]s [U}B = [f(“)]C'

Navic je matice ,[ f ], dana predpisem

c[f]s = [[f(bl)]c [f(bm)]c}'

Necht B a C jsou baze netrividlniho, kone¢nédimenzionalniho
vektorového prostoru V' nad télesem FF. Pak matici c[ Idy ]B
nazyvame matici pfechodu mezi bazemi B a C.




Necht B = {b;,...,b,} aC ={cy1,...,c,} jsou baze netrividlniho,
konec¢nédimenzionalniho vektorového prostoru V' nad télesem F.
Pak matice prechodu [ Idy |, spliiuje

C[IdV]B[V]B: ["]c Wwe V.

Navic je tato matice dana predpisem

clldv ], = [[ba]e o [ba].].
Diikaz. Podle definice plati pro kazdé v € V:
clldv ] [v]g = [ldv(v) ]o = [v]e-
Dale plati
v 1 YET [[dv(by) .. [ ldv(ba) ], ]



Necht B = {b;,...,b,} a C = {ci,
konec¢nédimenziondlniho vektorového prostoru V' nad télesem F.

F’ak jsou mat.lce E)rechodu c[ Idy, ]B a B[ Idy, ]c regularni, a navic
jsou si navzajem inverzni.

...,Cp} jsou baze netrividlniho,

Dikaz. Jelikoz je Idy : V — V isomorfismem, vyplyva z Véty 9(f),
Ze jsou matice ,[ Idv ], a ,4[ Idv |, reguldrni.

Navic platf

c{ Idy Lg = c[ Idy* }B Véta 9(g) (3[ dy }C)_l.



@ Nasledujici lemma a véta davaji vzorec pro specialni pripad
matic prechodu mezi bazemi prostoru F” (kde F je téleso):

Necht F je téleso. Necht £, = {e1,...,e,} je kanonicka a

B ={bi,...,b,} libovolnd baze prostoru F". Polozme
B:=[ by ... b, |. Pak je B regularni, a navic plati
g[lde ], = B a gl ldem |, = B

e Diikaz: vynechan. Viz skripta (Penev, Lemma 4.5.11).



Necht F je téleso. Necht £, = {e1,...,e,} je kanonicka a

B = {b1,...,b,} libovolnd baze prostoru F". Polozme

B:=[ by ... b, |. Pak je B reguldri, a navic plati
gllde ], = B a gl Ve ], = B

Necht F je téleso a necht B = {by,...,b,} aC={c1,...,¢cn}

jsou baze prostoru F”. Polozme B:= [ b; ... b, | a
C:=[c ... c,]. Pakje matice c[ Idgn ]B regularni a je dana
predpisem

Jde ], = CiB,

Diikaz. |dpn je isomorfismus, a tedy je matice c[ Idgn }B regularni
(podle Véty 9(g)).

Navic platl' C[ Idgn ]B = C[ Idpn o ldps ]B =
c[ |dp ]5" sn[ |dpn ]B e 12 c'B. O



Necht F je téleso a necht B = {by,...,b,} aC={c1,...,¢cn}
jsou baze prostoru . Polozme B := [ b; . b,
C .= [ C1
predpisem

]a
¢, |. Pak je matice c[ Idpn ]B regularni a je dana

[l ], = ClB

piklad
Uvaiujmebézezs:{[i],{ﬂ}ac=ﬁﬂv[§]}

. ¥ 1
vektorového prostoru Z3. Polozme B := 1

Pak plati

_ 0 2
ol ], = CB = {2 2].




UvaZujme bazi B = { } [ ] prostoru R? a (jediné) linearni

zobrazeni f : R? — R?, které spliiuje:

3]
o([1])=13]

Vypocitejte matici linedrniho zobrazeni f vzhledem ke kanonickym
bazim. [ f |,

=t (LD

[o] (L=l



Reseni. V jednom z predchozich prikladu jsme uZ vypoé&itali matici
1 10
sl fleg= 0 2|

3 — 11 s p—1 _ 1 -1
PoIozmeB.{0 1}PakplatlB [0 1}

Nyni spocitame matici linedrniho zobrazeni f vzhledem ke
kanonickym bazim:

Sz[f]gz = gz[IdRZOfoldRz ]52
Véta 8(c)
= 52[ |d }B B[ f ]B B[ |d }52
Lem2a12 [ f] B
11 1 0 1 -1
01 0 2 0 1

- |
|



© Ovérovani existence a jednoznacnosti linearnich zobrazeni se
zadanymi vlastnostmi: priklady s polynomy a maticemi

Uvazujme nasledujici matice s prvky z Z,:

1 0 1 1 0 0
@ Mm=| 1 o 1| °M5:[1 0 o]?
[0 1 o]
QO M= ; _ 1 0 0 |.
| 1 o 1| °M57|:010:|'
0 1 o0
@ My=1| 1 o o | °,\/,7:[00 o]
L § 0o 1 o |
o o 1]
@ M=149 0 ol o M [ooo}
L | =
0 0 1

Dale uvazujme nasledujici polynomy s koeficienty z Zj:

@ pi(x)=x3+x2+x+1; @ ps(x) = x5+ x%+1;

@ pp(x) =x*+x2+x+1; @ ps(x) = x5+ x* +x2 +x;
° p3(x):x5+x4—|—x2—|—1; ° p7(x):X2—|—x;

@ py(x) = x5 @ pg(x) =x°+x



P¥iklad (pokracovani)

Q

Q@
@
@

Dokazte, ze existuje pravé jedno linearni zobrazeni

f 72573 — P, které splije f(M;) = pi(x) Vi € {1,...,8}.
Vypoditejte rank(f) a dim(Ker(f)).

Je f prosté? Je f na? Je f isomorfismus?

Naleznéte vzorec pro f, tj. doplite chybéjici vyraz:

f( ar1 di12 a3 ) .
a1 a2 a3

Je-li f isomorfismem, naleznéte vzorec pro 1, tj. dopliite
chybéjici vyraz:

v‘9'1,1, a1,2,d813,3d2,1,d22,d23 € L.

f‘l(a5x5 + -+ ax+ 30) =

Vag, a1, ...,as € Zy.



Reseni. V nasem feSeni budeme pouzivat bazi

M= {000l looo] ool
Toollora)loo ]

prostoru Z3™* a bazi P := {1, x,x% x3,x* x®} prostoru P} .

o o

—
o



@ Dokazte, ze existuje pravé jedno linearni zobrazenf
f: 2573 — P}, které splije f(M;) = pi(x) Vi € {1,...,8}.

ReSeni (pokracovani). (a) Budeme Fesit matici ,[ f | ..

Pozadujeme, aby linedrni zobrazeni f spliovalo f(M;) = pi(x) pro
véechna j € {1,...,8}, a tedy aby (nezndmd) matice [ f |,

splnovala
M [ M; ]M = [ pix) ]’P

pro vSechna i € {1,...,8}.
To je ekvivalentni rovnosti

pl ]

Pl [ (M o [ My ] = [[m@]p o [»s@)]p].

Matice M a P zde Ize snadno vypocitat, zatimco matice [ f |,
je neznama, kterou potrebujeme urdit.



Reseni (pokracovani). P¥ipomenuti: Potfebujeme vyfesit rovnici

P[f},\/([[]wl }M [A'[B}M} = [[pl(f)]ﬁ' [pg(x) }79}

Nejprve transponujeme obé strany rovnice, ¢imz dostavame
T T T
MT (L[ fly) = P,

.
coz vyresime pro (P[ f }M) .
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kterou pak upravime Gaussovou-Jordanovou eliminaci (viz

s s

nasledujici slajd).
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Reseni (pokracovan/) Transpozici dostavame (jediné) feSeni

vzhledem k [ ]M.
0 001 00O
0 00 0 11
[ p } _ 0 001 10
P M 0 01 00O
1 0 01 0O
1 1 0 0 0 1

Z existence a jedineCnosti matice [ f |, plynou existence a
jedinecnost linedrniho zobrazeni f : Z§X3 — IP’52, které spliuje

f(/\/l,) = p,'(X) Vi e {1, .. .,8}.



Reseni (pokracovani).

@ Poznamka: V tomto prikladu jsme ukazali existenci a
jedine¢nost matice | f ]M, coz implikovalo existenci a
jedinecnost linedrniho zobrazeni f se specifikacemi uvedenymi
ve znéni prikladu.

o Pokud bychom pro matici 79[ f ]M ziskali vice nez jedno
feSeni, znamenalo by to, Ze linearni zobrazeni f s danymi
specifikacemi existuje, ale nenf jediné.

o Naopak, pokud by pro matici 73[ f }M neexistovalo zadné
feSeni, znamenalo by to, ze linearni zobrazeni f s danymi
specifikacemi neexistuje.



@ Vypoditejte rank(f) a dim(Ker(f)).

Reseni (pokracovani). (b) Gaussovou-Jordanovou eliminaci
spolitame

RREF(,[ f ] = s

M)
Tedy
rank(f) Ve o) rank(P[f]M) = 6.

Na druhou stranu plati
rank(f) + dim(Ker(f)) ranknullit dim(Z3*3),

a tedy

dim(Ker(f)) = dim(Z3*3) —rank(f) = 6-6 = 0.



@ Je f prosté? Je f na? Je f isomorfismus?

Reseni (pokracovani). (c) Jelikoz dim(Ker(f)) = 0, plyne z
Véty 9(c), ze f je prosté.

Jelikoz rank(f) = 6 = dim(P3,), plyne z Tvrzeni 7 z Pfednasky
¢.11, ze f je na.

Linearni zobrazeni f je isomorfismus, protozZe je prosté a na.

@ Alternativné, jelikoz defini¢ni obor i obor hodnot linearniho
zobrazeni f maji stejnou konecnou dimenzi a jelikoz je f
prosté, plyne z Disledeku 12 z Prednasky ¢.11, Ze f je také na
a isomorfismus.



@ Naleznéte vzorec pro f, tj. doplite chybéjici vyraz:

f< ar1 a2 a3 ) _
a1 422 a3

Vai1,a1,2,a1,3,a2,1,a22,33 € Zo.

Resent (pokracovani). (d) Pomoci matice [
naleznéme vzorec pro f (viz nasledujici slad).

f ], jednoduse



Reseni (pokracovani). Pro a1 1,a12,a13,a21,322, 323 € Zo:

{ f( { ail a2 a3 }) _ [ f } [ [ ail a2 a3 } }
a1 a2 a23 P P M a1 a2 a3 M
[0 001 00 a1
000011 a2
_ 000110 a3
a 001000 as
1001 00 a2
L1 1 00 01 ass
[ a1
azg + a3
_ az1 + a2
ais
a1+ a1
L a11tai2+azs
(a1,1 + a2 + ag3)a®+
B +(a11 + ag)zt + a1 323+
- +((L211 + (12\2)1’24’
+(az2 + az3)x + ag; P




Reseni (pokradovéni). JelikoZ [ - |» je isomorfismus (a zejména je
f prosté), plyne, ze
(a1 + a2+ 32,3)X5+
f( a1,1 412 a13 ) _ +(3171 + 3271)X4 + 8173X3+

a1 ap a3 +(a21 + a22)x%+
+(ap2 + a3)x + a1

pro viechna aj 1,212,313, a2,1,a22, 323 € Zs.



@ Je-li f isomorfismem, naleznéte vzorec pro f~1, tj. dopliite

chybéjici vyraz:

f_1(35X5 + -t ax+ 30) =

Vag, ai,...,as € Zy.

Reseni (pokracovani). (e) Jak jsme uz vidéli v &sti (c), f je
skute¢né isomorfismus. Nalenéme vzorec pro f~1. Nejd¥iv

spocitame
1 0 00 10
01 1011
_ Véta 9(g) -1 0 001 0O
M[fl]P = (p[f]m) = 100 00 0
1 01 0 0O
1 1.1 0 0O

Nyni pokraujeme podobné jako v &asti (d).



Reseni (pokracovani). Pro viechna ag, a1, ap, a3, as, as € Z plati:

{ f’l (a;,l:s + a4;L'4 + (1131:3 + ag;L‘Q +a1x + a0> ] "

M[ F1 }73 [ asx® + agzt + asz® + axx® + a1z + ag }

P
1 0 001 0] ap
011011 ay
_ 000100 as
a 1 00000 as
101000 ay
L1 11 0 0 0] as
ap + aq
ay +az +ayg +as
_ as
= a
ap + as
L ap + a1 + az
- [ ag + ay ay +az +aq +as as ] ]
- ag ag + az ap + a1 + az v



Reseni (pokracovéni). JelikoZ je [ - | o, prosté (protoze je
isomorfismus), plati

1 (a5x5 + asx? + a3x® + ax? + aix + ao>

. aop + as ay+ax+as+ as as
ao ag + ar ag+ a1 + a»

pro vSechna ag, a1, az, as, as, as € Zo.

@ Nepovinné: Protoze je snadné udélat chybu ve vypoctech, je
vhodné ovéfit si vzorce pro f a f 1.

e Pro f to provedeme tak, ze do nalezeného vzorce pro f (z
¢asti (d)) dosadime matice My, ..., Mg a ovéfime, Ze skutedné
dostaneme polynomy pi(x),. .., ps(x), resp.

o Podobné pro f~! postupujeme tak, ze do nalezeného vzorce
pro f~1 (z &asti (e)) dosadime polynomy pi(x),. .., pg(x) a
ovérime, ze skute¢né dostaneme matice My, ..., Mg, resp.

e Podrobnosti: skripta. O



e Dalsi priklady: skripta (Penev, oddil 4.5).



