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Tato přednáška má tři části:
1 Isomorfismy mezi vektorovými prostory
2 Matice lineárních zobrazení
3 Ověřování existence a jednoznačnosti lineárních zobrazení se

zadanými vlastnostmi: příklady s polynomy a maticemi



1 Isomorfismy mezi vektorovými prostory

Definice
Nechť U a V jsou vektorové prostory nad tělesem F. Zobrazení
f : U → V je lineární pokud splňuje následující axiomy:

1 ∀u1, u2 ∈ U: f (u1 + u2) = f (u1) + f (u2);
2 ∀u ∈ U, α ∈ F: f (αu) = αf (u).

Definice
Nechť U a V jsou vektorové prostory nad tělesem F. Zobrazení
f : U → V je isomorfismus, pokud je lineární a zároveň bijektivní.
Existuje-li isomorfismus mezi U a V , pak říkáme, že U a V jsou
isomorfní.

Intuice: Isomorfismus je „přejmenování” prvků prostoru.
Neformálně: vektor u se po „přejmenování” isomorfismem
f : U → V nazývá f (u).
Jak uvidíme, isomorfismy zachovávají „strukturální” vlastnosti
vektorových prostorů (včetně dimenze).



Připomenutí:

Tvrzení 21 z Přednášky č.10
Nechť U, V , W jsou vektorové prostory nad tělesem F. Pak platí
následující tvrzení:

(a) pro všechna lineární zobrazení f , g : U → V je zobrazení f + g
lineární;a

(b) pro všechna lineární zobrazení f : U → V a skaláry α ∈ F je
zobrazení αf : U → V je lineární;b

(c) pro všechna lineární zobrazení f : U → V a g : V → W je
zobrazení g ◦ f lineární.c

U V W

f g

g ◦ f

af + g : U → V je definováno předpisem (f + g)(u) = f (u) + g(u) ∀u ∈ U.
bαf : U → V je definováno předpisem (αf )(u) = α

(
f (u)

)
∀u ∈ U.

cg ◦ f : U → W je definováno předpisem (g ◦ f )(u) = g
(
f (u)

)
∀u ∈ U.



Připomenutí:

Věta 8 z přednášky č.5
Nechť f : Fn → Fn je isomorfismus (kde F je těleso). Pak je i
f −1 : Fn → Fn isomorfismem.

Podobně (s velmi podobným důkazem) platí:

Tvrzení 1
Nechť U a V jsou vektorové prostory nad tělesem F a f : U → V
je isomorfismus. Pak je i f −1 : V → U isomorfismem.

Pro formální důkaz viz skripta (Penev, Proposition 4.4.1).



Definice
Nechť U a V jsou vektorové prostory nad tělesem F. Řekneme, že
U je isomorfní s V , což značíme U ∼= V , pokud existuje
isomorfismus f : U → V .

Tvrzení 2
Nechť U, V a W jsou vektorové prostory nad tělesem F. Pak platí:

(a) U ∼= U;
(b) U ∼= V =⇒ V ∼= U;
(c)

(
U ∼= V ∧ V ∼= W

)
=⇒ U ∼= W

Důkaz (nástin). (a) IdU : U → U je isomorfismus.

(b) Je-li f : U → V isomorfismus, pak je i f −1 : V → U
isomorfismem.

(c) Jsou-li f : U → V a g : V → W isomorfismy, pak je i
g ◦ f : U → W isomorfismem. □



Připomenutí:

Věta 14 z Přednášky č.11
Nechť U a V jsou vektorové prostory a f : U → V je lineární
zobrazení. Pak platí:

(a) je-li f prosté, pak dim(U) ≤ dim(V );
(b) je-li f na, pak dim(U) ≥ dim(V );
(c) je-li f izomorfismem, pak dim(U) = dim(V ).

Tedy: U ∼= V =⇒ dim(U) = dim(V ).
Pro konečnědimenzionální vektorové prostory platí i
obrácení Věty 14(c) z Přednášky č.11.

Věta 3
Pro libovolné konečnědimenzionální vektorové prostory U a V
nad tělesem F platí: U ∼= V ⇐⇒ dim(U) = dim(V ).

Abychom dokázali Větu 3 potřebujeme jednoduhé tvrzení.



Věta 6 z Přednášky č.8
Nechť V je vektorový prostor nad tělesem F, a nechť
v1, . . . , vn ∈ V . Pak jsou následující tvrzení ekvivalentní:
(i) {v1, . . . , vn} je bází V ;
(ii) ∀v ∈ V ∃!α1, . . . , αn ∈ F t.ž. v = α1v1 + · · · + αnvn.

Je-li B = {v1, . . . , vn} báze vektorového prostoru V nad
tělesem F, a platí-li pro vektor v ∈ V

v = α1v1 + · · · + αnvn,

pak nazýváme vektor

[
v

]
B

:=

 α1
...

αn


souřadnicovým vektorem vektoru v vzhledem k bázi B.



Tvrzení 4
Nechť V je netriviální, konečnědimenzionální vektorový prostor nad
tělesem F. Položme n := dim(V ) a nechť B = {v1, . . . , vn} je
libovolná báze prostoru V . Pak je

[
·

]
B : V → Fn isomorfismem, a

tedy V ∼= Fn.

Důkaz je jednoduchý, viz skripta (Penev, Proposition 4.3.1).

Věta 3
Pro libovolné konečnědimenzionální vektorové prostory U a V
nad tělesem F platí: U ∼= V ⇐⇒ dim(U) = dim(V ).

Důkaz. Implikace „=⇒” plyne z Věty 14(c) z Přednášky č.11.
Zbývá dokázat obrácenou implikaci („⇐=”). Předpokládejme, že
platí n := dim(U) = dim(V ).
Jestliže n = 0, pak platí U = {0U} a V = {0V }, a tedy U ∼= V .
Předpokládejme nyní, že n ≥ 1. Podle Tvrzení 4 platí, že U ∼= Fn a
V ∼= Fn. Nyní plyne z Tvrzení 2, že U ∼= V . □



Příklad
(a) Uveďte matici A ∈ R3×5, pro kterou platí Col(A) ∼= Nul(A),

nebo dokažte, že taková matice neexistuje.
(b) Uveďte matici B ∈ Z6×4

2 , pro kterou platí Row(B) ∼= Nul(B),
nebo dokažte, že taková matice neexistuje.

Poznámka: Pro libovolnou matici A ∈ Fn×m (kde F je těleso)
platí:

1 Col(A) ∼= Nul(A) ⇐⇒ dim
(
Col(A)

)︸ ︷︷ ︸
=rank(A)

= dim
(
Nul(A)

)
,

2 rank(A) + dim
(
Nul(A)

) rank-nullity= m,

a podobně pro Row(A), protože dim
(
Row(A)

)
= rank(A).



Příklad
(a) Uveďte matici A ∈ R3×5, pro kterou platí Col(A) ∼= Nul(A),

nebo dokažte, že taková matice neexistuje.
(b) Uveďte matici B ∈ Z6×4

2 , pro kterou platí Row(B) ∼= Nul(B),
nebo dokažte, že taková matice neexistuje.

Řešení. (a) Taková matice A neexistuje. Vskutku, předpokládejme
pro spor, že pro nějakou matici A ∈ R3×5 platí Col(A) ∼= Nul(A).
Pak platí

rank(A) = dim
(
Col(A)

)
= dim

(
Nul(A)

)
,

a zároveň platí

rank(A) + dim
(
Nul(A)

) rank-nullity= 5.

Plyne tedy, že
2rank(A) = 5,

a tedy rank(A) = 5
2 , což je spor, protože rank(A) musí být celé

číslo.



Příklad
(a) Uveďte matici A ∈ R3×5, pro kterou platí Col(A) ∼= Nul(A),

nebo dokažte, že taková matice neexistuje.
(b) Uveďte matici B ∈ Z6×4

2 , pro kterou platí Row(B) ∼= Nul(B),
nebo dokažte, že taková matice neexistuje.

Řešení (pokračování). (b) Uvažujme matici:

B :=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Pak platí dim

(
Row(B)

)
= rank(B) = 2. Na druhou stranu platí

rank(B) + dim
(
Nul(B)

) rank-nullity= 4,

a tedy dim
(
Nul(B)

)
= 4 − rank(B) = 2. Plyne tedy, že

dim
(
Row(B)

)
= dim

(
Nul(B)

)
= 2, a tedy Row(B) ∼= Nul(B). □



Připomenutí:
Schematická (a trochu neformální) formulace Věty 13 z
Přednášky 14:

f : U lineární−→ V

(a)-(b)
u1, . . . , uk jsou
lineárně nezávislé
ve prostoru U

když f je prosté=⇒
⇐=
vždy

f (u1), . . . , f (uk) jsou
lineárně nezávislé
ve prostoru V

(c)-(d) u1, . . . , uk
generují U

když f je na=⇒
⇐=

když f je prosté

f (u1), . . . , f (uk)
generují V

Je-li f : U → V isomorfismus, pak je f lineární, prosté a na, a
tedy platí všechny implikace z diagramu výše.
Z toho dostáváme Větu 5 (na následujícím slajdu).



Věta 5
Nechť U a V jsou vektorové prostory nad tělesem F, nechť
f : U → V je isomorfismus a nechť u1, . . . , uk ∈ U. Pak platí
následující tvrzení:

(a) vektory u1, . . . , uk jsou lineárně nezávislé v U ⇐⇒ vektory
f (u1), . . . , f (uk) jsou lineárně nezávislé v V ;

(b) vektory u1, . . . , uk generují U ⇐⇒ vektory f (u1), . . . , f (uk)
generují V ;

(c) {u1, . . . , uk} je bází prostoru U ⇐⇒
{
f (u1), . . . , f (uk)

}
je

bází prostoru V .



Připomenutí:

Tvrzení 4
Nechť V je netriviální, konečnědimenzionální vektorový prostor nad
tělesem F. Položme n := dim(V ) a nechť B = {v1, . . . , vn} je
libovolná báze prostoru V . Pak je

[
·

]
B : V → Fn isomorfismem, a

tedy V ∼= Fn.

Poznámka: Pomocí
[

·
]

B lze vektory z V přeložit do vektorů
z Fn.
Už víme, jak lze zjistit, zda je konečná množina vektorů z Fn:

lineárně nezávislá,
generující,
bází.

Tím pádem dostáváme Tvrzení 6 (na následujícím slajdu).



Tvrzení 6
Nechť V je netriviální, konečnědimenzionální vektorový prostor nad
tělesem F a nechť B = {b1, . . . , bn} je báze prostoru V . Nechť
v1, . . . , vm (m ≥ 1) jsou vektory z V a pro každé i ∈ {1, . . . , n}
položme ai :=

[
vi

]
B. Dále položme A :=

[
a1 . . . am

]
. Pak

platí:
(a) vektory v1, . . . , vm jsou lineárně nezávislé v V ⇐⇒

rank(A) = m (tj. A má plnou sloupcovou hodnost);
(b) vektory v1, . . . , vm generují V ⇐⇒ rank(A) = n (tj. A má

plnou řádkovou hodnost);
(c) {v1, . . . , vm} je bází prostoru V ⇐⇒ rank(A) = n = m (tj. A

je čtvercová matice plné hodnosti).

Pro formální důkaz viz skripta (Penev, Proposition 4.4.8).



Příklad
Uvažujme následující množinu polynomů (s reálnými koeficienty):

A =
{
x2 + x , x3 + 1, x , x2 + 1

}
Rozhodněte, zda množina A:

(a) je lineárně nezávislá v P3
R;

(b) generuje P3
R;

(c) je bází prostoru P3
R.

Řešení. Uvažujme bázi P =
{
1, x , x2, x3}

prostoru P3
R. Položme:

a1 :=
[

x2 + x
]

P =
[

0 1 1 0
]T ;

a2 :=
[

x3 + 1
]

P =
[

1 0 0 1
]T ;

a3 :=
[

x
]

P =
[

0 1 0 0
]T ;

a4 :=
[

x2 + 1
]

P =
[

1 0 1 0
]T .



Příklad
Uvažujme následující množinu polynomů (s reálnými koeficienty):

A =
{
x2 + x , x3 + 1, x , x2 + 1

}
Rozhodněte, zda množina A:

(a) je lineárně nezávislá v P3
R;

(b) generuje P3
R;

(c) je bází prostoru P3
R.

Řešení (pokračování). Dále položme

A :=
[

a1 a2 a3 a4
]

=

[
0 1 0 1
1 0 1 0
1 0 0 1
0 1 0 0

]
.

Gaussovou-Jordanovou eliminací dostáváme RREF(A) = I4, a tedy
rank(A) = 4. Vidíme, že A je čtvercová matice plné hodnosti.
Plyne, že A je bází prostoru P3

R, z čehož podle definice vyplývá, že
A je lineárně nezávislá množina generující prostor P3

R. □



Příklad
Uvažujme následující matice z prostoru Z2×2

3 :

M1 =
[

2 0
0 0

]
, M2 =

[
1 0
0 0

]
, M3 =

[
1 0
2 2

]
, M4 =

[
2 0
2 2

]
.

Najděte bázi BU podprostoru U := Span(M1, M2, M3, M4) a
rozšiřte ji na bázi B prostoru Z2×2

3 . Pro každé i ∈ {1, 2, 3, 4} t.ž.
Mi /∈ B vyjádřete Mi jako lineární kombinaci vektorů z B a poté
vypočítejte souřadnicový vektor

[
Mi

]
B.

Poznámka: Příklady tohoto druhu jsme už viděli, ale pouze s
vektory z Fn.

Nyní použijeme souřadnicové vektory, abychom „přeložili”
matice z Z2×2

3 do vektorů z Z4
3 (a zpátky).



Příklad
Uvažujme následující matice z prostoru Z2×2

3 :

M1 =
[

2 0
0 0

]
, M2 =

[
1 0
0 0

]
, M3 =

[
1 0
2 2

]
, M4 =

[
2 0
2 2

]
.

Najděte bázi BU podprostoru U := Span(M1, M2, M3, M4) a
rozšiřte ji na bázi B prostoru Z2×2

3 . Pro každé i ∈ {1, 2, 3, 4} t.ž.
Mi /∈ B vyjádřete Mi jako lineární kombinaci vektorů z B a poté
vypočítejte souřadnicový vektor

[
Mi

]
B.

Řešení. Položme

A1 :=
[

1 0
0 0

]
, A2 :=

[
0 1
0 0

]
, A3 :=

[
0 0
1 0

]
, A4 :=

[
0 0
0 1

]
.

Víme, že
A := {A1, A2, A3, A4}

je bází Z2×2
3 . Označme V obraz podprostoru U při isomorfismu[

·
]

A.



Řešení (pokračování). Dále uvažujme (kanonickou) bázi

E4 = {e1, e2, e3, e4} =
{ [

A1
]

A ,
[

A2
]

A ,
[

A3
]

A ,
[

A4
]

A

}
prostoru Z4

3. Nyní sestrojíme matici C typu 4 × 8, jejíž sloupce
jsou souřadnicové vektory matic

M1, M2, M3, M4, A1, A2, A3, A4

vzhledem k bázi A, neboli
C := [ [ M1 ]A [ M2 ]A [ M3 ]A [ M4 ]A [ A1 ]A [ A2 ]A [ A3 ]A [ A4 ]A ] .

Tedy

C =

[
2 1 1 2 1 0 0 0
0 0 0 0 0 1 0 0
0 0 2 2 0 0 1 0
0 0 2 2 0 0 0 1

]
.

Gaussovou-Jordanovou eliminací dostáváme:

RREF(C) =

[
1 2 0 2 2 0 0 2
0 0 1 1 0 0 0 2
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 2

]
,

kde jsme obarvili bázické sloupce.



Řešení (pokračování). Připomenutí:
C := [ [ M1 ]A [ M2 ]A [ M3 ]A [ M4 ]A [ A1 ]A [ A2 ]A [ A3 ]A [ A4 ]A ] .

RREF(C) =

[
1 2 0 2 2 0 0 2
0 0 1 1 0 0 0 2
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 2

]
Tedy je {[

M1
]

A,
[

M3
]

A

}
bází V , zatímco je{[

M1
]

A,
[

M3
]

A,
[

A2
]

A,
[

A3
]

A

}
bází Z4

3, která rozšiřuje bázi podprostoru V . Jelikož je
[

·
]

A
isomorfismus, vidíme, že

BU := {M1, M3}

je bází U, zatímco

B := {M1, M3, A2, A3}

je bází Z2×2
3 , která rozšiřuje bázi BU podprostoru U.



Řešení (pokračování). Připomenutí:
C := [ [ M1 ]A [ M2 ]A [ M3 ]A [ M4 ]A [ A1 ]A [ A2 ]A [ A3 ]A [ A4 ]A ] .

RREF(C) =

[
1 2 0 2 2 0 0 2
0 0 1 1 0 0 0 2
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 2

]

Z RREF(C) lze vyčíst:
M2 = 2M1,
M4 = 2M1 + M3.

Na konci lze vyčíst souřadnicové vektory:[
M1

]
B =

[
1 0 0 0

]T ,[
M2

]
B =

[
2 0 0 0

]T ,[
M3

]
B =

[
0 1 0 0

]T ,[
M4

]
B =

[
2 1 0 0

]T . □



Pro další podobné příklady viz skripta (Penev, oddíl 4.4.3).



2 Matice lineárních zobrazení

V této části přednášky kvůli omezenému času vynecháme
skoro všechny důkazy.

Důkazy naleznete ve skriptech (Penev, oddíl 4.5 - nepovinná
četba).

Soustředíme se na nejdůležitější definice, věty a příklady.



Připomenutí:

Věta 5 z Přednášky č.4
Nechť F je těleso. Nechť a1, . . . , am jsou libovolné vektory z Fn a
položme A :=

[
a1 . . . am

]
. Pak existuje jediné lineární

zobrazení f : Fm → Fn, které splňuje f (e1) = a1, . . . , f (em) = am,
kde e1, . . . , em jsou kanonické jednotkové vektory z Fm. Navíc je
toto lineární zobrazení f dáno předpisem f (x) = Ax ∀x ∈ Fm.

Nyní tuto Větu zobecníme!



Věta 7
Nechť U a V jsou netriviální, konečnědimenzionální vektorové
prostory nad tělesem F. Nechť B = {b1, . . . , bm} je báze prostoru
U, nechť C = {c1, . . . , cn} je báze prostoru V a nechť f : U → V
je lineární zobrazení. Pak existuje právě jedna matice z Fn×m,
kterou značíme C

[
f

]
B a nazýváme ji maticí zobrazení f vzhledem

k bázím B a C, taková, že pro všechna u ∈ U platí

C

[
f

]
B

[
u

]
B =

[
f (u)

]
C .

Navíc je matice C

[
f

]
B dána předpisem

C

[
f

]
B =

[ [
f (b1)

]
C . . .

[
f (bm)

]
C

]
.

Důkaz: vynechán. Viz skripta (Penev, Theorem 4.5.1).



Připomenutí:

Věta 1 z Přednášky č.11
Nechť U a V jsou vektorové prostory nad tělesem F a
předpokládejme, že U je konečnědimenzionální. Nechť
B = {u1, . . . , un} je libovolná báze prostoru U a v1, . . . , vn ∈ V .a
Pak existuje jediné lineární zobrazení f : U → V t.ž.
f (u1) = v1, . . . , f (un) = vn. Navíc je-li U netriviální (tj. n ̸= 0),
pak je f určeno následujícím předpisem: pro všechna u ∈ U platí

f (u) = α1v1 + · · · + αnvn, kde
[

u
]

B =
[

α1 . . . αn
]T .

Na druhou stranu, je-li U triviální (tj. U = {0}, a tedy n = 0 a
B = ∅), pak je zobrazení f : U → V určeno předpisem f (0) = 0.

aZde jsou v1, . . . , vn libovolné vektory z V .



Příklad

Uvažujme bázi B =
{ [

1
0

]
,

[
1
1

] }
prostoru R2 a (jediné) lineární

zobrazení f : R2 → R2, které splňuje:

f
( [

1
0

] )
=

[
1
0

]
,

f
( [

1
1

] )
=

[
2
2

]
.

Vypočítejte matici B

[
f

]
B.

[
1
0

]

[
1
1

]

f
([

1
0

])
=

[
1
0

]

f
([

1
1

])
=

[
2
2

]

u

f(u)

f

x1 x1

x2 x2



Příklad

Uvažujme bázi B =
{ [

1
0

]
,

[
1
1

] }
prostoru R2 a (jediné) lineární

zobrazení f : R2 → R2, které splňuje:

f
( [

1
0

] )
=

[
1
0

]
,

f
( [

1
1

] )
=

[
2
2

]
.

Vypočítejte matici B

[
f

]
B.

Řešení. Podle vzorce z Věty 7 platí:

B

[
f

]
B =

[ [
f
( [

1
0

] ) ]
B

[
f
( [

1
1

] ) ]
B

]
=

[ [ [
1
0

] ]
B

[ [
2
2

] ]
B

]
=

[
1 0
0 2

]
.

□



Věta 7
Nechť U a V jsou netriviální, konečnědimenzionální vektorové
prostory nad tělesem F. Nechť B = {b1, . . . , bm} je báze prostoru
U, nechť C = {c1, . . . , cn} je báze prostoru V a nechť f : U → V
je lineární zobrazení. Pak existuje právě jedna matice z Fn×m,
kterou značíme C

[
f

]
B a nazýváme ji maticí zobrazení f vzhledem

k bázím B a C, taková, že pro všechna u ∈ U platí

C

[
f

]
B

[
u

]
B =

[
f (u)

]
C .

Navíc je matice C

[
f

]
B dána předpisem

C

[
f

]
B =

[ [
f (b1)

]
C . . .

[
f (bm)

]
C

]
.

Poznámka: Nechť F je těleso a f : Fm → Fn je lineární
zobrazení. Nechť Em a En jsou kanonické báze prostorů Fm a
Fn respektivě.

Pak je En

[
f

]
Em

maticí lineárního zobrazení f vzhledem ke
kanonickým bázím. Vskutku, pro každý vektor u ∈ Fm platí:

En

[
f

]
Em

u =
En

[
f

]
Em

[
u

]
Em

=
[

f (u)
]

En
= f (u).



Věta 8
Nechť U, V a W jsou netriviální, konečnědimenzionální vektorové
prostory nad tělesem F. Nechť B = {b1, . . . , bm} je báze prostoru
U, nechť C = {c1, . . . , cn} je báze prostoru V a nechť
D = {d1, . . . , dp} je báze prostoru W . Pak platí následující tvrzení:

(a) pro všechna lineární zobrazení f , g : U → V je zobrazení f + g
lineární,a a navíc platí

C

[
f + g

]
B = C

[
f

]
B + C

[
g

]
B ;

(b) pro všechna lineární zobrazení f : U → V a všechna skalární
čísla α ∈ F je zobrazení αf lineární,b a navíc platí

C

[
αf

]
B = α C

[
f

]
B ;

aJako obvykle je zobrazení f + g : U → V definováno vztahem
(f + g)(u) = f (u) + g(u) pro všechna u ∈ U.

bJako obvykle je zobrazení αf : U → V definováno vztahem
(αf )(u) = α

(
f (u)

)
pro všechna u ∈ U.



Věta 8 (pokračování)
(c) pro všechna lineární zobrazení f : U → V a g : V → W je

zobrazení g ◦ f lineární,a a navíc platí

D

[
g ◦ f

]
B = D

[
g

]
C C

[
f

]
B .

U V W

f , C

[
f
]
B g, D

[
g
]
C

g ◦ f , D

[
g
]
C C

[
f
]
B

B C D
aJako obvykle je zobrazení g ◦ f : U → W definováno vztahem

(g ◦ f )(u) = g
(
f (u)

)
pro všechna u ∈ U.

Důkaz: vynechán. Viz skripta (Penev, Theorem 4.5.3).



Věta 9
Nechť U a V jsou netriviální, konečnědimenzionální vektorové
prostory nad tělesem F. Nechť B = {b1, . . . , bm} je báze prostoru
U a nechť C = {c1, . . . , cn} je báze prostoru V . Nechť f : U → V
je lineární zobrazení.a Pak platí:

(a) rank(f ) = rank
(

C

[
f

]
B

)
;

(b) dim
(
Ker(f )

)
= dim

(
Nul

(
C

[
f

]
B

))
;

(c) f je prosté ⇐⇒ Nul
(

C

[
f

]
B

)
= {0};

(d) f je prosté ⇐⇒ rank
(

C

[
f

]
B

)
= m (tj. matice C

[
f

]
B má

plnou sloupcovou hodnost);
(e) f je na ⇐⇒ rank

(
C

[
f

]
B

)
= n (tj. matice C

[
f

]
B má plnou

řádkovou hodnost);
aTedy platí dim(U) = m, dim(V ) = n a

C

[
f

]
B

∈ Fn×m.



Věta 9 (pokračování)
(f) f je isomorfismus ⇐⇒ matice C

[
f

]
B je regulární (a zejména

čtvercová);
(g) je-li f isomorfismus, pak B

[
f −1 ]

C =
(

C

[
f

]
B

)−1
.

Důkaz: vynechán. Viz skripta (Penev, Theorem 4.5.4).



Příklad
Nechť U a V jsou reálné vektorové prostory. Nechť
B = {b1, b2, b3} je báze prostoru U a C = {c1, c2, c3} je báze
prostoru V . Nechť f : U → V je (jediné) lineární zobrazení, které
splňuje:

f (b1) = −2c1 + c3;
f (b2) = c1 + 3c2 + c3;
f (b3) = c2 − 2c3.

(Existence a jedinečnost lineárního zobrazení f plynou z Věty 1 z
Přednášky č.11.)

Vypočítejte matici C

[
f

]
B.

Vypočítejte rank(f ) a dim
(
Ker(f )).

Je zobrazení f prosté? Je f na? Je f isomorfismus?



Řešení. Podle Věty 7 platí:

C

[
f

]
B =

[ [
f (b1)

]
C

[
f (b2)

]
C

[
f (b3)

]
C

]
=

[ [
−2c1 + c3

]
C

[
c1 + 3c2 + c3

]
C

[
c2 − 2c3

]
C

]
=

 −2 1 0
0 3 1
1 1 −2

 .

Gaussovou-Jordanovou eliminací dostáváme RREF
(

C

[
f

]
B

)
= I3, a

tedy rank
(

C

[
f

]
B

)
= 3.

Z Věty 9 nyní vyplývá, že rank(f ) = rank
(

C

[
f

]
B

)
= 3, a tedy

dim
(
Ker(f )

) rank-nullity= dim(U) − rank(f ) = 3 − 3 = 0.

Z Věty 9 dále plyne, že f je prosté, na i isomorfismus. □



Připomenutí:

Věta 7
Nechť U a V jsou netriviální, konečnědimenzionální vektorové
prostory nad tělesem F. Nechť B = {b1, . . . , bm} je báze prostoru
U, nechť C = {c1, . . . , cn} je báze prostoru V a nechť f : U → V
je lineární zobrazení. Pak existuje právě jedna matice z Fn×m,
kterou značíme C

[
f

]
B a nazýváme ji maticí zobrazení f vzhledem

k bázím B a C, taková, že pro všechna u ∈ U platí

C

[
f

]
B

[
u

]
B =

[
f (u)

]
C .

Navíc je matice C

[
f

]
B dána předpisem

C

[
f

]
B =

[ [
f (b1)

]
C . . .

[
f (bm)

]
C

]
.

Definice
Nechť B a C jsou báze netriviálního, konečnědimenzionálního
vektorového prostoru V nad tělesem F. Pak matici C

[
IdV

]
B

nazýváme maticí přechodu mezi bázemi B a C.



Tvrzení 10
Nechť B = {b1, . . . , bn} a C = {c1, . . . , cn} jsou báze netriviálního,
konečnědimenzionálního vektorového prostoru V nad tělesem F.
Pak matice přechodu C

[
IdV

]
B splňuje

C

[
IdV

]
B

[
v

]
B =

[
v

]
C ∀v ∈ V .

Navíc je tato matice dána předpisem

C

[
IdV

]
B =

[ [
b1

]
C . . .

[
bn

]
C

]
.

Důkaz. Podle definice platí pro každé v ∈ V :

C

[
IdV

]
B

[
v

]
B =

[
IdV (v)

]
C =

[
v

]
C .

Dále platí

C

[
IdV

]
B

Věta 7=
[ [

IdV (b1)
]

C . . .
[

IdV (bn)
]

C
]

=
[ [

b1
]

C . . .
[

bn
]

C
]

□



Tvrzení 11
Nechť B = {b1, . . . , bn} a C = {c1, . . . , cn} jsou báze netriviálního,
konečnědimenzionálního vektorového prostoru V nad tělesem F.
Pak jsou matice přechodu C

[
IdV

]
B a B

[
IdV

]
C regulární, a navíc

jsou si navzájem inverzní.

Důkaz. Jelikož je IdV : V → V isomorfismem, vyplývá z Věty 9(f),
že jsou matice C

[
IdV

]
B a B

[
IdV

]
C regulární.

Navíc platí

C

[
IdV

]
B

=
C

[
Id−1

V

]
B

Věta 9(g)=
(

B

[
IdV

]
C

)−1
.

□



Následující lemma a věta dávají vzorec pro speciální případ
matic přechodu mezi bázemi prostoru Fn (kde F je těleso):

Lemma 12
Nechť F je těleso. Nechť En = {e1, . . . , en} je kanonická a
B = {b1, . . . , bn} libovolná báze prostoru Fn. Položme
B :=

[
b1 . . . bn

]
. Pak je B regulární, a navíc platí

En

[
IdFn

]
B = B a B

[
IdFn

]
En

= B−1.

Důkaz: vynechán. Viz skripta (Penev, Lemma 4.5.11).



Lemma 12
Nechť F je těleso. Nechť En = {e1, . . . , en} je kanonická a
B = {b1, . . . , bn} libovolná báze prostoru Fn. Položme
B :=

[
b1 . . . bn

]
. Pak je B regulární, a navíc platí

En

[
IdFn

]
B = B a B

[
IdFn

]
En

= B−1.

Věta 13
Nechť F je těleso a nechť B = {b1, . . . , bn} a C = {c1, . . . , cn}
jsou báze prostoru Fn. Položme B :=

[
b1 . . . bn

]
a

C :=
[

c1 . . . cn
]
. Pak je matice C

[
IdFn

]
B regulární a je dána

předpisem
C

[
IdFn

]
B = C−1B.

Důkaz. IdFn je isomorfismus, a tedy je matice C

[
IdFn

]
B regulární

(podle Věty 9(g)).
Navíc platí C

[
IdFn

]
B = C

[
IdFn ◦ IdFn

]
B =

C

[
IdFn

]
En En

[
IdFn

]
B

Lemma 12= C−1B. □



Věta 13
Nechť F je těleso a nechť B = {b1, . . . , bn} a C = {c1, . . . , cn}
jsou báze prostoru Fn. Položme B :=

[
b1 . . . bn

]
a

C :=
[

c1 . . . cn
]
. Pak je matice C

[
IdFn

]
B regulární a je dána

předpisem
C

[
IdFn

]
B = C−1B.

Příklad

Uvažujme báze B =
{ [

1
1

]
,

[
2
0

] }
a C =

{ [
2
1

]
,

[
2
2

] }
vektorového prostoru Z2

3. Položme B :=
[

1 2
1 0

]
a C :=

[
2 2
1 2

]
.

Pak platí

C

[
IdFn

]
B = C−1B =

[
0 2
2 2

]
.



Příklad

Uvažujme bázi B =
{ [

1
0

]
,

[
1
1

] }
prostoru R2 a (jediné) lineární

zobrazení f : R2 → R2, které splňuje:

f
( [

1
0

] )
=

[
1
0

]
,

f
( [

1
1

] )
=

[
2
2

]
.

Vypočítejte matici lineárního zobrazení f vzhledem ke kanonickým
bázím. B

[
f

]
B.

[
1
0

]

[
1
1

]

f
([

1
0

])
=

[
1
0

]

f
([

1
1

])
=

[
2
2

]

u

f(u)

f

x1 x1

x2 x2



Řešení. V jednom z předchozích příkladu jsme už vypočítali matici

B

[
f

]
B =

[
1 0
0 2

]
.

Položme B :=
[

1 1
0 1

]
. Pak platí B−1 =

[
1 −1
0 1

]
.

Nyní spočítáme matici lineárního zobrazení f vzhledem ke
kanonickým bázím:

E2

[
f

]
E2

= E2

[
IdR2 ◦ f ◦ IdR2

]
E2

Věta 8(c)= E2

[
IdR2

]
B B

[
f

]
B B

[
IdR2

]
E2

Lemma 12= B B

[
f

]
B B−1

=
[

1 1
0 1

] [
1 0
0 2

] [
1 −1
0 1

]

=
[

1 1
0 2

]
.

□



3 Ověřování existence a jednoznačnosti lineárních zobrazení se
zadanými vlastnostmi: příklady s polynomy a maticemi

Příklad
Uvažujme následující matice s prvky z Z2:

M1 =
[

1 0 1
1 0 1

]
;

M2 =
[

0 1 0
1 0 1

]
;

M3 =
[

0 1 0
1 0 0

]
;

M4 =
[

0 0 1
0 0 0

]
;

M5 =
[

1 0 0
1 0 0

]
;

M6 =
[

1 0 0
0 1 0

]
;

M7 =
[

0 0 0
0 1 0

]
;

M8 =
[

0 0 0
0 0 1

]
.

Dále uvažujme následující polynomy s koeficienty z Z2:
p1(x) = x3 + x2 + x + 1;

p2(x) = x4 + x2 + x + 1;

p3(x) = x5 + x4 + x2 + 1;

p4(x) = x3;

p5(x) = x5 + x2 + 1;

p6(x) = x5 + x4 + x2 + x ;

p7(x) = x2 + x ;

p8(x) = x5 + x .



Příklad (pokračování)
(a) Dokažte, že existuje právě jedno lineární zobrazení

f : Z2×3
2 → P5

Z2
, které splňuje f (Mi) = pi(x) ∀i ∈ {1, . . . , 8}.

(b) Vypočítejte rank(f ) a dim
(
Ker(f )

)
.

(c) Je f prosté? Je f na? Je f isomorfismus?
(d) Nalezněte vzorec pro f , tj. doplňte chybějící výraz:

f
( [

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

] )
=

∀a1,1, a1,2, a1,3, a2,1, a2,2, a2,3 ∈ Z2.

(e) Je-li f isomorfismem, nalezněte vzorec pro f −1, tj. doplňte
chybějící výraz:

f −1
(

a5x5 + · · · + a1x + a0

)
=

∀a0, a1, . . . , a5 ∈ Z2.



Řešení. V našem řešení budeme používat bázi

M :=
{ [

1 0 0
0 0 0

]
,

[
0 1 0
0 0 0

]
,

[
0 0 1
0 0 0

]
,

[
0 0 0
1 0 0

]
,

[
0 0 0
0 1 0

]
,

[
0 0 0
0 0 1

] }
prostoru Z2×3

2 a bázi P :=
{
1, x , x2, x3, x4, x5}

prostoru P5
Z2

.



Příklad
(a) Dokažte, že existuje právě jedno lineární zobrazení

f : Z2×3
2 → P5

Z2
, které splňuje f (Mi) = pi(x) ∀i ∈ {1, . . . , 8}.

Řešení (pokračování). (a) Budeme řešit matici P

[
f

]
M.

Požadujeme, aby lineární zobrazení f splňovalo f (Mi) = pi(x) pro
všechna i ∈ {1, . . . , 8}, a tedy aby (neznámá) matice P

[
f

]
M

splňovala
P

[
f

]
M

[
Mi

]
M =

[
pi(x)

]
P

pro všechna i ∈ {1, . . . , 8}.
To je ekvivalentní rovnosti

Chapter 4. Linear functions 341

P
[
f
]
M
[ [

M1

]
M . . .

[
M8

]
M
]︸ ︷︷ ︸

=:M

=
[ [

p1(x)
]
P . . .

[
p8(x)

]
P
]︸ ︷︷ ︸

=:P

.

Here, matrices M and P can easily be computed (see below), whereas the matrix

P
[
f
]
M is the unknown that we need to solve for. We proceed as in subsection 1.9.2.

We first take the transpose of both sides of the equation above, and we obtain

MT
(

P
[
f
]
M

)T
= P T ,

which we solve for
(

P
[
f
]
M

)T
. We form the matrix

[
MT P T

]
=


[
M1

]T
M

[
p1(x)

]T
P

...
...[

M8

]T
M

[
p8(x)

]T
P



=



1 0 1 1 0 1 1 1 1 1 0 0
0 1 0 1 0 1 1 1 1 0 1 0
0 1 0 1 0 0 1 0 1 0 1 1
0 0 1 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 1 0 1 0 0 1
1 0 0 0 1 0 0 1 1 0 1 1
0 0 0 0 1 0 0 1 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 1


,

and we row reduce to obtain

RREF
( [

MT P T
] )

=



1 0 0 0 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 1 0 1 0
0 0 0 0 1 0 0 1 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


.

We now read off the (unique) solution for
(

P
[
f
]
M

)T
:

Irena Penev

Linear Algebra 1 & 2

Matice M a P zde lze snadno vypočítat, zatímco matice P

[
f

]
M

je neznámá, kterou potřebujeme určit.



Řešení (pokračování). Připomenutí: Potřebujeme vyřešit rovnici
Chapter 4. Linear functions 341

P
[
f
]
M
[ [

M1

]
M . . .

[
M8

]
M
]︸ ︷︷ ︸

=:M

=
[ [

p1(x)
]
P . . .

[
p8(x)

]
P
]︸ ︷︷ ︸

=:P

.

Here, matrices M and P can easily be computed (see below), whereas the matrix

P
[
f
]
M is the unknown that we need to solve for. We proceed as in subsection 1.9.2.

We first take the transpose of both sides of the equation above, and we obtain

MT
(

P
[
f
]
M

)T
= P T ,

which we solve for
(

P
[
f
]
M

)T
. We form the matrix

[
MT P T

]
=


[
M1

]T
M

[
p1(x)

]T
P

...
...[

M8

]T
M

[
p8(x)

]T
P



=



1 0 1 1 0 1 1 1 1 1 0 0
0 1 0 1 0 1 1 1 1 0 1 0
0 1 0 1 0 0 1 0 1 0 1 1
0 0 1 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 1 0 1 0 0 1
1 0 0 0 1 0 0 1 1 0 1 1
0 0 0 0 1 0 0 1 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 1


,

and we row reduce to obtain

RREF
( [

MT P T
] )

=



1 0 0 0 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 1 0 1 0
0 0 0 0 1 0 0 1 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


.

We now read off the (unique) solution for
(

P
[
f
]
M

)T
:
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pro P

[
f

]
M.

Nejprve transponujeme obě strany rovnice, čímž dostáváme

MT
(

P

[
f

]
M

)T
= PT ,

což vyřešíme pro
(

P

[
f

]
M

)T
.



Řešení (pokračování). Uvažujme matici

[
MT PT ]

=


[

M1
]T

M

[
p1(x)

]T
P...

...[
M8

]T
M

[
p8(x)

]T
P



=



1 0 1 1 0 1 1 1 1 1 0 0
0 1 0 1 0 1 1 1 1 0 1 0
0 1 0 1 0 0 1 0 1 0 1 1
0 0 1 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 1 0 1 0 0 1
1 0 0 0 1 0 0 1 1 0 1 1
0 0 0 0 1 0 0 1 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 1


,

kterou pak upravíme Gaussovou-Jordanovou eliminací (viz
následující slajd).



Řešení (pokračování).

RREF
( [

MT PT ] )
=



1 0 0 0 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 1 0 1 0
0 0 0 0 1 0 0 1 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


.

Nyní vyčteme (jediné) řešení rovnice vzhledem k
(

P

[
f

]
M

)T
:

(
P

[
f

]
M

)T
=


0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 0
0 1 0 0 0 1

 .



Řešení (pokračování). Transpozicí dostáváme (jediné) řešení
vzhledem k P

[
f

]
M:

P

[
f

]
M =


0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 1 1 0
0 0 1 0 0 0
1 0 0 1 0 0
1 1 0 0 0 1


Z existence a jedinečnosti matice P

[
f

]
M plynou existence a

jedinečnost lineárního zobrazení f : Z2×3
2 → P5

Z2
, které splňuje

f (Mi) = pi(x) ∀i ∈ {1, . . . , 8}.



Řešení (pokračování).
Poznámka: V tomto příkladu jsme ukázali existenci a
jedinečnost matice P

[
f

]
M, což implikovalo existenci a

jedinečnost lineárního zobrazení f se specifikacemi uvedenými
ve znění příkladu.

Pokud bychom pro matici P

[
f

]
M získali více než jedno

řešení, znamenalo by to, že lineární zobrazení f s danými
specifikacemi existuje, ale není jediné.
Naopak, pokud by pro matici P

[
f

]
M neexistovalo žádné

řešení, znamenalo by to, že lineární zobrazení f s danými
specifikacemi neexistuje.



Příklad
(b) Vypočítejte rank(f ) a dim

(
Ker(f )

)
.

Řešení (pokračování). (b) Gaussovou-Jordanovou eliminací
spočítáme

RREF
(

P

[
f

]
M

)
= I6.

Tedy
rank(f ) Věta 9(a)= rank

(
P

[
f

]
M

)
= 6.

Na druhou stranu platí

rank(f ) + dim
(
Ker(f )

) rank-nullity= dim(Z2×3
2 ),

a tedy

dim
(
Ker(f )

)
= dim(Z2×3

2 ) − rank(f ) = 6 − 6 = 0.



Příklad
(c) Je f prosté? Je f na? Je f isomorfismus?

Řešení (pokračování). (c) Jelikož dim
(
Ker(f )

)
= 0, plyne z

Věty 9(c), že f je prosté.

Jelikož rank(f ) = 6 = dim(P5
Z2

), plyne z Tvrzení 7 z Přednášky
č.11, že f je na.

Lineární zobrazení f je isomorfismus, protože je prosté a na.

Alternativně, jelikož definiční obor i obor hodnot lineárního
zobrazení f mají stejnou konečnou dimenzi a jelikož je f
prosté, plyne z Důsledeku 12 z Přednášky č.11, že f je také na
a isomorfismus.



Příklad
(d) Nalezněte vzorec pro f , tj. doplňte chybějící výraz:

f
( [

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

] )
=

∀a1,1, a1,2, a1,3, a2,1, a2,2, a2,3 ∈ Z2.

Řešení (pokračování). (d) Pomocí matice P

[
f

]
M jednoduše

nalezněme vzorec pro f (viz následující slad).



Řešení (pokračování). Pro a1,1, a1,2, a1,3, a2,1, a2,2, a2,3 ∈ Z2:
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(d) Using the matrix P
[
f
]
M, we can easily read off the formula for f , as follows.

For a1,1, a1,2, a1,3, a2,1, a2,2, a2,3 ∈ Z2, we compute:[
f
([ a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

]) ]
P

= P
[
f
]
M

[ [
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

] ]
M

=



0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 1 1 0
0 0 1 0 0 0
1 0 0 1 0 0
1 1 0 0 0 1





a1,1
a1,2
a1,3
a2,1
a2,2
a2,3



=



a2,1
a2,2 + a2,3
a2,1 + a2,2

a1,3
a1,1 + a2,1

a1,1 + a1,2 + a2,3



=




(a1,1 + a1,2 + a2,3)x
5+

+(a1,1 + a2,1)x
4 + a1,3x

3+
+(a2,1 + a2,2)x

2+
+(a2,2 + a2,3)x+ a2,1



P

Since
[
·
]
P is an isomorphism (and in particular, one-to-one), we deduce that

f
([ a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

])
=


(a1,1 + a1,2 + a2,3)x

5+
+(a1,1 + a2,1)x

4 + a1,3x
3+

+(a2,1 + a2,2)x
2+

+(a2,2 + a2,3)x+ a2,1

for all a1,1, a1,2, a1,3, a2,1, a2,2, a2,3 ∈ Z2. This is the formula that we needed.

(e) As we saw in part (c), f is an isomorphism. Let us find a formula for f−1.
First, we have that

M
[
f−1

]
P

(∗)
=

(
P
[
f
]
M

)−1
=



1 0 0 0 1 0
0 1 1 0 1 1
0 0 0 1 0 0
1 0 0 0 0 0
1 0 1 0 0 0
1 1 1 0 0 0

 ,

where (*) follows from Theorem 4.5.4(g). We now proceed similarly as in part (d).
For all a0, a1, a2, a3, a4, a5 ∈ Z2, we have the following:
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Řešení (pokračování). Jelikož
[

·
]

P je isomorfismus (a zejména je
f prosté), plyne, že

f
( [

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

] )
=


(a1,1 + a1,2 + a2,3)x5+
+(a1,1 + a2,1)x4 + a1,3x3+
+(a2,1 + a2,2)x2+
+(a2,2 + a2,3)x + a2,1

pro všechna a1,1, a1,2, a1,3, a2,1, a2,2, a2,3 ∈ Z2.



Příklad
(e) Je-li f isomorfismem, nalezněte vzorec pro f −1, tj. doplňte

chybějící výraz:

f −1
(

a5x5 + · · · + a1x + a0

)
=

∀a0, a1, . . . , a5 ∈ Z2.

Řešení (pokračování). (e) Jak jsme už viděli v části (c), f je
skutečně isomorfismus. Naleněme vzorec pro f −1. Nejdřív
spočítáme

M

[
f −1 ]

P
Věta 9(g)=

(
P

[
f

]
M

)−1
=


1 0 0 0 1 0
0 1 1 0 1 1
0 0 0 1 0 0
1 0 0 0 0 0
1 0 1 0 0 0
1 1 1 0 0 0

 .

Nyní pokračujeme podobně jako v části (d).



Řešení (pokračování). Pro všechna a0, a1, a2, a3, a4, a5 ∈ Z2 platí:Chapter 4. Linear functions 344

[
f−1

(
a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0

) ]
M

= M
[
f−1

]
P
[
a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0

]
P

=



1 0 0 0 1 0
0 1 1 0 1 1
0 0 0 1 0 0
1 0 0 0 0 0
1 0 1 0 0 0
1 1 1 0 0 0





a0
a1
a2
a3
a4
a5



=



a0 + a4
a1 + a2 + a4 + a5

a3
a0

a0 + a2
a0 + a1 + a2


=

[ [
a0 + a4 a1 + a2 + a4 + a5 a3

a0 a0 + a2 a0 + a1 + a2

] ]
M

.

Since
[
·
]
M is an isomorphism (and in particular, one-to-one), it follows that

f−1
(
a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0

)
=

[
a0 + a4 a1 + a2 + a4 + a5 a3

a0 a0 + a2 a0 + a1 + a2

]
for all a0, a1, a2, a3, a4, a5 ∈ Z2. This is the formula for f−1 that we needed.

Optional: Because it is easy to miscompute, it is a good idea to check our formulas
for f and f−1. Let us first check our formula for f . For each index i ∈ {1, . . . , 8}, we
compute f(Mi) using the formula that we obtained in part (d), and we check that we
do indeed get f(Mi) = pi(x). (If for some i ∈ {1, . . . , 8}, we get that f(Mi) ̸= pi(x),
it means that we made a mistake somewhere.) Here, we only do the computation
for i = 1 in order to demonstrate the general principle. The rest is similar routine
computation. So, for i = 1, we compute:

f(M1) = f
([ 1 0 1

1 0 1

])
= (1 + 0 + 1)x5 + (1 + 1)x4 + 1x3 + (1 + 0)x2 + (0 + 1)x+ 1

= x3 + x2 + x+ 1 = p1(x),
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Řešení (pokračování). Jelikož je
[

·
]

M prosté (protože je
isomorfismus), platí

f −1
(

a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0

)
=

[
a0 + a4 a1 + a2 + a4 + a5 a3

a0 a0 + a2 a0 + a1 + a2

]
pro všechna a0, a1, a2, a3, a4, a5 ∈ Z2.

Nepovinné: Protože je snadné udělat chybu ve výpočtech, je
vhodné ověřit si vzorce pro f a f −1.

Pro f to provedeme tak, že do nalezeného vzorce pro f (z
části (d)) dosadíme matice M1, . . . , M8 a ověříme, že skutečně
dostaneme polynomy p1(x), . . . , p8(x), resp.
Podobně pro f −1 postupujeme tak, že do nalezeného vzorce
pro f −1 (z části (e)) dosadíme polynomy p1(x), . . . , p8(x) a
ověříme, že skutečně dostaneme matice M1, . . . , M8, resp.
Podrobnosti: skripta. □



Další příklady: skripta (Penev, oddíl 4.5).


