Linear Algebra 1: Tutorial 12

Irena Penev

Winter 2024

Theorem 3.1.7 of the Lecture Notes. Let V be a vector space over a field \mathbb{F} , and let $U \subseteq V$. Then U is a subspace of V if and only if the following three conditions are satisfied:

- (*i*) $0 \in U;^1$
- (ii) U is closed under vector addition, that is, for all $\mathbf{u}, \mathbf{v} \in U$, we have that $\mathbf{u} + \mathbf{v} \in U$;
- (iii) U is closed under scalar multiplication, that is, for all $\mathbf{u} \in U$ and $\alpha \in \mathbb{F}$, we have that $\alpha \mathbf{u} \in U$.

Problem 2 from HW#7. Let V be a vector space over a field \mathbb{F} , and let U_1 and U_2 be subspaces of V.

- (a) Prove that $U_1 \cap U_2$ is a subspace of V.
- (b) Prove that $U_1 + U_2 := \{ \mathbf{u}_1 + \mathbf{u}_2 \mid \mathbf{u}_1 \in U_1, \mathbf{u}_2 \in U_2 \}$ is a subspace of V.
- (c) Prove that $U_1 \cup U_2$ is a subspace of V if and only if one of U_1, U_2 is included in the other.²

Hint (for all three parts): Theorem 3.1.7 of the Lecture Notes.

Exercise 1.

- (a) Either construct a matrix $A \in \mathbb{R}^{4 \times 7}$ such that $Col(A) \cong Nul(A)$ (and prove that your matrix A really does have this property), or prove that no such matrix A exists.
- (b) Either construct a matrix $B \in \mathbb{R}^{3 \times 4}$ such that $Col(B) \cong Nul(B)$ (and prove that your matrix B really does have this property), or prove that no such matrix B exists.

¹Here, **0** is the zero vector in the vector space V.

² "One of U_1, U_2 is included in the other" means " $U_1 \subseteq U_2$ or $U_2 \subseteq U_1$."

(c) Either construct a matrix $C \in \mathbb{R}^{3 \times 8}$ such that $Col(C) \cong Nul(C)$ (and prove that your matrix C really does have this property), or prove that no such matrix C exists.

Exercise 2. For each pair of real vector spaces U and V below, either construct a one-to-one linear function $f: U \to V$ or explain why no such f exists. If you succeed in constructing such an f, explain whether your f is also an isomorphism.

- (a) $U = \mathbb{P}^2_{\mathbb{R}}, V = \mathbb{R}^2;$
- (b) $U = \mathbb{R}^2, V = \mathbb{P}^2_{\mathbb{R}};$
- (c) $U = \mathbb{P}^3_{\mathbb{R}}, V = \mathbb{R}^{2 \times 2};$
- (d) $U = \mathbb{P}_{\mathbb{R}}, V = \mathbb{R}^{3 \times 7}.$

Exercise 3. Consider the following sets of matrices in $\mathbb{Z}_3^{3\times 2}$:

$$(a) \ \mathcal{A} = \left\{ \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 2 & 2 \\ 1 & 1 \end{bmatrix} \right\};$$
$$(b) \ \mathcal{B} = \left\{ \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \right\};$$

For each of these two sets, determine whether

- the set is linearly independent in $\mathbb{Z}_3^{3\times 2}$;
- the set is a spanning set of $\mathbb{Z}_3^{3\times 2}$;
- the set is a basis of $\mathbb{Z}_3^{3\times 2}$.

Exercise 4. Consider the following matrices in $\mathbb{Z}_3^{2\times 3}$:

• $M_1 = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix};$ • $M_2 = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 2 & 1 \end{bmatrix};$ • $M_3 = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix};$ • $M_4 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \end{bmatrix}.$

Find a basis \mathcal{B}_U of $U := Span(M_1, M_2, M_3, M_4)$, and extend it to a basis \mathcal{B} of $\mathbb{Z}_3^{2\times 3}$. Then, for each $i \in \{1, 2, 3, 4\}$, compute the coordinate vector $[M_i]_{\mathcal{B}}$.