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Reminder:

Theorem 4.2.3
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then all the following hold:

(a) for all subspaces U ′ of U, we have that f [U ′] is a subspace of
V ;

(b) Im(f ) is a subspace of V ;
(c) for all subspaces V ′ of V , we have that f −1[V ′] is a subspace

of U;
(d) Ker(f ) is a subspace of U.

U ′ f [U ′] V ′f−1[V ′]
f f

U V U V

(a) (c)



U f [U ] Vf−1[V ]
f f

Fm Fn Fm Fn

(a) (c)

In what follows, we will consider linear functions of the form
f : Fm → Fn (where F is a field), and will give a recipe for
computing:

a basis of the imagine of a subspace of the domain Fm under f
(that is, a basis of f [U], where U is a subspace of Fm);
a basis of the preimage of a subspace of the codomain Fn

under f (that is, a basis of f −1[V ], where V is a subspace of
Fn).

We will rely on Theorem 4.2.11(b) (next slide).

The proof of Theorem 4.2.11 will be given during our next
lecture.
Only part (c) of the theorem requires a bit of work to prove,
but we won’t use part (c) in this presentation.
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Theorem 4.2.11
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Let u1, . . . , uk ∈ U, and set
U ′ := Span(u1, . . . , uk). Then all the following hold:

(a) U ′ is a subspace of U, and f [U ′] is a subspace of V ;
(b) f [U ′] = f

[
Span(u1, . . . , uk)

]
= Span

(
f (u1), . . . , f (uk)

)
, i.e.

vectors f (u1), . . . , f (uk) span f [U ′] = f
[
Span(u1, . . . , uk)

]
;

(c) dim
(
f [U ′]

)
≤ dim(U ′) ≤ k.

u1

u2

uk

f (u1)

f (uk)
U ′ f [U ′]

U V

Informally, part (b) states: “The image of a span of vectors
equals the span of the images of those vectors.”



Proposition 4.2.15
Let F be a field, let f : Fm → Fn be a linear function, let
A ∈ Fn×m be the standard matrix of f , let u1, . . . , uk ∈ Fm

(k ≥ 1), and set U := Span(u1, . . . , uk). Then

f [U] = Col
(
A

[
u1 . . . uk

] )
,

and moreover, the pivot columns of the matrix A
[

u1 . . . uk
]

form a basis of f [U].

First an example, then a proof.



Example 4.2.16
Let f : Z5

2 → Z4
2 be the linear function whose standard matrix is

A =


1 1 0 0 1
0 1 1 0 1
1 0 1 0 0
1 1 0 1 1

 ,

and consider the vectors

u1 =


1
1
1
1
1

 , u2 =


1
0
1
0
1

 , u3 =


0
1
0
1
0

 , u4 =


1
0
0
0
1


in Z5

2. Set U := Span(u1, u2, u3, u4). Find a basis for f [U].



Solution.

Our goal is to find the pivot columns of the matrix
A

[
u1 u2 u3 u4

]
, since by Proposition 4.2.15, those columns

form a basis of f [U]. First, by multiplying matrices, we obtain

A
[

u1 u2 u3 u4
]

=


1 1 0 0 1
0 1 1 0 1
1 0 1 0 0
1 1 0 1 1




1 1 0 1
1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 1



=


1 0 1 0
1 0 1 1
0 0 0 1
0 0 0 0

.



Solution. Our goal is to find the pivot columns of the matrix
A

[
u1 u2 u3 u4

]
, since by Proposition 4.2.15, those columns

form a basis of f [U]. First, by multiplying matrices, we obtain

A
[

u1 u2 u3 u4
]

=


1 1 0 0 1
0 1 1 0 1
1 0 1 0 0
1 1 0 1 1




1 1 0 1
1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 1



=


1 0 1 0
1 0 1 1
0 0 0 1
0 0 0 0

.



Solution (continued). By row reducing, we obtain

RREF
(

A
[

u1 u2 u3 u4
] )

=


1 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 .

As we can see, the pivot columns of A
[

u1 u2 u3 u4
]

are its
first and fourth column. Therefore,

{ 
1
1
0
0

 ,


0
1
1
0

 }

is a basis of f [U]. □



Solution (continued). By row reducing, we obtain

RREF
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first and fourth column.
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1
1
0
0
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0
1
1
0
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is a basis of f [U]. □



Solution (continued). By row reducing, we obtain
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A
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0 0 0 0
0 0 0 0
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As we can see, the pivot columns of A
[

u1 u2 u3 u4
]

are its
first and fourth column. Therefore,

{ 
1
1
0
0

 ,


0
1
1
0

 }

is a basis of f [U]. □
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(k ≥ 1), and set U := Span(u1, . . . , uk). Then

f [U] = Col
(
A

[
u1 . . . uk

] )
,

and moreover, the pivot columns of the matrix A
[

u1 . . . uk
]

form a basis of f [U].

Proof.

First, we compute (next slide):
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Proof (continued).

f [U] = f
[
Span(u1, . . . , uk)

]
(∗)= Span

(
f (u1), . . . , f (uk)

)
(∗∗)= Col

( [
f (u1) . . . f (uk)

] )
(∗∗∗)= Col

( [
Au1 . . . Auk

] )
(∗∗∗∗)= Col

(
A

[
u1 . . . uk

] )
,

where (*) follows from Theorem 4.2.11(b), (**) follows from the
definition of the column space, and (***) follows from the fact
that A is the standard matrix of f , and (****) follows from the
definition of matrix multiplication.

By Theorem 3.3.4, the pivot
columns of a matrix form a basis of the column space of that
matrix, and the result follows. □



Proof (continued).

f [U] = f
[
Span(u1, . . . , uk)

]
(∗)= Span

(
f (u1), . . . , f (uk)

)
(∗∗)= Col

( [
f (u1) . . . f (uk)

] )
(∗∗∗)= Col

( [
Au1 . . . Auk

] )
(∗∗∗∗)= Col

(
A

[
u1 . . . uk

] )
,

where (*) follows from Theorem 4.2.11(b), (**) follows from the
definition of the column space, and (***) follows from the fact
that A is the standard matrix of f , and (****) follows from the
definition of matrix multiplication. By Theorem 3.3.4, the pivot
columns of a matrix form a basis of the column space of that
matrix, and the result follows. □



Proposition 4.2.18
Let F be a field, let f : Fm → Fn be a linear function, let
A ∈ Fn×m be the standard matrix of f , let v1, . . . , vk ∈ Fn

(k ≥ 1), and set V := Span(v1, . . . , vk) Then

f −1[V ] =
{

x ∈ Fm | ∃y ∈ Fk s.t.
[

A v1 . . . vk
] [

x
y

]
= 0

}

=
{

x ∈ Fm | ∃y ∈ Fk s.t.
[

x
y

]
∈ Nul

( [
A v1 . . . vk

] )}
.

First an example, then a proof.



Example 4.2.19
Consider the linear function f : R4 → R5 whose standard matrix is

A =


1 0 0 0
0 −2 −4 0

−2 −3 −6 1
4 0 0 0
2 −1 −2 0

 ,

and consider the following vectors in R5:
v1 =

[
−1 6 9 −4 1

]T ;
v2 =

[
2 2 −2 8 5

]T ;
v3 =

[
0 0 0 −1 0

]T ;
v4 =

[
0 −2 −3 −1 −1

]T ;
v5 =

[
0 −1 −2 1 0

]T ;
v6 =

[
−3 −1 2 −11 −6

]T .
Set V := Span(v1, . . . , v6). Find a basis of f −1[V ].



Solution. We apply Proposition 4.2.18.

We first form the matrix

C :=
[

A v1 v2 v3 v4 v5 v6
]

=


1 0 0 0 −1 2 0 0 0 −3
0 −2 −4 0 6 2 0 −2 −1 −1

−2 −3 −6 1 9 −2 0 −3 −2 2
4 0 0 0 −4 8 −1 −1 1 −11
2 −1 −2 0 1 5 0 −1 0 −6

 ,

and we find the general solution of the matrix-vector equation

[
A v1 v2 v3 v4 v5 v6

]︸ ︷︷ ︸
=C

[
x
y

]
= 0,

where the vector x has four entries (because A has four columns)
and the vector y has six entries (because we have six vectors
v1, . . . , v6).



Solution. We apply Proposition 4.2.18. We first form the matrix

C :=
[

A v1 v2 v3 v4 v5 v6
]

=


1 0 0 0 −1 2 0 0 0 −3
0 −2 −4 0 6 2 0 −2 −1 −1

−2 −3 −6 1 9 −2 0 −3 −2 2
4 0 0 0 −4 8 −1 −1 1 −11
2 −1 −2 0 1 5 0 −1 0 −6

 ,

and we find the general solution of the matrix-vector equation

[
A v1 v2 v3 v4 v5 v6

]︸ ︷︷ ︸
=C

[
x
y

]
= 0,

where the vector x has four entries (because A has four columns)
and the vector y has six entries (because we have six vectors
v1, . . . , v6).



Solution (continued). By row reducing, we obtain

RREF(C) =


1 0 0 0 −1 2 0 0 0 −3
0 1 2 0 −3 −1 0 1 0 0
0 0 0 1 −2 −1 0 0 0 −2
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1

 .

So, the general solution of our matrix-vector equation is

[
x
y

]
=



q − 2r + 3t
−2p + 3q + r − s

p
2q + r + 2t

q
r

−s
s

−t
t


, where p, q, r , s, t ∈ R.

But as per Proposition 4.2.18, we only need x!



Solution (continued). By row reducing, we obtain

RREF(C) =


1 0 0 0 −1 2 0 0 0 −3
0 1 2 0 −3 −1 0 1 0 0
0 0 0 1 −2 −1 0 0 0 −2
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1

 .

So, the general solution of our matrix-vector equation is

[
x
y

]
=



q − 2r + 3t
−2p + 3q + r − s

p
2q + r + 2t

q
r

−s
s

−t
t


, where p, q, r , s, t ∈ R.

But as per Proposition 4.2.18, we only need x!



Solution (continued). By row reducing, we obtain

RREF(C) =


1 0 0 0 −1 2 0 0 0 −3
0 1 2 0 −3 −1 0 1 0 0
0 0 0 1 −2 −1 0 0 0 −2
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1

 .

So, the general solution of our matrix-vector equation is

[
x
y

]
=



q − 2r + 3t
−2p + 3q + r − s

p
2q + r + 2t

q
r

−s
s

−t
t


, where p, q, r , s, t ∈ R.

But as per Proposition 4.2.18, we only need x!



Solution. So, we simply ignore the part below the horizontal dotted
line, and we obtain:

x =


q − 2r + 3t

−2p + 3q + r − s
p

2q + r + 2t

 , where p, q, r , s, t ∈ R.

By separating parameters, we obtain

x = p


0

−2
1
0

 + q


1
3
0
2

 + r


−2

1
0
1

 + s


0

−1
0
0

 + t


3
0
0
2

 ,

where p, q, r , s, t ∈ R.

In view of Proposition 4.2.18, we now have that (next slide):



Solution. So, we simply ignore the part below the horizontal dotted
line, and we obtain:

x =


q − 2r + 3t

−2p + 3q + r − s
p

2q + r + 2t

 , where p, q, r , s, t ∈ R.

By separating parameters, we obtain

x = p


0

−2
1
0

 + q


1
3
0
2

 + r


−2

1
0
1

 + s


0

−1
0
0

 + t


3
0
0
2

 ,

where p, q, r , s, t ∈ R.

In view of Proposition 4.2.18, we now have that (next slide):



Solution. So, we simply ignore the part below the horizontal dotted
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Solution.

f −1[V ] =
{

p


0

−2
1
0

 + q


1
3
0
2

 + r


−2

1
0
1

 + s


0

−1
0
0

 + t


3
0
0
2

 |

| p, q, r , s, t ∈ R
}

= Span
( 

0
−2

1
0

 ,


1
3
0
2

 ,


−2

1
0
1

 ,


0

−1
0
0

 ,


3
0
0
2

 )

= Col
( 

0 1 −2 0 3
−2 3 1 −1 0

1 0 0 0 0
0 2 1 0 2


︸ ︷︷ ︸

=:B

)
.



Solution (continued). Reminder:

f −1[V ] = Col
( 

0 1 −2 0 3
−2 3 1 −1 0

1 0 0 0 0
0 2 1 0 2


︸ ︷︷ ︸

=:B

)
.

We note that the five vectors that we obtained in the
second-to-last line above are not necessarily linearly independent,
and so to find an actual basis of f −1[V ], we row reduce the matrix
B and use Theorem 3.3.4. Indeed, Theorem 3.3.4 guarantees that
the pivot columns of B form a basis of Col(B) = f −1[V ].

In fact, we can immediately see that they are not linearly
independent: no five vectors in R4 are linearly independent
(by Theorem 3.2.17(a)).
More generally, though, the reason our computation does not
necessarily yield linearly independent vectors is because we
“cut off” the entries below the vertical dotted line.



Solution (continued). Reminder:

f −1[V ] = Col
( 

0 1 −2 0 3
−2 3 1 −1 0

1 0 0 0 0
0 2 1 0 2


︸ ︷︷ ︸

=:B

)
.

We note that the five vectors that we obtained in the
second-to-last line above are not necessarily linearly independent,
and so to find an actual basis of f −1[V ], we row reduce the matrix
B and use Theorem 3.3.4. Indeed, Theorem 3.3.4 guarantees that
the pivot columns of B form a basis of Col(B) = f −1[V ].

In fact, we can immediately see that they are not linearly
independent: no five vectors in R4 are linearly independent
(by Theorem 3.2.17(a)).
More generally, though, the reason our computation does not
necessarily yield linearly independent vectors is because we
“cut off” the entries below the vertical dotted line.



Solution (continued). Reminder:

f −1[V ] = Col
( 

0 1 −2 0 3
−2 3 1 −1 0

1 0 0 0 0
0 2 1 0 2


︸ ︷︷ ︸

=:B

)
.

By row reducing, we obtain

RREF(B) =


1 0 0 0 0
0 1 0 0 7/5
0 0 1 0 −4/5
0 0 0 1 17/5

 .

Thus, the pivot columns of B are its leftmost four columns, and
those four columns form a basis of f −1[V ].



Solution (continued). Reminder:

f −1[V ] = Col
( 

0 1 −2 0 3
−2 3 1 −1 0

1 0 0 0 0
0 2 1 0 2


︸ ︷︷ ︸

=:B

)
.

By row reducing, we obtain

RREF(B) =


1 0 0 0 0
0 1 0 0 7/5
0 0 1 0 −4/5
0 0 0 1 17/5

 .

Thus, the pivot columns of B are its leftmost four columns, and
those four columns form a basis of f −1[V ].



Solution (continued). So, our final answer is that

{ 
0

−2
1
0

 ,


1
3
0
2

 ,


−2

1
0
1

 ,


0

−1
0
0

 }

is a basis of f −1[V ]. □



Proposition 4.2.18
Let F be a field, let f : Fm → Fn be a linear function, let
A ∈ Fn×m be the standard matrix of f , let v1, . . . , vk ∈ Fn

(k ≥ 1), and set V := Span(v1, . . . , vk) Then

f −1[V ] =
{

x ∈ Fm | ∃y ∈ Fk s.t.
[

A v1 . . . vk
] [

x
y

]
= 0

}

=
{

x ∈ Fm | ∃y ∈ Fk s.t.
[

x
y

]
∈ Nul

( [
A v1 . . . vk

] )}
.

Proof.

Set A =
[

a1 . . . am
]
. Then for all vectors

x =
[

x1 . . . xm
]T

in Fm, we have the following sequence of
equivalent statements (next slide):
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in Fm, we have the following sequence of
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Proof (continued).

x ∈ f −1[V ]

⇐⇒ f (x) ∈ Span(v1, . . . , vk)︸ ︷︷ ︸
=V

(∗)⇐⇒ Ax ∈ Span(v1, . . . , vk)

⇐⇒ x1a1 + · · · + xmam︸ ︷︷ ︸
=Ax

∈ Span(v1, . . . , vk)

(∗∗)⇐⇒ ∃α1, . . . , αk ∈ F s.t. x1a1 + · · · + xmam = α1v1 + · · · + αkvk

⇐⇒ ∃α1, . . . , αk ∈ F s.t. x1a1 + · · · + xmam − α1v1 − · · · − αkvk = 0,

where (*) follows from the fact that A is the standard matrix of f ,
and (**) follows from the definition of span.



Proof (continued).

x ∈ f −1[V ]

previous
slide⇐⇒ ∃α1, . . . , αk ∈ F s.t. x1a1 + · · · + xmam − α1v1 − · · · − αkvk = 0

(∗∗∗)⇐⇒ ∃y1, . . . , yk ∈ F s.t. x1a1 + · · · + xmam + y1v1 + · · · + ykvk = 0

⇐⇒ ∃y1, . . . , yk ∈ F s.t.
[

a1 . . . am v1 . . . vk
]



x1
...

xm
y1
...

yk


= 0

⇐⇒ ∃y ∈ Fk s.t.
[

A v1 . . . vk
] [

x
y

]
= 0,

where (***) follows via substitution yi := −αi ∀i ∈ {1, . . . , k}.



Proof (continued).

x ∈ f −1[V ]

previous
slide⇐⇒ ∃y ∈ Fk s.t.

[
A v1 . . . vk

] [
x
y

]
= 0

(∗∗∗∗)⇐⇒ ∃y ∈ Fk s.t.
[

x
y

]
∈ Nul

( [
A v1 . . . vk

] )
,

where (****) follows from the definition of the null space. The
result is now immediate. □


