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o Reminder:

Theorem 4.2.3

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ for all subspaces U’ of U, we have that f[U’] is a subspace of
V;
@ Im(f) is a subspace of V;

@ for all subspaces V'’ of V, we have that f~1[V’] is a subspace
of U;

@ Ker(f) is a subspace of U.
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@ In what follows, we will consider linear functions of the form
f:F™ — F" (where IF is a field), and will give a recipe for
computing:

@ a basis of the imagine of a subspace of the domain F™ under f
(that is, a basis of f[U], where U is a subspace of F™);

@ a basis of the preimage of a subspace of the codomain F”
under f (that is, a basis of f~1[V], where V is a subspace of
F).
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@ In what follows, we will consider linear functions of the form
f:F™ — F" (where IF is a field), and will give a recipe for
computing:

@ a basis of the imagine of a subspace of the domain F™ under f
(that is, a basis of f[U], where U is a subspace of F™);

@ a basis of the preimage of a subspace of the codomain F”
under f (that is, a basis of f~1[V], where V is a subspace of
F).

e We will rely on Theorem 4.2.11(b) (next slide).

o The proof of Theorem 4.2.11 will be given during our next
lecture.

o Only part (c) of the theorem requires a bit of work to prove,
but we won't use part (c) in this presentation.



Theorem 4.2.11

Let U and V be vector spaces over a field F, and let f : U — V be

a linear function. Let uy,...,ux € U, and set

U’ :=Span(uy, ..., uk). Then all the following hold:

@ U'is a subspace of U, and f[U'] is a subspace of V;

@ f[U'] = f[Span(uy,...,ux)] =Span(f(u1),...,f(uk)), ie.
vectors f(uy), ..., f(ux) span f[U'] = f[Span(uy,...,ux)];

@ dim(f[U']) <dim(U’) < k.
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@ Informally, part (b) states: “The image of a span of vectors
equals the span of the images of those vectors.”




Proposition 4.2.15

Let IF be a field, let f : F™ — " be a linear function, let
A € F"™™ be the standard matrix of f, let uy,...,u, € F”
(k> 1), and set U := Span(uy, ..., uk). Then

flu] = CoI(A{ul uk}),

and moreover, the pivot columns of the matrix A [ up ... U
form a basis of f[U].

@ First an example, then a proof.



Example 4.2.16

Let f : Z3 — Z3 be the linear function whose standard matrix is

1 1 0 0 1
01 1 0 1
A= 1 01 0 0]’
11 01 1
and consider the vectors

1 1 0 1
1 0 1 0
u; = 1 ) u; = 1 ) uz = 0 ) us = 0
1 0 1 0
1 1 0 1

in Z3. Set U := Span(uy,uy, u3,uy). Find a basis for f[U].



Solution.



Solution. Our goal is to find the pivot columns of the matrix
A [ u; U U3z Uy } since by Proposition 4.2.15, those columns
form a basis of f[U]. First, by multiplying matrices, we obtain

[1 1 0 0 1 110l
1 010
01 101

A[U1U2U3U4]: 10100 1 1 0 0
1 1 011 1010
- 1 1 01

[1 0 1 0

1011

|00 01

|0 000




Solution (continued). By row reducing, we obtain

RREF(A[U1 w us m}) _

O O O
O O O o
oo o
[N el o]



Solution (continued). By row reducing, we obtain

RREF(A[U1 w us m}) _

O O O
O O O o
oo o
[N el o]

As we can see, the pivot columns of A { up Us uz ug | areits
first and fourth column.



Solution (continued). By row reducing, we obtain

RREF(A[U1 w us m}) _

O O O
O O O o
oo o
[N el o]

As we can see, the pivot columns of A { up Us uz ug | areits
first and fourth column. Therefore,

—
cC o Rk
O~ = O

——

is a basis of f[U]. O



Proposition 4.2.15

Let F be a field, let f : F — " be a linear function, let
A € F"™™ be the standard matrix of f, let uy,...,u, € F7
(k> 1), and set U := Span(uy, ..., uk). Then

flu] = Col(A{ul uk}),

and moreover, the pivot columns of the matrix A [ up ... U
form a basis of f[U].

Proof.



Proposition 4.2.15

Let F be a field, let f : F — " be a linear function, let
A € F"™™ be the standard matrix of f, let uy,...,u, € F7

(k> 1), and set U := Span(uy, ..., uk). Then
flu] = Col(A{ul uk}),

and moreover, the pivot columns of the matrix A [
form a basis of f[U].

u; ... Uk

Proof. First, we compute (next slide):



Proof (continued).

flU] = f[Span(uy, ..., uk)]
© Span(F(uy),..., F(uy))
(+5) Co|([ flu)) ... f(ug) ])
2 col([ A Au])
(e COI(A[U1 T ]),
where (*) follows from Theorem 4.2.11(b), (**) follows from the

definition of the column space, and (***) follows from the fact
that A is the standard matrix of f, and (****) follows from the

definition of matrix multiplication.



Proof (continued).
flU] = f[Span(uy,...,uk)]
(%)
= Span(f(uy), ..., f(uk))
(x) Col( [ F(u) ... F(u) ] )
(*;*) Col([ Au; ... Aug })
CE col(Alw o w]),
where (*) follows from Theorem 4.2.11(b), (**) follows from the
definition of the column space, and (***) follows from the fact
that A is the standard matrix of f, and (****) follows from the
definition of matrix multiplication. By Theorem 3.3.4, the pivot

columns of a matrix form a basis of the column space of that
matrix, and the result follows. (J



Proposition 4.2.18

Let IF be a field, let f : F™ — F” be a linear function, let
A € F"™™ be the standard matrix of f, let vi,...,v, € F"
(k> 1), and set V := Span(vy,...,vk) Then

f~v] = {XEIF”’|EIy6st.t.[A:v1 vk][

= {xE]F'"|EIyEIst_t. [;] ENuI([A:vl

@ First an example, then a proof.



Example 4.2.19

Consider the linear function f : R* — R® whose standard matrix is

0 00
2 4 0
-3 -6 1|,
0 00
1 -2 0

and consider the following vectors in R>:

ovi=[-1 6 9 —4

ow=[ 2 2 -2 8
ovi=[ 0 0 0 -1
ow=[ 0 —2 -3 —1
ovs=[ 0 -1 -2 1

l]T;
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ov=[-3 -1 2 -11 —6]"
Set V := Span(vi,...,vs). Find a basis of f~1[V].



Solution. We apply Proposition 4.2.18.



Solution. We apply Proposition 4.2.18. We first form the matrix

Cc = [A:vl Vo V3 Vg Vg v6]
1 o 00,-1 2 0 0 0 -3
0 2 40 6 2 0 -2 -1 -1
= |2 -3 61, 9 -2 0 -3 -2 2|,
4 0 00, -4 8 -1 -1 1 -11
2 -1 -2 0'1 5 0 -1 0 -6

and we find the general solution of the matrix-vector equation

[ A : Vi Vo V3 V4 V5 Vg } |:)y(:| = 0,

=C

where the vector x has four entries (because A has four columns)
and the vector y has six entries (because we have six vectors

V1,...,V6).



-3
0
-1 0 0 0 -2 ].
0
1

-1 010

Solution (continued). By row reducing, we obtain



Solution (continued). By row reducing, we obtain

1000,-1 2000 -3
0120 -3 1010 0
RREF(C) = |0 0 0 1,2 -1 0 0 0 -2
0000 0 0110 0
0000'0 000O0T1 1

So, the general solution of our matrix-vector equation is

qg—2r+3t
—2p+3q+r—s

[ X ] = , where p,q,r,s, t € R.




Solution (continued). By row reducing, we obtain

1000,-1 2000 -3
0120 -3 1010 0
RREF(C) = |0 0 0 1,2 -1 0 0 0 -2
0000 0 0110 0
0000'0 000O0T1 1

So, the general solution of our matrix-vector equation is

qg—2r+3t
—2p+3q+r—s

[ X ] = , where p,q,r,s, t € R.

But as per Proposition 4.2.18, we only need x!



Solution. So, we simply ignore the part below the horizontal dotted
line, and we obtain:

q—2r+3t
—2p+3qP+r_5 , where p,q,r,s,t € R.

29+ r+2t



Solution. So, we simply ignore the part below the horizontal dotted
line, and we obtain:

q—2r+3t
—2p+3qP+r_5 , where p,q,r,s,t € R.
2g+r+2t

By separating parameters, we obtain

0 1 -2 0 3
X = p -2 +q SUar| Ylas| E|4e|?

1 0 0 0 0|’

0 2 1 0 2

where p,q,r,s,t € R.



Solution. So, we simply ignore the part below the horizontal dotted
line, and we obtain:

q—2r+3t
—2p+3qP+r_5 , where p,q,r,s,t € R.
2g+r+2t

By separating parameters, we obtain

0 1 2 0 3
2 3 1 -1 0

X =Pl o T9 o | T o | TS o T o |
0 2 1 0 2

where p,q,r,s,t € R.

In view of Proposition 4.2.18, we now have that (next slide):



Solution.

AN — O

0
1
0
0

-2
1
0
1




Solution (continued). Reminder:

01 -2 0 3
23 1 -1 0

-1 _

f[V]_C°'(10000)
02 1 0 2




Solution (continued). Reminder:

01 -2 0 3
23 1 -1 0
—1 —
f[V]_C"'( 10 0 00)
02 1 0 2
=:B

We note that the five vectors that we obtained in the
second-to-last line above are not necessarily linearly independent,
and so to find an actual basis of f~1[V], we row reduce the matrix
B and use Theorem 3.3.4. Indeed, Theorem 3.3.4 guarantees that
the pivot columns of B form a basis of Col(B) = f~1[V].

@ In fact, we can immediately see that they are not linearly
independent: no five vectors in R* are linearly independent
(by Theorem 3.2.17(a)).

@ More generally, though, the reason our computation does not
necessarily yield linearly independent vectors is because we
“cut off” the entries below the vertical dotted line.



Solution (continued). Reminder:

01 -2 0 3
. B 23 1 -1 0
f[V]_CO'(loooo)

02 1 0 2




Solution (continued). Reminder:

FV] = CO|(

N O W
= O~ N
ok
N OO W
~——~

By row reducing, we obtain

RREF(B) = a3

17/5

o= OO

0
0 7/5
0
1

o O o
O O+~ O

Thus, the pivot columns of B are its leftmost four columns, and
those four columns form a basis of f~1[V].



Solution (continued). So, our final answer is that

ol | 1] | -2 0
(o] of] of)
0] | 2 1 0

is a basis of f71[V]. O



Proposition 4.2.18

Let IF be a field, let f : ™ — [F” be a linear function, let
A € F"™™ be the standard matrix of f, let v1,...,v, € F"
(k> 1), and set V := Span(vy,...,vk) Then

Fv] = {xewm|3yews.t.[Ajvl vk][x}—o}

= {xEIF’"|EIy€IE‘ks.t. [?]eNul([Avl V]

Proof.



Proposition 4.2.18

Let IF be a field, let f : ™ — [F” be a linear function, let
A € F"™™ be the standard matrix of f, let v1,...,v, € F"
(k> 1), and set V := Span(vy,...,vk) Then

Fv] = {xewm|3yews.t.[Ajvl vk][x}—o}

= {xEIF’"|EIy€IE‘ks.t. [?]eNul([Avl V]

Proof. SetA:[al am].



Proposition 4.2.18

Let IF be a field, let f : ™ — [F” be a linear function, let
A € F"™™ be the standard matrix of f, let v1,...,v, € F"
(k> 1), and set V := Span(vy,...,vk) Then

-1 _ m k ‘ I
Fv] = {erE" |FyeFrst [A v ... vk][y} 0}
= {xEIF’"|EIy€IE‘ks.t. [?]eNul([Avl V]
Proof. SetA:[al am].Then for all vectors
X = { X1 ... Xm } in ™, we have the following sequence of

equivalent statements (next slide):



Proof (continued).
x € f1[V]

= f(x) € Span(vy, ..., v)

| S S —

=V

()
= Ax € Span(vy,...,Vk)
— x1a1 + -+ + Xmam € Span(vy, ..., V)

=Ax
s,k
é:L Jag,...,ax €EF st xja; + -+ Xmam = @1V + - - + Vg
— dag,...,ax €EFst. xqa; + -+ xmam — a1vy — -+ — apVi = 0,

where (*) follows from the fact that A is the standard matrix of f,
and (**) follows from the definition of span.



Proof (continued).
x € f1[V]
previous
glide, Jdag,...,ax € Fst. xja;+ -+ Xpam —ayvy — - — Ve =0
(%)

Iy, €EF st xqar + -+ Xpam + Y1V + -+ v = 0

X1
| Xm
<~ Elyl,...,ykeIFs.t.[al S @m V1oL Vk] f};f =0
1
L Yk |
= JyeFist. [A v ... vk][;]zq

where (***) follows via substitution y; := —a; Vi € {1,..., k}.



Proof (continued).
x € f1[V]
preyious ‘ X
slide, HyEst.t.[A‘vl vk][y]:ﬂ
(k) X 7x7 ‘
Jy € F¥ sit. [y ] eNu([Alvi 0w ]),

where (*¥****) follows from the definition of the null space. The
result is now immediate. [



