Linear Algebra 1: Tutorial 8

Irena Penev

Winter 2024

Exercise 1 from Tutorial 7. Let (G, \cdot) be a finite group,¹ and let H be a subgroup of G.² As usual, for $a, b \in G$, we write ab instead of $a \cdot b$. The identity element of G is denoted by e, and the inverse of an element $a \in G$ is denoted by a^{-1} . For all $a \in G$, define

$$aH := \{ah \mid h \in H\}.$$

For any finite set X, we denote by |X| the cardinality (i.e. the number of elements) of X.

- (a) Prove that for all $a \in G$, we have that $a \in aH$ (and in particular, $aH \neq \emptyset$).
- (b) Prove that for all $a, b \in G$, either aH = bH or $aH \cap bH = \emptyset$.
- (c) Prove that there exist some $a_1, \ldots, a_k \in G$ such that

 (a_1H,\ldots,a_kH)

is a partition of G, that is, such that $G = a_1 H \cup \cdots \cup a_k H$ and such that $a_1 H, \ldots, a_k H$ are pairwise disjoint.

(d) Prove that for all $a \in G$, we have that |aH| = |H|, that is, aH and H have the same number of elements.

Hint: Create a bijection from H to aH (and prove that it really is a bijection).

(e) Using the previous parts, prove that |H| | |G|, that is, that |G| is divisible by |H|.

¹This means that |G| is finite, i.e. G has only finitely many elements. ²Technically, (H, \cdot) is a subgroup of (G, \cdot) .

Exercise 1. Consider the following permutation in S_5 :

$$\pi = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 4 & 1 & 2 \end{array}\right).$$

(a) Compute the disjoint cycle decomposition of π .

- (b) Express π as a composition of transpositions.
- (c) Find all the inversions of π .

(d) Compute the sign of π in three different ways:

- using the definition (i.e. using the disjoint cycle decomposition of π),
- using transpositions,
- using inversions.
- (e) Compute π^{-1} and $sgn(\pi^{-1})$. Give both the table form and the disjoint cycle decomposition of π^{-1} .

Exercise 2. Repeat the previous exercise, only for the following permutation in S_7 :

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 4 & 2 & 3 & 7 & 5 & 6 \end{pmatrix}.$$

Exercise 3. Consider the permutations $\sigma = (143)(26)$ and $\pi = (27345)$ in S_7 . Compute $sgn(\sigma)$, $sgn(\pi)$, $sgn(\sigma \circ \pi)$, and $sgn(\pi \circ \sigma)$.³ Then, compute $\sigma \circ \pi$ and $\pi \circ \sigma$. Give both the disjoint cycle representations and the table forms of $\sigma \circ \pi$ and $\pi \circ \sigma$.

Exercise 4. Compute the group of symmetries for each of the polygons below.

³You should be able to compute $\operatorname{sgn}(\sigma \circ \pi)$ and $\operatorname{sgn}(\pi \circ \sigma)$ without actually computing the permutations $\sigma \circ \pi$ and $\pi \circ \sigma$.