Linear Algebra 1: Tutorial 7

Irena Penev

Winter 2024

Exercise 3 from Tutorial 6. Consider the matrix below, with entries understood to be in R.

> $A =$ $\sqrt{ }$ $\overline{}$ 1 2 3 0 1 4 0 0 1 1 $\overline{1}$

Either express A as a product of elementary matrices, or prove that this is not possible.

Exercise 4 from Tutorial 6. Let $\mathbb F$ be a field, and let $A \in \mathbb F^{n \times m}$. Set

 $\begin{bmatrix} U & C \end{bmatrix} = RREF \begin{bmatrix} A & I_n \end{bmatrix}.$

(Here, U is an $n \times m$ matrix, and C is an $n \times n$ matrix.) What is the relationship between $A, U,$ and C ?

Exercise 5 from Tutorial 6. Consider the matrix

with entries understood to be in \mathbb{Z}_2 . Compute an invertible matrix $C \in \mathbb{Z}_2^{3 \times 3}$ such that $RREF(A)=CA$.

Exercise 6 from Tutorial 6. For each of the following matrices A and B, either compute an invertible matrix C such that $B = CA$, or prove that no such matrix C exists.

(a)
$$
A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}
$$
, $B = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$, with entries in \mathbb{Z}_2 .

(b)
$$
A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}
$$
, $B = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix}$, with entries in \mathbb{Z}_3 .

Exercise 7 from Tutorial 6. Construct two invertible matrices $A, B \in \mathbb{R}^{2 \times 2}$ such that $A + B$ is **not** invertible.

Exercise 1. Let (G, \cdot) be a finite group,¹ and let H be a subgroup of G .² As usual, for $a, b \in G$, we write ab instead of $a \cdot b$. The identity element of G is denoted by e, and the inverse of an element $a \in G$ is denoted by a^{-1} . For all $a \in G$, define

$$
aH \ := \ \{ah \mid h \in H\}.
$$

For any finite set X, we denote by $|X|$ the cardinality (i.e. the number of elements) of X.

- (a) Prove that for all $a \in G$, we have that $a \in aH$ (and in particular, $aH \neq \emptyset$).
- (b) Prove that for all $a, b \in G$, either $aH = bH$ or $aH \cap bH = \emptyset$.
- (c) Prove that there exist some $a_1, \ldots, a_k \in G$ such that

$$
(a_1H,\ldots,a_kH)
$$

is a partition of G, that is, such that $G = a_1H \cup \cdots \cup a_kH$ and such that a_1H, \ldots, a_kH are pairwise disjoint.

(d) Prove that for all $a \in G$, we have that $|aH| = |H|$, that is, aH and H have the same number of elements.

> Hint: Create a bijection from H to aH (and prove that it really is a bijection).

(e) Using the previous parts, prove that $|H| \mid |G|$, that is, that $|G|$ is divisible by $|H|$.

¹This means that $|G|$ is finite, i.e. G has only finitely many elements.

²Technically, (H, \cdot) is a subgroup of (G, \cdot) .