Linear Algebra 1: Tutorial 6

Irena Penev

Winter 2024

Exercise 2 from HW#2. Solve the following system of linear equations, with coefficients understood to be in \mathbb{Z}_3 . How many solutions does the system have?

$2x_1$	+	x_2	+	$2x_3$	+	$2x_4$	+	x_5	=	0
x_1	+	$2x_2$	+	$2x_3$	+	$2x_4$	+	x_5	=	2
$2x_1$	+	x_2					+	$2x_5$	=	2

Problem 2 from HW#2. For which (if any) values of the real parameter k are the real matrices

	1	2	3	4			\overline{k}	1	1	1]
A =	2	3	4	5	and	B =	2	4	6	8
	0	1	2	3 _		B =	2	3	4	$5 \ $

row equivalent? Make sure you prove that your answer is correct.

Hint: There is a result in the Lecture Notes that tells you when two matrices are row equivalent. Which result (proposition/lemma/theorem/corollary) is that?

Exercise 1. Determine which (if any) of the following matrices are invertible. If a matrix is invertible, find its inverse.

(a)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
 with entries understood to be in \mathbb{R} .
(b) $B = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ with entries understood to be in \mathbb{Z}_2 .
(c) $C = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix}$ with entries understood to be in \mathbb{Z}_3 .

Exercise 2. Consider the following elementary matrices (with entries understood to be in \mathbb{R}).

	Г 1	0	0 -	1		[1	0	0	0]		[1]	0	0	0	
$E_1 =$	0	0	1	,	$E_2 =$	0	1	4	0		F_{-}	0	2	0	0	0
		1	1			0	0	1	0	$, L_3 -$	0	0	1	0	.	
	LO	T	0 -	J		0	0	0	1		$E_3 =$	0	0	0	1	

For each of the matrices above, determine which elementary row operation it corresponds to, and find the inverse of the matrix. (You should be able to find the inverse at a glance, without any row reducing.)

Exercise 3. Consider the matrix below, with entries understood to be in \mathbb{R} .

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

Either express A as a product of elementary matrices, or prove that this is not possible.

Exercise 4. Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times m}$. Set

 $\begin{bmatrix} U & C \end{bmatrix} = RREF(\begin{bmatrix} A & I_n \end{bmatrix}).$

(Here, U is an $n \times m$ matrix, and C is an $n \times n$ matrix.) What is the relationship between A, U, and C?

Exercise 5. Consider the matrix

$$A := \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix},$$

with entries understood to be in \mathbb{Z}_2 . Compute an invertible matrix $C \in \mathbb{Z}_2^{3 \times 3}$ such that RREF(A) = CA.

Exercise 6. For each of the following matrices A and B, either compute an invertible matrix C such that B = CA, or prove that no such matrix C exists.

(a)
$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$, with entries in \mathbb{Z}_2 .
(b) $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix}$, with entries in \mathbb{Z}_3 .

Exercise 7. Construct two invertible matrices $A, B \in \mathbb{R}^{2 \times 2}$ such that A + B is **not** invertible.