Linear Algebra 1: Tutorial 5

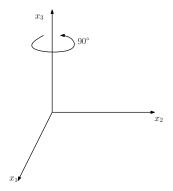
Irena Penev

Winter 2024

Problem 4 from HW#1. Show that any collection of at least 5 cities can be connected via one-way flights¹ in such a way that any city is reachable from any other city with at most one layover.

Exercise 1. Find the standard matrices of the following linear functions (you may assume they are linear).

(a) $f : \mathbb{R}^3 \to \mathbb{R}^3$ that rotates each vector about the x_3 -axis by 90° counterclockwise.



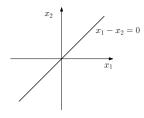
- (b) $g: \mathbb{R}^3 \to \mathbb{R}^3$ that projects each vector onto the x_1x_3 -plane.
- (c) $h_1 : \mathbb{R}^3 \to \mathbb{R}^3$ that first rotates each vector about the x_3 -axis by 90° counterclockwise, and then projects each vector onto the x_1x_3 -plane.
- (d) $h_2 : \mathbb{R}^3 \to \mathbb{R}^3$ that first projects each vector onto the x_1x_3 -plane, and then rotates each vector about the x_3 -axis by 90° counterclockwise.

¹So, for any two cities, A and B, at most one of the following (direct) flights is possible:

[•] from A to B;

[•] from B to A.

Exercise 2. Find the standard matrix of the linear function $f : \mathbb{R}^2 \to \mathbb{R}^2$ that projects each vector onto the line given by the equation $x_1 - x_2 = 0$ (you may assume the function is linear).



Exercise 3. Determine which (if either) of the following is a linear function, and prove that your answer is correct. If the function is linear, compute its standard matrix.

- (a) $f: \mathbb{Z}_{2}^{2} \to \mathbb{Z}_{2}^{4}$ given by $f([x_{1} \ x_{2}]^{T}) = [x_{1} \ x_{1}^{2} \ x_{2}^{3} \ x_{2}^{4}]^{T}$ for all $x_{1}, x_{2} \in \mathbb{Z}_{2}$.
- (b) $g: \mathbb{Z}_{3}^{3} \to \mathbb{Z}_{3}^{3}$ given by $g\left(\begin{bmatrix} x_{1} & x_{2} & x_{3} \end{bmatrix}^{T}\right) = \begin{bmatrix} x_{1}^{2} & x_{2}^{2} & x_{3}^{2} \end{bmatrix}^{T}$ for all $x_{1}, x_{2}, x_{3} \in \mathbb{Z}_{3}.$

Hint: One of these (which one?) is a trick question.

Exercise 4. Let

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \end{bmatrix} \quad and \quad B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$

with entries understood to be in \mathbb{Z}_2 . Solve the matrix equation AX = B. How many solutions does the equation AX = B have?

Exercise 5. Let

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad array \quad B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

with entries understood to be in \mathbb{R} . Solve the matrix equation AX = B. How many solutions does the equation AX = B have?

Exercise 6. Let

 $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 0 \end{bmatrix} \quad and \quad B = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 2 & 2 & 0 & 2 \end{bmatrix}$

with entries understood to be in \mathbb{Z}_3 . Solve the matrix equation XA = B. How many solutions does the equation XA = B have?