Linear Algebra 1: Tutorial 3

Irena Penev

Winter 2024

0		*	*	*	*	*	*	*	*	1	Γ	0	1	*	0	0	*	*	0	*	*]
0	0	0		*	*	*	*	*	*			0	0	0	1	0	*	*	0	*	*
0	0	0	0		*	*	*	*	*			0	0	0	0	1	*	*	0	*	*
0	0	0	0	0	0	0		*	*			0	0	0	0	0	0	0	1	*	*
0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0		L	0	0	0	0	0	0	0	0	0	0
-									-	-											-
	REF												RR	EF							

Exercise 1. Consider the matrix and vector below, with entries understood to be in \mathbb{Z}_3 .

A		[1]	2	0	0		0
		2	1	1	1	b =	1
	=	0	2	2	0		2
		0	1	1	0		1

Solve the matrix-vector equation $A\mathbf{x} = \mathbf{b}$. How many solutions does this equation have?

Exercise 2. Consider the matrix and vector below, with entries understood to be in \mathbb{R} .

		[1	-3	0		[0]
		-1	3	2		0
A	=	-2	6	-2	b =	2
		3	-9	0		0
		1	-3	1		0

Solve the matrix-vector equation $A\mathbf{x} = \mathbf{b}$. How many solutions does this equation have?

Exercise 3. Consider the matrix and vector below, with entries understood to be in \mathbb{Z}_2 .

		0	0	1	1		$\begin{bmatrix} 1 \end{bmatrix}$
A	=	1	1	1	1	b =	0
		1	1	0	0		1

Solve the matrix-vector equation $A\mathbf{x} = \mathbf{b}$. How many solutions does this equation have?

Exercise 4. Either construct a matrix A and vectors \mathbf{b}, \mathbf{c} that satisfy the given specifications, or explain why such $A, \mathbf{b}, \mathbf{c}$ do not exist. In each case, the entries of $A, \mathbf{b}, \mathbf{c}$ should be from the same field, and the number of rows of A should be the same as the number of entries in each of the vectors \mathbf{b}, \mathbf{c} .

- (a) $A\mathbf{x} = \mathbf{b}$ has no solutions, whereas $A\mathbf{x} = \mathbf{c}$ has a unique solution.
- (b) $A\mathbf{x} = \mathbf{b}$ has no solutions, whereas $A\mathbf{x} = \mathbf{c}$ has more than one solution.
- (c) $A\mathbf{x} = \mathbf{b}$ has a unique solution, whereas $A\mathbf{x} = \mathbf{c}$ has more than one solution.

(Hint: Think about rank, pivot/non-pivot columns, and free variables.)

Exercise 5. Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{a}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \quad \mathbf{a}_3 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0\\1\\2 \end{bmatrix}.$$

Determine whether $\mathbf{b} \in Span(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$. If so, express \mathbf{b} as a linear combination of the vectors $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$, and explain whether your answer is unique.

Exercise 6. Consider the following vectors in \mathbb{Z}_2^4 :

$$\mathbf{a}_{1} = \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \quad \mathbf{a}_{2} = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \quad \mathbf{a}_{3} = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \quad \mathbf{a}_{4} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \\ \mathbf{b} = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \quad \mathbf{d} = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}.$$

For each of the vectors $\mathbf{b}, \mathbf{c}, \mathbf{d}$, determine if it can be expressed as a linear combination of the vectors $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4$ (that is, if it belongs to $Span(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4)$), and if so, express it as such a linear combination, and explain whether your answer is unique.