Linear Algebra 1: Tutorial 2

Irena Penev

Winter 2024

0		*	*	*	*	*	*	*	*]	0	1	*	0	0	*	*	0	*	* -	I
0	0	0		*	*	*	*	*	*	0	0	0	1	0	*	*	0	*	*	
0	0	0	0		*	*	*	*	*	0	0	0	0	1	*	*	0	*	*	
0	0	0	0	0	0	0		*	*	0	0	0	0	0	0	0	1	*	*	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
REF								RREF												

Addition and multiplication tables for \mathbb{Z}_p (p = 2, 3, 5):

\mathbb{Z}_2 :	$\begin{array}{c ccc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \end{array}$	$\begin{array}{c ccc} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$
\mathbb{Z}_3 :	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
\mathbb{Z}_5 :	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Exercise 1. Compute the reduced row echelon form of the following matrices. What are the pivot columns and the pivot positions of these matrices?

(a)	$\begin{bmatrix} 1\\ 4\\ 6 \end{bmatrix}$	$2 \\ 5 \\ 7$	$\begin{bmatrix} 3 & 4 \\ 6 & 7 \\ 8 & 9 \end{bmatrix}, with entries understood to be in \mathbb{R};$
<i>(b)</i>	$\left[\begin{array}{c}1\\3\\5\end{array}\right]$	${3 \atop {5} \over {7}}$	$\begin{bmatrix} 5 & 7 \\ 7 & 9 \\ 9 & 1 \end{bmatrix}, with entries understood to be in \mathbb{R};$
(c)	$\left[\begin{array}{c}1\\0\\1\\0\end{array}\right]$	1 0 1 1	$\begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, with entries understood to be in \mathbb{Z}_2;$
(d)	$\begin{bmatrix} 2\\0\\2\\2\\1 \end{bmatrix}$	$egin{array}{c} 1 \\ 1 \\ 2 \\ 0 \\ 2 \end{array}$	$ \begin{bmatrix} 2 & 0 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 0 \\ 1 & 0 & 2 \\ 1 & 2 & 1 \end{bmatrix}, \text{ with entries understood to be in } \mathbb{Z}_3; $
(e)	$\begin{bmatrix} 2\\1\\4 \end{bmatrix}$	4 4 4	$\begin{bmatrix} 2\\3\\0 \end{bmatrix}, with entries understood to be in \mathbb{Z}_5.$

Exercise 2. Solve the following linear system, with coefficients understood to be in \mathbb{Z}_2 . How many solutions does the linear system have?

x_1	+	x_2	+	x_3	+	x_4	=	0
		x_2	+	x_3			=	0
x_1	+	x_2			+	x_4	=	1
x_1					+	x_4	=	0

Exercise 3. Solve the following linear system, with coefficients understood to be in \mathbb{Z}_3 . How many solutions does the linear system have?

Exercise 4. Solve the following linear system, with coefficients understood to be in \mathbb{R} . How many solutions does the linear system have?