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1 The effect of a linear function on linearly independent and
spanning sets

2 Linear functions and bases
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1 The effect of a linear function on linearly independent and
spanning sets

Theorem 4.2.11
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Let u1, . . . , uk ∈ U, and set
U ′ := Span(u1, . . . , uk). Then all the following hold:

(a) U ′ is a subspace of U, and f [U ′] is a subspace of V ;
(b) f [U ′] = f

[
Span(u1, . . . , uk)

]
= Span

(
f (u1), . . . , f (uk)

)
, i.e.

vectors f (u1), . . . , f (uk) span f [U ′] = f
[
Span(u1, . . . , uk)

]
;

(c) dim
(
f [U ′]

)
≤ dim(U ′) ≤ k.

u1

u2

uk

f (u1)

f (uk)
U ′ f [U ′]

U V



1 The effect of a linear function on linearly independent and
spanning sets

Theorem 4.2.11
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Let u1, . . . , uk ∈ U, and set
U ′ := Span(u1, . . . , uk). Then all the following hold:

(a) U ′ is a subspace of U, and f [U ′] is a subspace of V ;
(b) f [U ′] = f

[
Span(u1, . . . , uk)

]
= Span

(
f (u1), . . . , f (uk)

)
, i.e.

vectors f (u1), . . . , f (uk) span f [U ′] = f
[
Span(u1, . . . , uk)

]
;

(c) dim
(
f [U ′]

)
≤ dim(U ′) ≤ k.

u1

u2

uk

f (u1)

f (uk)
U ′ f [U ′]

U V



u1

u2

uk

f (u1)

f (uk)
U ′ f [U ′]

U V

Theorem 4.2.11
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Let u1, . . . , uk ∈ U, and set
U ′ := Span(u1, . . . , uk). Then all the following hold:

(a) U ′ is a subspace of U, and f [U ′] is a subspace of V ;

Proof of (a).

The fact that U ′ is a subspace of U follows
immediately from Theorem 3.1.11, and the fact that f [U ′] is a
subspace of V follows from 4.2.3(a). This proves (a).
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Theorem 4.2.11
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Let u1, . . . , uk ∈ U, and set
U ′ := Span(u1, . . . , uk). Then all the following hold:

(b) f [U ′] = f
[
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, i.e.
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Proof of (b).

Span
(
f (u1), . . . , f (uk)

)
=

{
α1f (u1) + · · · + αk f (uk) | α1, . . . , αk ∈ F

}
(∗)=

{
f
(
α1u1 + · · · + αkuk

)
| α1, . . . , αk ∈ F

}
(∗∗)=

{
f (u) | u ∈ Span(u1, . . . , uk)

}
= f

[
Span(u1, . . . , uk)

]
= f [U ′],

where (*) follows from the linearity of the f (and more precisely,
from Prop. 4.1.5), and (**) follows from the definition of span.
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Proof of (c).

By hypothesis, {u1, . . . , uk} is a spanning set of U ′.
So, by Theorem 3.2.14, some subset of that spanning set, say
{ui1 , . . . , uim} (with 1 ≤ i1 < · · · < im ≤ k) is a basis of U ′. So,
dim(U ′) = m ≤ k. But now {ui1 , . . . , uim} is a spanning set of U ′.
So, by part (b) applied to the set {ui1 , . . . , uim}, we get that
{f (ui1), . . . , f (uim)} is a spanning set of f [U ′]. We now apply
Theorem 3.2.14 again, and we deduce that some subset of
{f (ui1), . . . , f (uim)} is a basis of f [U ′], and so dim

(
f [U ′]

)
≤ m. □
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Corollary 4.2.12
Let U and V be vector spaces over a field F, let f : U → V be a
linear function, and let {u1, . . . , uk} be a spanning set of U. Then
Im(f ) = Span

(
f (u1), . . . , f (uk)

)
and

rank(f ) = dim
(
Span

(
f (u1), . . . , f (uk)

))
≤ k.

Proof.

By hypothesis, U = Span(u1, . . . , uk). So, by
Theorem 4.2.11(b), we have that
Im(f ) = f [U] = Span

(
f (u1), . . . , f (uk)

)
, and by

Theorem 4.2.11(c), we have that
rank(f ) = dim

(
Im(f )

)
= dim

(
f [U]

)
≤ k. □
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Theorem 4.2.13
Let U and V be vector spaces over a field F, let f : U → V be a
linear function, and let u1, . . . , uk ∈ U. Then all the following
hold:

(a) if f is one-to-one and vectors u1, . . . , uk are linearly
independent in U, then vectors f (u1), . . . , f (uk) are linearly
independent in V ;

(b) if vectors f (u1), . . . , f (uk) are linearly independent in V , then
vectors u1, . . . , uk are linearly independent in U;

(c) if f is onto and vectors u1, . . . , uk span U, then vectors
f (u1), . . . , f (uk) span V ;

(d) if f is one-to-one and vectors f (u1), . . . , f (uk) span V , then
vectors u1, . . . , uk span U.

Proof: Lecture Notes.
Informal summary: next slide.



Theorem 4.2.13 (schematically and informally):

f : U
linear−→ V

(a)-(b)
u1, . . . ,uk are
linearly independent

if f is 1-1
=⇒
⇐=
always

f(u1), . . . , f(uk) are
linearly independent

(c)-(d) u1, . . . ,uk span U

if f is onto
=⇒
⇐=

if f is 1-1

f(u1), . . . , f(uk) span V



Dimension considerations:

A B

f

As we know, for any function f : A → B, where A and B are
finite sets, the following hold:

if f is one-to-one, then |A| ≤ |B|;
if f is onto, then |A| ≥ |B|;
if f is a bijection, then |A| = |B|.

(Actually, the above is true even if we allow A and B to be
infinite, but to make sense of the statement, we would need
infinite cardinals. We omit the details.)

In the case of linear functions, Theorem 4.2.14 (next slide)
gives us a very similar statement, only involving dimension
(rather than cardinality) of the domain and codomain.
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Theorem 4.2.14
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then all the following hold:
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(c) if f is an isomorphism, then dim(U) = dim(V ).
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Proof (continued). (a) We prove the contrapositive: we assume
that dim(U) > dim(V ) (and in particular, dim(V ) is finite), and
we prove that f is not one-to-one.

Set n := dim(V ). Since dim(U) > dim(V ), we know that U has a
linearly independent set of size greater than n.

Indeed, if U is finite-dimensional, then any one of its bases is
a linearly independent set of size dim(U) > n, and if U is
infinite-dimensional, then Proposition 3.2.18 guarantees that
U has linearly independent sets of any finite size.

So, fix a linearly independent set {u1, . . . , uk} of U, with k > n.
Since dim(V ) = n, Theorem 3.2.17(a) guarantees that the set{
f (u1), . . . , f (uk)

}
is linearly dependent. But now

Theorem 4.2.13(a) guarantees that f is not one-to-one.
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(b) if f is onto, then dim(U) ≥ dim(V );

Proof (continued). (b) Assume that f is onto; we must show that
dim(U) ≥ dim(V ).

We may assume that n := dim(U) is finite, for
otherwise, we are done. We must show that dim(V ) ≤ n.

Fix any basis {u1, . . . , un} of U. In particular, vectors u1, . . . , un
span U, and so since f is onto, Theorem 4.2.13(c) guarantees that
vectors f (u1), . . . , f (un) span V . But then by Theorem 3.2.14,
some subset of

{
f (u1), . . . , f (un)

}
is a basis of V , and it follows

that dim(V ) ≤ n. □
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Theorem 4.2.14
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then all the following hold:

(a) if f is one-to-one, then dim(U) ≤ dim(V );
(b) if f is onto, then dim(U) ≥ dim(V );
(c) if f is an isomorphism, then dim(U) = dim(V ).



2 Linear functions and bases

Reminder:

Theorem 1.10.5
Let F be a field, and let a1, . . . , am be any vectors in Fn. Then
there exists a unique linear function f : Fm → Fn that satisfies
f (e1) = a1, . . . , f (em) = am, where e1, . . . , em are the standard
basis vectors of Fm. Moreover, this linear function f is given by
f (x) = Ax for all x ∈ Fm, where A =

[
a1 . . . am

]
.

Our next goal is to generalize Theorem 1.10.5 to linear
functions f : U → V , where U and V are vector spaces over a
field F, and U is finite-dimensional.

Instead of using the standard basis Em = {e1, . . . , em}, we will
use an arbitrary basis of U.
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Suppose that V is a non-trivial, finite-dimensional vector
space over a field F, and that B = {v1, . . . , vn} is a basis of V .

By Theorem 3.2.7, every vector of V can be written as linear
combination of the vectors v1, . . . , vn in a unique way, that is,
∀v ∈ V ∃!α1, . . . , αn ∈ F s.t.

v := α1v1 + · · · + αnvn,

and the coordinate vector of v with respect to the basis B is
defined to be [

v
]

B :=

 α1
...

αn

 .

As our next proposition shows,
[

·
]

B
: V → Fn is an

isomorphism.
It essentially allows us to “translate” vectors of an
n-dimensional vector space (n ̸= 0) into vectors in Fn.
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Proposition 4.3.1
Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {v1, . . . , vn} is a basis of V . Then

[
·

]
B

: V → Fn

is an isomorphism.

Proof.

We start by proving that
[

·
]

B
is linear.

1. Fix x, y ∈ V . WTS
[

x + y
]

B
=

[
x

]
B

+
[

y
]

B
. Set[

x
]

B
=

[
α1 . . . αn

]T
and

[
y

]
B

=
[

β1 . . . βn
]T

.
Then x = α1v1 + · · · + αnvn and y = β1v1 + · · · + βnvn;
consequently,

x + y = (α1 + β1)v1 + · · · + (αn + βn)vn,

and so
[

x + y
]

B
=

[
α1 + β1 . . . αn + βn

]T
. We now have

that (next slide):
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Proof (continued).

[
x + y

]
B =

 α1 + β1
...

αn + βn



=

 α1
...

αn

 +

 β1
...

βn


=

[
x

]
B +

[
y

]
B .
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F, and let B = {v1, . . . , vn} is a basis of V . Then
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is an isomorphism.

Proof (continued). Similarly (details: Lecture Notes):

2. ∀x ∈ V , α ∈ F:
[

αx
]

B
= α

[
x

]
B

.

So,
[

·
]

B
: V → Fn is linear.
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is an isomorphism.

Proof (continued). It remains to show that
[

·
]

B
is a bijection,

i.e. that it is one-to-one and onto Fn.

Since V and Fn are both n dimensional, Corollary 4.2.10
guarantees that f is one-to-one iff f is onto Fn. So, it is enough to
show that f is onto Fn.

Fix
[

α1 . . . αn
]T

∈ Fn. Set v := α1v1 + · · · + αnvn. Then[
v

]
B

=
[

α1 . . . αn
]T

. So,
[

·
]

B
is onto Fn. This

completes the argument. □
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Reminder:

Theorem 1.10.5
Let F be a field, and let a1, . . . , am be any vectors in Fn. Then
there exists a unique linear function f : Fm → Fn that satisfies
f (e1) = a1, . . . , f (em) = am, where e1, . . . , em are the standard
basis vectors of Fm. Moreover, this linear function f is given by
f (x) = Ax for all x ∈ Fm, where A =

[
a1 . . . am

]
.

Let’s generalize this!
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Theorem 4.3.2
Let U and V be vector spaces over a field F, and assume that U is
finite-dimensional. Let B = {u1, . . . , un} be a basis of U, and let
v1, . . . , vn ∈ V .a Then there exists a unique linear function
f : U → V s.t. f (u1) = v1, . . . , f (un) = vn. Moreover, if the vector
space U is non-trivial (i.e. n ̸= 0), then this unique linear function
f : U → V satisfies the following: for all u ∈ U, we have that

f (u) = α1v1 + · · · + αnvn,

where
[

u
]

B
=

[
α1 . . . αn

]T
. On the other hand, if U is

trivial (i.e. U = {0}),b then f : U → V is given by f (0) = 0.
aHere, v1, . . . , vn are arbitrary vectors in V . They are not necessarily

pairwise distinct.
bNote that in this case, we have that n = 0 and B = ∅.



Proof.

Suppose first that the vector space U is trivial, i.e. n = 0
and U = {0}. Then the function f : U → V given by f (0) = 0 is
obviously linear, and moreover, it vacuously satisfies
f (u1) = v1, . . . , f (un) = vn (because n = 0, and so both
u1, . . . , un and v1, . . . , vn are empty lists of vectors). The
uniqueness of f follows from Proposition 4.1.6.

From now on, we assume that the vector space U is non-trivial, i.e.
that n ̸= 0. We must prove the existence and the uniqueness of
the linear function f satisfying the required properties.
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Proof (continued). Existence. Let f : U → V be defined as in the
statement of the theorem, i.e. for all u ∈ U, we set

f (u) = α1v1 + · · · + αnvn,

where
[

u
]

B
=

[
α1 . . . αn

]T
.

Note that this means that for
all α1, . . . , αn ∈ F, we have that

f (α1u1 + · · · + αnun) = α1v1 + · · · + αnvn.

Let us show that f is linear and satisfies
f (u1) = v1, . . . , f (un) = vn. For the latter, we note that for all
i ∈ {1, . . . , n}, we have that

f (ui) = f (0u1 + · · · + 0ui−1 + 1ui + 0ui+1 + · · · + 0un)

= 0v1 + · · · + 0vi−1 + 1vi + 0vi+1 + · · · + 0vn

= vi .

This proves that f (u1) = v1, . . . , f (un) = vn.



Proof (continued). Existence. Let f : U → V be defined as in the
statement of the theorem, i.e. for all u ∈ U, we set

f (u) = α1v1 + · · · + αnvn,

where
[

u
]

B
=

[
α1 . . . αn

]T
. Note that this means that for

all α1, . . . , αn ∈ F, we have that

f (α1u1 + · · · + αnun) = α1v1 + · · · + αnvn.

Let us show that f is linear and satisfies
f (u1) = v1, . . . , f (un) = vn. For the latter, we note that for all
i ∈ {1, . . . , n}, we have that

f (ui) = f (0u1 + · · · + 0ui−1 + 1ui + 0ui+1 + · · · + 0un)

= 0v1 + · · · + 0vi−1 + 1vi + 0vi+1 + · · · + 0vn

= vi .

This proves that f (u1) = v1, . . . , f (un) = vn.



Proof (continued). Existence. Let f : U → V be defined as in the
statement of the theorem, i.e. for all u ∈ U, we set

f (u) = α1v1 + · · · + αnvn,

where
[

u
]

B
=

[
α1 . . . αn

]T
. Note that this means that for

all α1, . . . , αn ∈ F, we have that

f (α1u1 + · · · + αnun) = α1v1 + · · · + αnvn.

Let us show that f is linear and satisfies
f (u1) = v1, . . . , f (un) = vn.

For the latter, we note that for all
i ∈ {1, . . . , n}, we have that

f (ui) = f (0u1 + · · · + 0ui−1 + 1ui + 0ui+1 + · · · + 0un)

= 0v1 + · · · + 0vi−1 + 1vi + 0vi+1 + · · · + 0vn

= vi .

This proves that f (u1) = v1, . . . , f (un) = vn.



Proof (continued). Existence. Let f : U → V be defined as in the
statement of the theorem, i.e. for all u ∈ U, we set

f (u) = α1v1 + · · · + αnvn,

where
[

u
]

B
=

[
α1 . . . αn

]T
. Note that this means that for

all α1, . . . , αn ∈ F, we have that

f (α1u1 + · · · + αnun) = α1v1 + · · · + αnvn.

Let us show that f is linear and satisfies
f (u1) = v1, . . . , f (un) = vn. For the latter, we note that for all
i ∈ {1, . . . , n}, we have that

f (ui) = f (0u1 + · · · + 0ui−1 + 1ui + 0ui+1 + · · · + 0un)

= 0v1 + · · · + 0vi−1 + 1vi + 0vi+1 + · · · + 0vn

= vi .

This proves that f (u1) = v1, . . . , f (un) = vn.



Proof (continued). Let us now show that f is linear. We verify that
f satisfies the two axioms from the definition of a linear function.

1. Fix x, y ∈ U. WTS f (x + y) = f (x) + f (y). Set[
x

]
B

=
[

α1 . . . αn
]T

and
[

y
]

B
=

[
β1 . . . βn

]T
. We

then have that
[

x + y
]

B
=

[
α1 + β1 . . . αn + βn

]T
, and

we see that

f (x + y) (∗)= (α1 + β1)v1 + · · · + (αn + βn)vn

= (α1v1 + · · · + αnvn) + (β1v1 + · · · + βnvn)

(∗∗)= f (x) + f (y),

where both (*) and (**) follow from the construction of f .
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Proof (continued). 2. Fix u ∈ U and α ∈ F. WTS f (αu) = αf (u).
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where both (*) and (**) follow from the construction of f .

By 1. and 2., we see that f is linear. This completes the proof of
existence.
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Proof (continued). Uniqueness. Let f1, f2 : U → V be linear
functions that satisfy f1(u1) = v1, . . . , f1(un) = vn and
f2(u1) = v1, . . . , f2(un) = vn. WTS f1 = f2.

Fix u ∈ U. WTS
f1(u) = f2(u). Set

[
u

]
B

=
[

α1 . . . αn
]T

. Then

f1(u) = f1(α1u1 + · · · + αnun)

= α1f1(u1) + · · · + αnf1(un)
by the linearity of f1
(and more precisely,
by Proposition 4.1.5)

= α1v1 + · · · + αnvn
because
f1(u1) = v1, . . . , f1(un) = vn

= α1f2(u1) + · · · + αnf2(un) because
f2(u1) = v1, . . . , f2(un) = vn

= f2(α1u1 + · · · + αnun)
by the linearity of f2
(and more precisely,
by Proposition 4.1.5)

= f2(u).

Thus, f1 = f2. This proves uniqueness. □
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(and more precisely,
by Proposition 4.1.5)

= α1v1 + · · · + αnvn
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Theorem 4.3.2
Let U and V be vector spaces over a field F, and assume that U is
finite-dimensional. Let B = {u1, . . . , un} be a basis of U, and let
v1, . . . , vn ∈ V .a Then there exists a unique linear function
f : U → V s.t. f (u1) = v1, . . . , f (un) = vn. Moreover, if the vector
space U is non-trivial (i.e. n ̸= 0), then this unique linear function
f : U → V satisfies the following: for all u ∈ U, we have that

f (u) = α1v1 + · · · + αnvn,

where
[

u
]

B
=

[
α1 . . . αn

]T
. On the other hand, if U is

trivial (i.e. U = {0}),b then f : U → V is given by f (0) = 0.
aHere, v1, . . . , vn are arbitrary vectors in V . They are not necessarily

pairwise distinct.
bNote that in this case, we have that n = 0 and B = ∅.



Corollary 4.3.3
Let U and V be vector spaces over a field F, and assume that U is
finite-dimensional. Let {u1, . . . , uk} be a linearly independent set
of vectors in U, and let v1, . . . , vk ∈ V .a Then there exists a linear
function f : U → V s.t. f (u1) = v1, . . . , f (uk) = vk . Moreover, if
V is non-trivial, then this linear function f is unique iff
{u1, . . . , uk} is a basis of U.

aHere, v1, . . . , vk are arbitrary vectors in V . They are not necessarily
pairwise distinct.

Remark: If V is trivial (i.e. V = {0}, and consequently
v1 = · · · = vk = 0), then there exists exactly one function
from U to V , this function maps all elements of U to 0, and
obviously, it is linear.
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Proof (outline).

Using Theorem 3.2.19, we extend {u1, . . . , uk} to
a basis of U, and then we apply Theorem 4.3.2. The details are
left as an exercise. □
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3 Isomorphisms

Recall that, for vector spaces U and V over a field F, a
function f : U → V is an isomorphism if it is linear and a
bijection.
Vector spaces U and V (over the same field F) are
isomorphic, and we write U ∼= V , if there exits an
isomorphism f : U → V .
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Proposition 4.4.1
Let U and V be vector spaces over a field F, and let f : U → V be
an isomorphism. Then f −1 : V → U is also an isomorphism.

U V

f

f−1

Proof. The same as for isomorphisms f : Fn → Fn (details:
Lecture Notes). □



Proposition 4.4.2
Let U, V , and W be vector spaces over a field F, and let
f : U → V and g : V → W be isomorphisms. Then
g ◦ f : U → W is an isomorphism.

U V W

f g

g ◦ f

Proof.

Since f : U → V and g : V → W are linear functions
(because they are isomorphisms), Proposition 4.1.7 guarantees
that their composition g ◦ f : U → W is also linear.

Since f : U → V and g : V → W are bijections,
Proposition 1.10.17 guarantees that g ◦ f : U → W is also a
bijection.

So, g ◦ f : U → W is linear and a bijection, i.e. it is an
isomorphism. □
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Theorem 4.4.3
Let U, V , and W be vector spaces over a field F. Then all the
following hold:

(a) U ∼= U;
(b) if U ∼= V , then V ∼= U;
(c) if U ∼= V and V ∼= W , then U ∼= W .

Proof.

(a) Clearly, IdU : U → U (the identity function on U) is an
isomorphism. So, U ∼= U.

(b) Suppose that U ∼= V . Then there exists an isomorphism
f : U → V . But then by Proposition 4.4.2, f −1 : V → U is also an
isomorphism. So, V ∼= U.

(c) Suppose that U ∼= V and V ∼= W . Then there exist
isomorphisms f : U → V and g : V → W . But then by
Proposition 4.4.2, g ◦ f : U → W is an isomorphism. So,
U ∼= W . □
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Reminder: Theorem 4.2.13 (schematically and informally):
f : U

linear−→ V

(a)-(b)
u1, . . . ,uk are
linearly independent

if f is 1-1
=⇒
⇐=
always

f(u1), . . . , f(uk) are
linearly independent

(c)-(d) u1, . . . ,uk span U

if f is onto
=⇒
⇐=

if f is 1-1

f(u1), . . . , f(uk) span V

Theorem 4.4.4
Let U and V be vector spaces over a field F, let f : U → V be an
isomorphism, and let u1, . . . , uk ∈ U. Then all the following hold:

(a) vectors u1, . . . , uk are linearly independent in U iff vectors
f (u1), . . . , f (uk) are linearly independent in V ;

(b) vectors u1, . . . , uk span U iff vectors f (u1), . . . , f (uk) span V ;
(c) {u1, . . . , uk} is a basis of U iff

{
f (u1), . . . , f (uk)

}
is a basis of

V .

Proof. This follows from Theorem 4.2.13 (details: Lecture Notes).
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Theorem 4.4.4
Let U and V be vector spaces over a field F, let f : U → V be an
isomorphism, and let u1, . . . , uk ∈ U. Then all the following hold:

(a) vectors u1, . . . , uk are linearly independent in U iff vectors
f (u1), . . . , f (uk) are linearly independent in V ;

(b) vectors u1, . . . , uk span U iff vectors f (u1), . . . , f (uk) span V ;
(c) {u1, . . . , uk} is a basis of U iff

{
f (u1), . . . , f (uk)

}
is a basis of

V .

Proposition 4.4.5 (next slide) is a converse of sorts of
Theorem 4.4.4(c).

It essentially states that any linear function that (injectively)
maps a basis onto a basis is an isomorphism.



Proposition 4.4.5
Let U and V be finite-dimensional vector spaces over a field F.
Assume that dim(U) = dim(V ) =: n. Let {u1, . . . , un} be a basis
for U, and let {v1, . . . , vn} be a basis for V . Then there exists a
unique linear function f : U → V s.t. f (u1) = v1, . . . , f (un) = vn.
Moreover, this linear function f is an isomorphism.

...

u1

u2

u3

un

...

v1

v2

v3

vn

U V

f

Proof.

The existence and uniqueness of the linear function f
follows from Theorem 4.3.2. But by hypothesis, U and V are
finite-dimensional vector spaces satisfying dim(U) = dim(V ), and
so by Corollary 4.2.10, it is enough to show that f is onto.
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Proof (continued). Fix v ∈ V .

Since {v1, . . . , vn} is a basis for V ,
we know that there exist scalars α1, . . . , αn ∈ F s.t.
v = α1v1 + · · · + αnvn. But now

f (α1u1 + · · · + αnun) (∗)= α1f (u1) + · · · + αnf (un)

= α1v1 + · · · + αnvn

= v,

where (*) follows from the linearity of f (and more precisely, from
Proposition 4.1.5). So, f is onto, and we are done. □
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Reminder:

Theorem 4.2.14
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then all the following hold:

(a) if f is one-to-one, then dim(U) ≤ dim(V );
(b) if f is onto, then dim(U) ≥ dim(V );
(c) if f is an isomorphism, then dim(U) = dim(V ).

By Theorem 4.2.14(c), any two isomorphic vector spaces have
the same dimension.
Theorem 4.4.6 (next slide) guarantees that, in the case of
finite-dimensional vector spaces, the converse is also true:
any two vector spaces (over the same field) that have the
same finite dimension are isomorphic.

We give two proofs of Theorem 4.4.6!
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Theorem 4.4.6
Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V ).

Warning: This theorem is only true for finite-dimensional
vector spaces, and it becomes false for infinite-dimensional
ones.



Theorem 4.4.6
Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V ).

Proof#1.

If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V ).

Suppose, conversely, that dim(U) = dim(V ) =: n. Fix any basis
B = {b1, . . . , bn} of U and any basis C = {c1, . . . , cn} of V . By
Proposition 4.3.1,

[
·

]
B

: U → Fn and
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Proof#2.

If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V ). Suppose, conversely, that
dim(U) = dim(V ) =: n. Fix a basis B = {b1, . . . , bn} of U and a
basis C = {c1, . . . , cn} of V . Then by Proposition 4.4.5, there
exists a unique linear function f : U → V s.t.
f (b1) = c1, . . . , f (bn) = cn, and moreover, this linear function f is
an isomorphism.
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b1

b2

b3

bn

...

c1

c2

c3

cn

U V

f

So, U and V are isomorphic. □
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Proposition 4.4.7
Let U and V be a vector spaces over a field F, and let f : U → V
be an isomorphism, and let U ′ ⊆ U. Then U ′ is a subspace of U iff
V ′ := f [U ′] is a subspace of V . Moreover, in this case, all the
following hold:

(a) the function f ′ : U ′ → V ′ given by f ′(u) = f (u) for all u ∈ U ′

is an isormophism;
(b) U ′ ∼= V ′;
(c) dim(U ′) = dim(V ′).

U ′ V ′ = f [U ′]

U V

f

Proof. Lecture Notes. □



4 An application of isomorphisms: transforming polynomials and
matrices into vectors

Reminder:

Theorem 4.4.6
Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V ).

By Theorem 4.4.6, for all positive integers n and fields F,
every n-dimensional vector space V over F is isomorphic to
Fn.
Moreover, by Proposition 4.3.1, given any basis B of such a
vector space V , the coordinate function

[
·

]
B : V → Fn is an

isomorphism.

This is useful because we have developed powerful
computational tools for vectors in Fn.
By using isomorphisms, we can reduce problems of computing
in an arbitrary n-dimensional vector space to problems of
computing in Fn, which we know how to do in many cases.
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Remark: When working with coordinate vectors, we must
always specify the basis that we are working with (i.e. with
respect to which the coordinate vectors are computed).

Choosing a different basis will, in general, produce different
coordinate vectors.
For instance, consider the real vector space P2

R of all
polynomials of degree at most 2 and with coefficients in R.
There are two “obvious” bases to chose for P2

R, namely
A1 = {1, x , x2} and A2 = {x2, x , 1}.
For a polynomial p(x) = a2x2 + a1x + a0 (with a0, a1, a2 ∈ R),
we have

[
p(x)

]
A1

=

 a0
a1
a2

 and
[

p(x)
]

A2
=

 a2
a1
a0

 .

As we can see, the coordinate vectors are different (whenever
a0 ̸= a2), which is why we have to be careful to specify what
basis we are working with.
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Proposition 4.4.8
Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {b1, . . . , bn} be a basis of V . Let v1, . . . , vm
(m ≥ 1) be some vectors in V , and for all i ∈ {1, . . . , n}, set
ai :=

[
vi

]
B. Set A :=

[
a1 . . . am

]
. Then all the following

hold:
(a) {v1, . . . , vm} is a linearly independent set in V iff

rank(A) = m (i.e. A has full column rank);
(b) {v1, . . . , vm} is a spanning set of V iff rank(A) = n (i.e. A has

full row rank);
(c) {v1, . . . , vm} is a basis of V iff rank(A) = n = m (i.e. A is a

square matrix of full rank).

Proof: Lecture Notes. (Follows easily from results that we
have already proven.)



Example 4.4.9
Consider the following sets of polynomials (with coefficients
understood to be in R):

(a) A =
{

x2 + x , x3 + 1, x , x2 + 1
}
;

(b) B =
{

3x3 + 2x2 + x + 1, 6x3 + 4x2 + 5x + 6, 5x + 6, 2x + 2
}
;

(c) C =
{

x3 + 1, x3 + x2, x2 + x , x + 1, 1, x
}
;

(d) D =
{

x3, 2x2 + 3x , 4x3 + 5x + 6
}
.

For each of the four sets above, determine whether
it is linearly independent in P3

R;
it spans P3

R;
it is a basis of P3

R.

We give a solution of (a) and (d). For parts (b) and (d), see
the Lecture Notes.

Solution.

In what follows, we will use the basis P =
{
1, x , x2, x3}

of P3
R.
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Example 4.4.9
(a) A =

{
x2 + x , x3 + 1, x , x2 + 1

}
;

Solution (continued). Reminder: P =
{
1, x , x2, x3}

.

(a) We set
a1 :=

[
x2 + x

]
P =

[
0 1 1 0

]T ;
a2 :=

[
x3 + 1

]
P =

[
1 0 0 1

]T ;
a3 :=

[
x

]
P =

[
0 1 0 0

]T ;
a4 :=

[
x2 + 1

]
P =

[
1 0 1 0

]T ;
Further, we set

A :=
[

a1 a2 a3 a4
]

=


0 1 0 1
1 0 1 0
1 0 0 1
0 1 0 0

 .

By row reducing, we get that RREF(A) = I4, and consequently,
rank(A) = 4. So, by Proposition 4.4.8, A is a basis of P3

R, and in
particular, it is a linearly independent set in P3

R, as well as a
spanning set of P3

R.
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P =
[

1 0 0 1
]T ;

a3 :=
[

x
]

P =
[

0 1 0 0
]T ;

a4 :=
[

x2 + 1
]

P =
[

1 0 1 0
]T ;

Further, we set

A :=
[

a1 a2 a3 a4
]

=


0 1 0 1
1 0 1 0
1 0 0 1
0 1 0 0

 .

By row reducing, we get that RREF(A) = I4, and consequently,
rank(A) = 4. So, by Proposition 4.4.8, A is a basis of P3

R, and in
particular, it is a linearly independent set in P3

R, as well as a
spanning set of P3

R.



Example 4.4.9
(c) C =

{
x3 + 1, x3 + x2, x2 + x , x + 1, 1, x

}
;

Solution (continued). Reminder: P =
{
1, x , x2, x3}

.

(c) We set
c1 :=

[
x3 + 1

]
P =

[
1 0 0 1

]T ;
c2 :=

[
x3 + x2 ]

P =
[

0 0 1 1
]T ;

c3 :=
[

x2 + x
]

P =
[

0 1 1 0
]T ;

c4 :=
[

x + 1
]

P =
[

1 1 0 0
]T ;

c5 :=
[

1
]

P =
[

1 0 0 0
]T ;

c6 :=
[

x
]

P =
[

0 1 0 0
]T .

Further, we set

C :=
[

c1 c2 c3 c4 c5 c6
]

=


1 0 0 1 1 0
0 0 1 1 0 1
0 1 1 0 0 0
1 1 0 0 0 0

 .

By row reducing, we get that (next slide):



Example 4.4.9
(c) C =

{
x3 + 1, x3 + x2, x2 + x , x + 1, 1, x

}
;

Solution (continued). Reminder: P =
{
1, x , x2, x3}

.
(c) We set

c1 :=
[

x3 + 1
]

P =
[

1 0 0 1
]T ;

c2 :=
[

x3 + x2 ]
P =

[
0 0 1 1

]T ;
c3 :=

[
x2 + x

]
P =

[
0 1 1 0

]T ;
c4 :=

[
x + 1

]
P =

[
1 1 0 0

]T ;
c5 :=

[
1

]
P =

[
1 0 0 0

]T ;
c6 :=

[
x

]
P =

[
0 1 0 0

]T .
Further, we set

C :=
[

c1 c2 c3 c4 c5 c6
]

=


1 0 0 1 1 0
0 0 1 1 0 1
0 1 1 0 0 0
1 1 0 0 0 0

 .

By row reducing, we get that (next slide):



Example 4.4.9
(c) C =

{
x3 + 1, x3 + x2, x2 + x , x + 1, 1, x

}
;

Solution (continued). Reminder: P =
{
1, x , x2, x3}

.
(c) We set

c1 :=
[

x3 + 1
]

P =
[

1 0 0 1
]T ;

c2 :=
[

x3 + x2 ]
P =

[
0 0 1 1

]T ;
c3 :=

[
x2 + x

]
P =

[
0 1 1 0

]T ;
c4 :=

[
x + 1

]
P =

[
1 1 0 0

]T ;
c5 :=

[
1

]
P =

[
1 0 0 0

]T ;
c6 :=

[
x

]
P =

[
0 1 0 0

]T .
Further, we set

C :=
[

c1 c2 c3 c4 c5 c6
]

=


1 0 0 1 1 0
0 0 1 1 0 1
0 1 1 0 0 0
1 1 0 0 0 0

 .

By row reducing, we get that (next slide):



Example 4.4.9
(c) C =

{
x3 + 1, x3 + x2, x2 + x , x + 1, 1, x

}
;

Solution (continued). Reminder: P =
{
1, x , x2, x3}

.

(c)

RREF(C) =


1 0 0 1 0 1
0 1 0 −1 0 −1
0 0 1 1 0 1
0 0 0 0 1 −1

 ,

and consequently, rank(C) = 4. So, by Proposition 4.4.8, C is not
linearly independent, it is spanning set of P3

R, and it is not a basis
of P3

R. □



Example 4.4.9
(c) C =

{
x3 + 1, x3 + x2, x2 + x , x + 1, 1, x

}
;

Solution (continued). Reminder: P =
{
1, x , x2, x3}

.

(c)

RREF(C) =


1 0 0 1 0 1
0 1 0 −1 0 −1
0 0 1 1 0 1
0 0 0 0 1 −1

 ,

and consequently, rank(C) = 4.

So, by Proposition 4.4.8, C is not
linearly independent, it is spanning set of P3

R, and it is not a basis
of P3

R. □



Example 4.4.9
(c) C =

{
x3 + 1, x3 + x2, x2 + x , x + 1, 1, x

}
;

Solution (continued). Reminder: P =
{
1, x , x2, x3}

.

(c)

RREF(C) =


1 0 0 1 0 1
0 1 0 −1 0 −1
0 0 1 1 0 1
0 0 0 0 1 −1

 ,

and consequently, rank(C) = 4. So, by Proposition 4.4.8, C is not
linearly independent, it is spanning set of P3

R, and it is not a basis
of P3

R. □



Example 4.4.9
Consider the following sets of polynomials (with coefficients
understood to be in R):

(a) A =
{

x2 + x , x3 + 1, x , x2 + 1
}
;

(b) B =
{

3x3 + 2x2 + x + 1, 6x3 + 4x2 + 5x + 6, 5x + 6, 2x + 2
}
;

(c) C =
{

x3 + 1, x3 + x2, x2 + x , x + 1, 1, x
}
;

(d) D =
{

x3, 2x2 + 3x , 4x3 + 5x + 6
}
.

For each of the four sets above, determine whether
it is linearly independent in P3

R;
it spans P3

R;
it is a basis of P3

R.

See the Lecture Notes for a similar problem, only with
matrices instead of polynomials.



Example 4.4.12
Consider the following polynomials in PZ3 :

p1(x) = x4 + 2;
p2(x) = x3 + x2;
p3(x) = x4 + x3 + x2 + 2;

p4(x) = 2x4 + x3 + x2 + 1;
p5(x) = 2x + 1.

Set U := Span
(
p1(x), . . . , p5(x)

)
. Find a basis B of U. What is

dim(U)? For each i ∈ {1, . . . , 5} s.t. pi(x) is not in the basis B,
express pi(x) as a linear combination of the basis vectors in B.

Solution.

Note that polynomials p1(x), . . . , p5(x) are all of degree
at most 4, and they all belong to P4

Z3
. Thus,

U = Span
(
p1(x), . . . , p5(x)

)
is a subspace of P4

Z3
. We know that

A = {1, x , x2, x3, x4}

is a basis of P4
Z3

. The coordinate vectors of p1(x), . . . , p5(x) with
respect to the basis A are as follows (next slide):



Example 4.4.12
Consider the following polynomials in PZ3 :

p1(x) = x4 + 2;
p2(x) = x3 + x2;
p3(x) = x4 + x3 + x2 + 2;

p4(x) = 2x4 + x3 + x2 + 1;
p5(x) = 2x + 1.

Set U := Span
(
p1(x), . . . , p5(x)

)
. Find a basis B of U. What is

dim(U)? For each i ∈ {1, . . . , 5} s.t. pi(x) is not in the basis B,
express pi(x) as a linear combination of the basis vectors in B.

Solution. Note that polynomials p1(x), . . . , p5(x) are all of degree
at most 4, and they all belong to P4

Z3
. Thus,

U = Span
(
p1(x), . . . , p5(x)

)
is a subspace of P4

Z3
. We know that

A = {1, x , x2, x3, x4}

is a basis of P4
Z3

. The coordinate vectors of p1(x), . . . , p5(x) with
respect to the basis A are as follows (next slide):



Example 4.4.12
Consider the following polynomials in PZ3 :

p1(x) = x4 + 2;
p2(x) = x3 + x2;
p3(x) = x4 + x3 + x2 + 2;

p4(x) = 2x4 + x3 + x2 + 1;
p5(x) = 2x + 1.

Set U := Span
(
p1(x), . . . , p5(x)

)
. Find a basis B of U. What is

dim(U)? For each i ∈ {1, . . . , 5} s.t. pi(x) is not in the basis B,
express pi(x) as a linear combination of the basis vectors in B.

Solution (continued). Reminder: A = {1, x , x2, x3, x4}.[
p1(x)

]
A =

[
2 0 0 0 1

]T ;[
p2(x)

]
A =

[
0 0 1 1 0

]T ;[
p3(x)

]
A =

[
2 0 1 1 1

]T ;[
p4(x)

]
A =

[
1 0 1 1 2

]T ;[
p5(x)

]
A =

[
1 2 0 0 0

]T .



Solution (continued). Reminder: A = {1, x , x2, x3, x4}.

We form the matrix

A =
[ [

p1(x)
]

A
. . .

[
p5(x)

]
A

]
=

 2 0 2 1 1
0 0 0 0 2
0 1 1 1 0
0 1 1 1 0
1 0 1 2 0

 ,

and by row reducing, we obtain the following (pivot columns are
in red, and non-pivot columns are in blue):

RREF(A) =

 1 0 1 2 0
0 1 1 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 .

We see that the pivot columns of A are its first, second, and fifth
column. Therefore, C :=

{ [
p1(x)

]
A ,

[
p2(x)

]
A ,

[
p5(x)

]
A

}
is

a basis of Col(A) = Span
( [

p1(x)
]

A , . . . ,
[

p5(x)
]

A

)
.

Consequently, B :=
{

p1(x), p2(x), p5(x)
}

is a basis of
U = Span

(
p1(x), . . . , p5(x)

)
, and it follows that dim(U) = 3.



Solution (cont.). Reminder: A =
[ [

p1(x)
]

A . . .
[

p5(x)
]

A
]
,

RREF(A) =

 1 0 1 2 0
0 1 1 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 ,

B :=
{

p1(x), p2(x), p5(x)
}

is a basis of U = Span
(
p1(x), . . . , p5(x)

)
.

It remains to express p3(x) and p4(x) as a linear combination of
the vectors (polynomials) in B. First, we have that[

p3(x)
]

A
(∗)=

[
p1(x)

]
A +

[
p2(x)

]
A

(∗∗)=
[

p1(x) + p2(x)
]

A,[
p4(x)

]
A

(∗)= 2
[

p1(x)
]

A+
[

p2(x)
]

A
(∗∗)=

[
2p1(x) + p2(x)

]
A,

where both instances of (*) were obtained from the matrix
RREF(A), and both instances of (**) follow from the fact that[

·
]

A : P4
Z3

→ Z5
3 is linear (because it is an isomorphism). Since[

·
]

A is also one-to-one (again, because it is an isomorphism), we
get that

p3(x) = p1(x) + p2(x), p4(x) = 2p1(x) + p2(x),
and we are done. □



Solution (cont.). Reminder: A =
[ [

p1(x)
]

A . . .
[

p5(x)
]

A
]
,

RREF(A) =

 1 0 1 2 0
0 1 1 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 ,

B :=
{

p1(x), p2(x), p5(x)
}

is a basis of U = Span
(
p1(x), . . . , p5(x)

)
.

It remains to express p3(x) and p4(x) as a linear combination of
the vectors (polynomials) in B. First, we have that[

p3(x)
]

A
(∗)=

[
p1(x)

]
A +

[
p2(x)

]
A

(∗∗)=
[

p1(x) + p2(x)
]

A,[
p4(x)

]
A

(∗)= 2
[

p1(x)
]

A+
[

p2(x)
]

A
(∗∗)=

[
2p1(x) + p2(x)

]
A,

where both instances of (*) were obtained from the matrix
RREF(A), and both instances of (**) follow from the fact that[

·
]

A : P4
Z3

→ Z5
3 is linear (because it is an isomorphism). Since[

·
]

A is also one-to-one (again, because it is an isomorphism), we
get that

p3(x) = p1(x) + p2(x), p4(x) = 2p1(x) + p2(x),
and we are done. □



Example 4.4.14
Consider the following polynomials in P3

Z3
:

p1(x) = x3 + 1;
p2(x) = 2x3 + 2;

p3(x) = x2 + 2x + 1
p4(x) = 2x3 + x2 + 2x .

Find a basis BU of U := Span
(
p1(x), p2(x), p3(x), p4(x)

)
, extend it

to a basis B of P3
Z3

, and for each i ∈ {1, 2, 3, 4} s.t. pi(x) /∈ B,
express pi(x) as a linear combination of the basis vectors in B.

Solution.

We know that A := {1, x , x2, x3} is a basis of P3
Z3

, and
we let V be the image of U under the isomorphism

[
·

]
A.

Further, we consider the standard basis
E4 = {e1, e2, e3, e4} =

{ [
1

]
A ,

[
x

]
A ,

[
x2 ]

A ,
[

x3 ]
A

}
of Z4

3. We now form the 4 × 8 matrix C whose columns are the
coordinate vectors of the polynomials

p1(x), p2(x), p3(x), p4(x), 1, x , x2, x3

with respect to the basis A.



Example 4.4.14
Consider the following polynomials in P3

Z3
:

p1(x) = x3 + 1;
p2(x) = 2x3 + 2;

p3(x) = x2 + 2x + 1
p4(x) = 2x3 + x2 + 2x .

Find a basis BU of U := Span
(
p1(x), p2(x), p3(x), p4(x)

)
, extend it

to a basis B of P3
Z3

, and for each i ∈ {1, 2, 3, 4} s.t. pi(x) /∈ B,
express pi(x) as a linear combination of the basis vectors in B.

Solution. We know that A := {1, x , x2, x3} is a basis of P3
Z3

,

and
we let V be the image of U under the isomorphism

[
·

]
A.

Further, we consider the standard basis
E4 = {e1, e2, e3, e4} =

{ [
1

]
A ,

[
x

]
A ,

[
x2 ]

A ,
[

x3 ]
A

}
of Z4

3. We now form the 4 × 8 matrix C whose columns are the
coordinate vectors of the polynomials

p1(x), p2(x), p3(x), p4(x), 1, x , x2, x3

with respect to the basis A.



Example 4.4.14
Consider the following polynomials in P3

Z3
:

p1(x) = x3 + 1;
p2(x) = 2x3 + 2;

p3(x) = x2 + 2x + 1
p4(x) = 2x3 + x2 + 2x .

Find a basis BU of U := Span
(
p1(x), p2(x), p3(x), p4(x)

)
, extend it

to a basis B of P3
Z3

, and for each i ∈ {1, 2, 3, 4} s.t. pi(x) /∈ B,
express pi(x) as a linear combination of the basis vectors in B.

Solution. We know that A := {1, x , x2, x3} is a basis of P3
Z3

, and
we let V be the image of U under the isomorphism

[
·

]
A.

Further, we consider the standard basis
E4 = {e1, e2, e3, e4} =

{ [
1

]
A ,

[
x

]
A ,

[
x2 ]

A ,
[

x3 ]
A

}
of Z4

3. We now form the 4 × 8 matrix C whose columns are the
coordinate vectors of the polynomials

p1(x), p2(x), p3(x), p4(x), 1, x , x2, x3

with respect to the basis A.



Example 4.4.14
Consider the following polynomials in P3

Z3
:

p1(x) = x3 + 1;
p2(x) = 2x3 + 2;

p3(x) = x2 + 2x + 1
p4(x) = 2x3 + x2 + 2x .

Find a basis BU of U := Span
(
p1(x), p2(x), p3(x), p4(x)

)
, extend it

to a basis B of P3
Z3

, and for each i ∈ {1, 2, 3, 4} s.t. pi(x) /∈ B,
express pi(x) as a linear combination of the basis vectors in B.

Solution. We know that A := {1, x , x2, x3} is a basis of P3
Z3

, and
we let V be the image of U under the isomorphism

[
·

]
A.

Further, we consider the standard basis
E4 = {e1, e2, e3, e4} =

{ [
1

]
A ,

[
x

]
A ,

[
x2 ]

A ,
[

x3 ]
A

}
of Z4

3.

We now form the 4 × 8 matrix C whose columns are the
coordinate vectors of the polynomials

p1(x), p2(x), p3(x), p4(x), 1, x , x2, x3

with respect to the basis A.



Example 4.4.14
Consider the following polynomials in P3

Z3
:

p1(x) = x3 + 1;
p2(x) = 2x3 + 2;

p3(x) = x2 + 2x + 1
p4(x) = 2x3 + x2 + 2x .

Find a basis BU of U := Span
(
p1(x), p2(x), p3(x), p4(x)

)
, extend it

to a basis B of P3
Z3

, and for each i ∈ {1, 2, 3, 4} s.t. pi(x) /∈ B,
express pi(x) as a linear combination of the basis vectors in B.

Solution. We know that A := {1, x , x2, x3} is a basis of P3
Z3

, and
we let V be the image of U under the isomorphism

[
·

]
A.

Further, we consider the standard basis
E4 = {e1, e2, e3, e4} =

{ [
1

]
A ,

[
x

]
A ,

[
x2 ]

A ,
[

x3 ]
A

}
of Z4

3. We now form the 4 × 8 matrix C whose columns are the
coordinate vectors of the polynomials

p1(x), p2(x), p3(x), p4(x), 1, x , x2, x3

with respect to the basis A.



Solution (continued). Here is the matrix C explicitly (with tiny
font and dots so that it would fit on the page):

C :=
[ [

p1(x)
]

A
. . .

[
p4(x)

]
A

[
1

]
A

[
x

]
A

[
x2

]
A

[
x3

]
A

]
.

We then have that

C =

[
1 2 1 0 1 0 0 0
0 0 2 2 0 1 0 0
0 0 1 1 0 0 1 0
1 2 0 2 0 0 0 1

]
.

By row reducing, we obtain

RREF(C) =

[
1 2 0 2 0 0 0 1
0 0 1 1 0 0 1 0
0 0 0 0 1 0 2 2
0 0 0 0 0 1 1 0

]
,

and we see that the pivot columns of C are its first, third, fifth,
and sixth column. By Proposition 3.3.23, the pivot columns of C
to the left of the vertical dotted line form a basis of V , and all the
pivot columns of C together form a basis of Z4

3.



Solution (continued). Here is the matrix C explicitly (with tiny
font and dots so that it would fit on the page):

C :=
[ [

p1(x)
]

A
. . .

[
p4(x)

]
A

[
1

]
A

[
x

]
A

[
x2

]
A

[
x3

]
A

]
.

We then have that

C =

[
1 2 1 0 1 0 0 0
0 0 2 2 0 1 0 0
0 0 1 1 0 0 1 0
1 2 0 2 0 0 0 1

]
.

By row reducing, we obtain

RREF(C) =

[
1 2 0 2 0 0 0 1
0 0 1 1 0 0 1 0
0 0 0 0 1 0 2 2
0 0 0 0 0 1 1 0

]
,

and we see that the pivot columns of C are its first, third, fifth,
and sixth column.

By Proposition 3.3.23, the pivot columns of C
to the left of the vertical dotted line form a basis of V , and all the
pivot columns of C together form a basis of Z4

3.



Solution (continued). Here is the matrix C explicitly (with tiny
font and dots so that it would fit on the page):

C :=
[ [

p1(x)
]

A
. . .

[
p4(x)

]
A

[
1

]
A

[
x

]
A

[
x2

]
A

[
x3

]
A

]
.

We then have that

C =

[
1 2 1 0 1 0 0 0
0 0 2 2 0 1 0 0
0 0 1 1 0 0 1 0
1 2 0 2 0 0 0 1

]
.

By row reducing, we obtain

RREF(C) =

[
1 2 0 2 0 0 0 1
0 0 1 1 0 0 1 0
0 0 0 0 1 0 2 2
0 0 0 0 0 1 1 0

]
,

and we see that the pivot columns of C are its first, third, fifth,
and sixth column. By Proposition 3.3.23, the pivot columns of C
to the left of the vertical dotted line form a basis of V , and all the
pivot columns of C together form a basis of Z4

3.



Solution (continued). Reminder:

RREF(C) =

[
1 2 0 2 0 0 0 1
0 0 1 1 0 0 1 0
0 0 0 0 1 0 2 2
0 0 0 0 0 1 1 0

]
,

So,
{ [

p1(x)
]

A ,
[

p3(x)
]

A

}
is a basis of V , whereas{ [

p1(x)
]

A ,
[

p3(x)
]

A ,
[

1
]

A ,
[

x
]

A

}
is a basis of Z4

3 that
extends our basis of V .

Since
[

·
]

A is an isomorphism, we see that

BU :=
{

p1(x), p3(x)
}

is a basis of U, and that

B :=
{

p1(x), p3(x), 1, x
}

is a basis of P3
Z3

that extends our basis BU of U. Finally, we can
read off from RREF(C) that

p2(x) = 2p1(x),
p4(x) = 2p1(x) + p3(x),

and we are done. □



Solution (continued). Reminder:

RREF(C) =

[
1 2 0 2 0 0 0 1
0 0 1 1 0 0 1 0
0 0 0 0 1 0 2 2
0 0 0 0 0 1 1 0

]
,

So,
{ [

p1(x)
]

A ,
[

p3(x)
]

A

}
is a basis of V , whereas{ [

p1(x)
]

A ,
[

p3(x)
]

A ,
[

1
]

A ,
[

x
]

A

}
is a basis of Z4

3 that
extends our basis of V . Since

[
·

]
A is an isomorphism, we see that

BU :=
{

p1(x), p3(x)
}

is a basis of U, and that

B :=
{

p1(x), p3(x), 1, x
}

is a basis of P3
Z3

that extends our basis BU of U.

Finally, we can
read off from RREF(C) that

p2(x) = 2p1(x),
p4(x) = 2p1(x) + p3(x),

and we are done. □



Solution (continued). Reminder:

RREF(C) =

[
1 2 0 2 0 0 0 1
0 0 1 1 0 0 1 0
0 0 0 0 1 0 2 2
0 0 0 0 0 1 1 0

]
,

So,
{ [

p1(x)
]

A ,
[

p3(x)
]

A

}
is a basis of V , whereas{ [

p1(x)
]

A ,
[

p3(x)
]

A ,
[

1
]

A ,
[

x
]

A

}
is a basis of Z4

3 that
extends our basis of V . Since

[
·

]
A is an isomorphism, we see that

BU :=
{

p1(x), p3(x)
}

is a basis of U, and that

B :=
{

p1(x), p3(x), 1, x
}

is a basis of P3
Z3

that extends our basis BU of U. Finally, we can
read off from RREF(C) that

p2(x) = 2p1(x),
p4(x) = 2p1(x) + p3(x),

and we are done. □


