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An application of isomorphisms: transforming polynomials and
matrices into vectors
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@ The effect of a linear function on linearly independent and
spanning sets

Theorem 4.2.11

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Let uy,...,ux € U, and set

U’ := Span(uy, ..., uk). Then all the following hold:

@ U’ is a subspace of U, and f[U] is a subspace of V;

@ f[U'] = f[Span(uy,...,ux)] =Span(f(u1),...,f(uk)), ie.
vectors f(uy), ..., f(ux) span f[U'] = f[Span(uy,...,ux)];

@ dim(f[U']) <dim(U’) < k.
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Theorem 4.2.11

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Let ug,...,ux € U, and set
U’ :=Span(uy, ..., uk). Then all the following hold:

@ U’ is a subspace of U, and f[U] is a subspace of V;

Proof of (a).



Theorem 4.2.11

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Let ug,...,ux € U, and set
U’ :=Span(uy, ..., uk). Then all the following hold:

@ U’ is a subspace of U, and f[U] is a subspace of V;

Proof of (a). The fact that U’ is a subspace of U follows
immediately from Theorem 3.1.11, and the fact that f[U'] is a
subspace of V follows from 4.2.3(a). This proves (a).
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Theorem 4.2.11

Let U and V be vector spaces over a field F, and let f : U — V be

a linear function. Let uy,...,ux € U, and set

U’ :=Span(uy, ..., uk). Then all the following hold:

@ f[U'] = f[Span(uy,...,ux)] =Span(f(u1),...,f(uk)), ie.
vectors f(u1), ..., f(ug) span f[U'] = f[Span(uy, ..., uk)];

Proof of (b).

Span(f(ul), ceey f(uk)) = {alf(ul) —+ - +akf(uk) ‘ a1,...,0K € IF}
= {f(a1u1+~~~+akuk)|a1,...,ozk€IF}

= {f(u) |ue Span(u1,---7uk)}

= f[Span(ul,...7uk)] = f[U],

where (*) follows from the linearity of the f (and more precisely,
from Prop. 4.1.5), and (**) follows from the definition of span.



Theorem 4.2.11

Let U and V be vector spaces over a field F, and let f : U — V be

a linear function. Let ug,...,ux € U, and set

U’ := Span(uy,...,ux). Then all the following hold:

@ U'is a subspace of U, and f[U'] is a subspace of V;

@ f[U'] = f[Span(uy,...,ux)] =Span(f(u1),...,f(uk)), ie.
vectors f(uy),. .., f(ux) span f[U'] = f[Span(uy,...,uk)];

@ dim(f[U]) < dim(U') < k.

Proof of (c).
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Proof of (c). By hypothesis, {uy,...,ux} is a spanning set of U’
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Proof of (c). By hypothesis, {uy,...,ux} is a spanning set of U’
So, by Theorem 3.2.14, some subset of that spanning set, say
{uj,...,u;, } (with1 < i <--- <ip<k)is a basis of U'.
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dim(U’) = m < k.
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a linear function. Let ug,...,ux € U, and set
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{f(uy),...,f(u;,)} is a basis of f[U'],
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Let U and V be vector spaces over a field F, and let f : U — V be

a linear function. Let ug,...,ux € U, and set

U’ := Span(uy,...,ux). Then all the following hold:

@ U’ is a subspace of U, and f[U] is a subspace of V;

@ f[U'] = f[Span(uy,...,ux)] =Span(f(u1),...,f(uk)), ie.
vectors f(uy),. .., f(ux) span f[U'] = f[Span(uy,...,uk)];

@ dim(f[U']) <dim(U’) < k.

Proof of (c). By hypothesis, {uy,...,ux} is a spanning set of U’
So, by Theorem 3.2.14, some subset of that spanning set, say
{uj,...,u; } (with1 < i <--- <ipn<k)is a basis of U'. So,
dim(U’) = m < k. But now {uj,...,u;,} is a spanning set of U’
So, by part (b) applied to the set {uj,...,u; }, we get that
{f(uy),...,f(uj,)} is a spanning set of f[U']. We now apply
Theorem 3.2.14 again, and we deduce that some subset of
{f(uy),...,f(u;,)} is a basis of f[U'], and so dim(f[U']) < m. [




Theorem 4.2.11

Let U and V be vector spaces over a field F, and let f : U — V be

a linear function. Let uy,...,ux € U, and set

U’ :=Span(uy, ..., uk). Then all the following hold:

@ U’ is a subspace of U, and f[U] is a subspace of V;

@ f[U'] = f[Span(uy,...,uk)] =Span(f(u1),...,f(uk)), ie.
vectors f(u1), ..., f(ug) span f[U'] = f[Span(uy, ..., uk)];

@ dim(f[U]) <dim(U) < k.




Corollary 4.2.12

Let U and V be vector spaces over a field F, let f : U — V be a

linear function, and let {uy,...,ux} be a spanning set of U. Then
Im(f) = Span(f(u1),...,f(ux)) and

rank(f) = dim(Span (f(u1), ..., f(ux)) ) < k.

Proof.
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Let U and V be vector spaces over a field F, let f : U — V be a
linear function, and let {uy,...,ux} be a spanning set of U. Then

Im(f) = Span(f(u1),...,f(ux)) and
rank(f) = dim(Span (f(u1), ..., f(ux)) ) < k.

Proof. By hypothesis, U = Span(uy, ..., uk).



Corollary 4.2.12

Let U and V be vector spaces over a field F, let f : U — V be a

linear function, and let {uy,...,ux} be a spanning set of U. Then
Im(f) = Span(f(u1),...,f(ux)) and

rank(f) = dim(Span (f(u1), ..., f(ux)) ) < k.

Proof. By hypothesis, U = Span(uy, ..., uk). So, by
Theorem 4.2.11(b), we have that
Im(f) = f[U] = Span(f(u1), ..., f(uk)),



Corollary 4.2.12

Let U and V be vector spaces over a field F, let f : U — V be a

linear function, and let {uy,...,ux} be a spanning set of U. Then
Im(f) = Span(f(u1),...,f(ux)) and

rank(f) = dim(Span (f(u1), ..., f(ux)) ) < k.

Proof. By hypothesis, U = Span(uy, ..., uk). So, by
Theorem 4.2.11(b), we have that

Im(f) = f[U] = Span(f(u1),...,f(ux)), and by
Theorem 4.2.11(c), we have that

rank(f) = dim(Im(f)) = dim(f[U]) < k. O



Theorem 4.2.13
Let U and V be vector spaces over a field F, let f : U — V be a

linear function, and let uy,...,u, € U. Then all the following

hold:

@ if f is one-to-one and vectors ug, ..., uy are linearly
independent in U, then vectors f(u1),...,f(uk) are linearly
independent in V/;

@ if vectors f(uy),...,f(uk) are linearly independent in V/, then
vectors ug, ..., U, are linearly independent in U;

@ if f is onto and vectors uy,...,u, span U, then vectors
f(u1), ..., f(uk) span V;

@ if f is one-to-one and vectors f(uy), ..., f(ux) span V, then
vectors ug, ..., U, span U.

@ Proof: Lecture Notes.

@ Informal summary: next slide.




@ Theorem 4.2.13 (schematically and informally):

Uy

if f is 1-1 .
(a)-(b) uy,...,uy are - f(ay),..., f(ug) are
linearly independent l<: linearly independent
always
if f is onto
> . .
(c)-(d) up,...,u span U f(ur),..., f(ug) span V

—
if fis 1-1



@ Dimension considerations:

A B
e As we know, for any function f : A — B, where A and B are
finite sets, the following hold:
o if f is one-to-one, then |A| < |B
e if f is onto, then |A| > |B|;
e if f is a bijection, then |A| = |B|.
(Actually, the above is true even if we allow A and B to be
infinite, but to make sense of the statement, we would need
infinite cardinals. We omit the details.)
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@ Dimension considerations:

A B
e As we know, for any function f : A — B, where A and B are
finite sets, the following hold:
o if f is one-to-one, then |A| < |B
e if f is onto, then |A| > |B|;
o if f is a bijection, then |A| = |B].
(Actually, the above is true even if we allow A and B to be
infinite, but to make sense of the statement, we would need
infinite cardinals. We omit the details.)
o In the case of linear functions, Theorem 4.2.14 (next slide)
gives us a very similar statement, only involving dimension
(rather than cardinality) of the domain and codomain.
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Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);
@ if f is onto, then dim(U) > dim(V);
@ if f is an isomorphism, then dim(U) = dim(V).

Proof.
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@ if f is one-to-one, then dim(U) < dim(V);
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@ if f is an isomorphism, then dim(U) = dim(V).

Proof. Obviously, (a) and (b) together imply (c).




Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);
@ if f is onto, then dim(U) > dim(V);
@ if f is an isomorphism, then dim(U) = dim(V).

Proof. Obviously, (a) and (b) together imply (c). So, it is enough
to prove (a) and (b).




Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);

Proof (continued). (a) We prove the contrapositive: we assume
that dim(U) > dim(V) (and in particular, dim(V) is finite), and
we prove that f is not one-to-one.
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Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);

Proof (continued). (a) We prove the contrapositive: we assume
that dim(U) > dim(V) (and in particular, dim(V) is finite), and
we prove that f is not one-to-one.

Set n:=dim(V).
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Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);

Proof (continued). (a) We prove the contrapositive: we assume

that dim(U) > dim(V) (and in particular, dim(V) is finite), and

we prove that f is not one-to-one.

Set n :=dim(V). Since dim(U) > dim(V'), we know that U has a

linearly independent set of size greater than n.

@ Indeed, if U is finite-dimensional, then any one of its bases is

a linearly independent set of size dim(U) > n, and if U is
infinite-dimensional, then Proposition 3.2.18 guarantees that
U has linearly independent sets of any finite size.

So, fix a linearly independent set {uy,...,ux} of U, with k > n.



Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);

Proof (continued). (a) We prove the contrapositive: we assume
that dim(U) > dim(V) (and in particular, dim(V) is finite), and
we prove that f is not one-to-one.

Set n :=dim(V). Since dim(U) > dim(V'), we know that U has a
linearly independent set of size greater than n.
@ Indeed, if U is finite-dimensional, then any one of its bases is

a linearly independent set of size dim(U) > n, and if U is
infinite-dimensional, then Proposition 3.2.18 guarantees that
U has linearly independent sets of any finite size.

So, fix a linearly independent set {uy,...,ux} of U, with k > n.

Since dim(V) = n, Theorem 3.2.17(a) guarantees that the set

{f(u1),...,f(uk)} is linearly dependent. But now

Theorem 4.2.13(a) guarantees that f is not one-to-one.
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Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is onto, then dim(U) > dim(V);

Proof (continued). (b) Assume that f is onto; we must show that
dim(U) > dim(V).
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Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is onto, then dim(U) > dim(V);

Proof (continued). (b) Assume that f is onto; we must show that
dim(U) > dim(V). We may assume that n := dim(U) is finite, for
otherwise, we are done.
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Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is onto, then dim(U) > dim(V);

Proof (continued). (b) Assume that f is onto; we must show that
dim(U) > dim(V). We may assume that n := dim(U) is finite, for
otherwise, we are done. We must show that dim(V) < n.
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Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is onto, then dim(U) > dim(V);

Proof (continued). (b) Assume that f is onto; we must show that
dim(U) > dim(V). We may assume that n := dim(U) is finite, for
otherwise, we are done. We must show that dim(V) < n.

Fix any basis {us,...,u,} of U.



Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is onto, then dim(U) > dim(V);

Proof (continued). (b) Assume that f is onto; we must show that
dim(U) > dim(V). We may assume that n := dim(U) is finite, for
otherwise, we are done. We must show that dim(V) < n.

Fix any basis {us,...,u,} of U. In particular, vectors uy,...,u,
span U, and so since f is onto, Theorem 4.2.13(c) guarantees that
vectors f(uy),...,f(u,) span V.



Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is onto, then dim(U) > dim(V);

Proof (continued). (b) Assume that f is onto; we must show that
dim(U) > dim(V). We may assume that n := dim(U) is finite, for
otherwise, we are done. We must show that dim(V) < n.

Fix any basis {us,...,u,} of U. In particular, vectors uy,...,u,
span U, and so since f is onto, Theorem 4.2.13(c) guarantees that
vectors f(uy),...,f(u,) span V. But then by Theorem 3.2.14,
some subset of {f(u1),...,f(u,)} is a basis of V, and it follows
that dim(V) < n. O



Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);
@ if f is onto, then dim(U) > dim(V);
@ if f is an isomorphism, then dim(U) = dim(V).
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@ Linear functions and bases

@ Reminder:

Theorem 1.10.5

Let IF be a field, and let a3, ...,a,, be any vectors in F”. Then
there exists a unique linear function f : F™ — " that satisfies
f(e;) =ay,....f(ey) = an,, where eyq,..., e, are the standard

basis vectors of F"”. Moreover, this linear function f is given by
f(x) = Ax for all x € F™, where A = [ ap ... apny ]




@ Linear functions and bases

@ Reminder:

Theorem 1.10.5

Let IF be a field, and let a3, ...,a,, be any vectors in F”. Then
there exists a unique linear function f : F™ — " that satisfies
f(e;) =ay,....f(ey) = an,, where eyq,..., e, are the standard
basis vectors of F"”. Moreover, this linear function f is given by
f(x) = Ax for all x € F™, where A = [ ap ... apg ]

@ Our next goal is to generalize Theorem 1.10.5 to linear
functions f : U — V/, where U and V are vector spaces over a
field IF, and U is finite-dimensional.

o Instead of using the standard basis £, = {e1,...,en}, we will
use an arbitrary basis of U.




@ Suppose that V is a non-trivial, finite-dimensional vector
space over a field F, and that B = {v1,...,v,} is a basis of V.



@ Suppose that V is a non-trivial, finite-dimensional vector
space over a field F, and that B = {v1,...,v,} is a basis of V.

@ By Theorem 3.2.7, every vector of V can be written as linear
combination of the vectors vi,...,v, in a unique way, that is,
Yv eV dlag,...,a, € Fs.t.

V = 1V1+ -+ QpVp,

and the coordinate vector of v with respect to the basis B is

defined to be
aq



@ Suppose that V is a non-trivial, finite-dimensional vector
space over a field F, and that B = {v1,...,v,} is a basis of V.

@ By Theorem 3.2.7, every vector of V can be written as linear
combination of the vectors vi,...,v, in a unique way, that is,
Yv eV dlag,...,a, € Fs.t.

V = 1V1+ -+ QpVp,

and the coordinate vector of v with respect to the basis B is

defined to be
aq

[v] =

Qn

@ As our next proposition shows, { . }B :V = F"is an
isomorphism.

o It essentially allows us to “translate” vectors of an
n-dimensional vector space (n # 0) into vectors in F".



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {v1,...,v,} is a basis of V. Then { : ]B V= F"
is an isomorphism.

Proof.



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {v1,...,v,} is a basis of V. Then { : ]B V= F"
is an isomorphism.

Proof. We start by proving that [ . }B is linear.

1. Fixx,y € V. WTs[x+y]B:[x}B+[y}B.
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Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {v1,...,v,} is a basis of V. Then { : ]B V= F"
is an isomorphism.

Proof. We start by proving that [ . }B is linear.
L Fixx,ye V. WTS | x+y }B: [ x }B+ K }B. Set

[x],=[er - anrand[y} =[5 ... 5,,]T
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Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {v1,...,v,} is a basis of V. Then { : ]B V= F"
is an isomorphism.

Proof. We start by proving that [ . }B is linear.
L Fixx,ye V. WTS | x+y }B: [ x }B+ K }B. Set

[X}B:{al an]Tand[y}B:[ﬁl 5,,}7-.
Then x =aivi + -+ apv, and y = S1vi + - - - + Bpvp;
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xX+y = (a1+ﬁl)vl+"'+(an+/6n)vm



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {v1,...,v,} is a basis of V. Then { : ]B V= F"
is an isomorphism.

Proof. We start by proving that [ . }B is linear.
L Fixx,ye V. WTS | x+y }B: [ x }B+ K }B. Set

[X}B:{al an]Tand[y}B:[ﬁl 5,,}7-.
Then x = vy + -+ apv, and y = S1vy + - - + Bpvi;
consequently,

xX+y = (a1+ﬁl)vl+"'+(an+/6n)vm

and SO{X—FY}B:[OJl‘f‘Bl oo ap+ By }T



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {v1,...,v,} is a basis of V. Then { : ]B V= F"
is an isomorphism.

Proof. We start by proving that [ . }B is linear.
L Fixx,ye V. WTS | x+y }B: [ x }B+ K }B. Set

[X}B:{al an]Tand[y}B:[ﬁl 5,,}7-.
Then x = vy + -+ apv, and y = S1vy + - - + Bpvi;
consequently,

xX+y = (a1+ﬁl)vl+"'+(an+/6n)vm

T
and so [ x+y }B: [ a1 +pP1 ... ap+Bn } . We now have
that (next slide):



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { . ]B V="
is an isomorphism.

Proof (continued).
[ a1+ B
[ x+y ]B =
| an+ Bn
[ B1
L &n Bn




Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { . ]B V="

is an isomorphism.

Proof (continued). Similarly (details: Lecture Notes):

2. V¥xeV,acl: [ax}B:a{x]B



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { . ]B V="
is an isomorphism.

Proof (continued). Similarly (details: Lecture Notes):

2. V¥xeV,acl: [ax}B:a{x]B

So, [ . }B: V — F"is linear.



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { : ]B V"
is an isomorphism.

Proof (continued). It remains to show that [ . }B is a bijection,
i.e. that it is one-to-one and onto F".
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Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { : ]B V"

is an isomorphism.

Proof (continued). It remains to show that [ . }B is a bijection,

i.e. that it is one-to-one and onto [F".

Since V and F” are both n dimensional, Corollary 4.2.10
guarantees that f is one-to-one iff f is onto F”".



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { : ]B V"
is an isomorphism.

Proof (continued). It remains to show that [ . }B is a bijection,
i.e. that it is one-to-one and onto F".
Since V and F” are both n dimensional, Corollary 4.2.10

guarantees that f is one-to-one iff f is onto F”. So, it is enough to
show that f is onto F”".



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { : ]B V"
is an isomorphism.

Proof (continued). It remains to show that [ . }B is a bijection,

i.e. that it is one-to-one and onto [F".

Since V and F” are both n dimensional, Corollary 4.2.10
guarantees that f is one-to-one iff f is onto F”. So, it is enough to
show that f is onto F”".

Fix[al an]TEF”.



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { : ]B V"
is an isomorphism.

Proof (continued). It remains to show that [ . }B is a bijection,

i.e. that it is one-to-one and onto [F".

Since V and F” are both n dimensional, Corollary 4.2.10
guarantees that f is one-to-one iff f is onto F”. So, it is enough to
show that f is onto F”".

T
Fix[al an] € F". Set v:= qyvi + -+ + a,v,.



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { : ]B V"
is an isomorphism.

Proof (continued). It remains to show that [ . }B is a bijection,

i.e. that it is one-to-one and onto [F".

Since V and F” are both n dimensional, Corollary 4.2.10
guarantees that f is one-to-one iff f is onto F”. So, it is enough to
show that f is onto F”".

T
Fix[al an] e F". Set v:=aivi +---+ a,v,. Then

(v],=[ar o an]”



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { : ]B V"
is an isomorphism.

Proof (continued). It remains to show that [ . }B is a bijection,
i.e. that it is one-to-one and onto F".

Since V and F” are both n dimensional, Corollary 4.2.10
guarantees that f is one-to-one iff f is onto F”. So, it is enough to
show that f is onto F”".

T
Fix[al an] e F". Set v:=aivi +---+ a,v,. Then

[ v }B: { a1 ... Qp }T. So, { . }B is onto F". This
completes the argument. [J



@ Reminder:

Theorem 1.10.5

Let IF be a field, and let ay,...,a, be any vectors in F". Then
there exists a unique linear function f : F™ — F” that satisfies
f(e1) =ai,...,f(em) = am, where ey, ..., ey are the standard

basis vectors of F. Moreover, this linear function f is given by
f(x) = Ax for all x € F™, where A = [ a; ... apy ]




@ Reminder:

Theorem 1.10.5

Let IF be a field, and let ay,...,a, be any vectors in F". Then
there exists a unique linear function f : F™ — F” that satisfies
f(e1) =ai,...,f(em) = am, where ey, ..., ey are the standard
basis vectors of F. Moreover, this linear function f is given by
f(x) = Ax for all x € F™, where A = [ a; ... apy ]

o Let's generalize this!




Theorem 4.3.2

Let U and V be vector spaces over a field IF, and assume that U is
finite-dimensional. Let B = {uy,...,u,} be a basis of U, and let
Vi,...,V, € V.7 Then there exists a unique linear function
f:U— Vst f(uy) =vy,...,f(u,) = v, Moreover, if the vector

space U is non-trivial (i.e. n # 0), then this unique linear function
f : U — V satisfies the following: for all u € U, we have that

flu) = agvi+ -+ apvp,

-
where [ u L’s = [ a1 ... Qp } . On the other hand, if U is
trivial (i.e. U = {0}),® then f : U — V is given by f(0) = 0.

“Here, v1, ..., v, are arbitrary vectors in V. They are not necessarily
pairwise distinct.
PNote that in this case, we have that n =0 and B = .




Proof.



Proof. Suppose first that the vector space U is trivial, i.e. n =0
and U = {0}.



Proof. Suppose first that the vector space U is trivial, i.e. n =0
and U = {0}. Then the function f : U — V given by f(0) =0 is
obviously linear,



Proof. Suppose first that the vector space U is trivial, i.e. n =0
and U = {0}. Then the function f : U — V given by f(0) =0 is
obviously linear, and moreover, it vacuously satisfies

f(uy) =vi,...,f(u,) = v, (because n =0, and so both
ui,...,u, and vq,...,v, are empty lists of vectors).



Proof. Suppose first that the vector space U is trivial, i.e. n =0
and U = {0}. Then the function f : U — V given by f(0) =0 is
obviously linear, and moreover, it vacuously satisfies

f(uy) =vi,...,f(u,) = v, (because n =0, and so both
ui,...,u, and vq,...,v, are empty lists of vectors). The
uniqueness of f follows from Proposition 4.1.6.



Proof. Suppose first that the vector space U is trivial, i.e. n =0
and U = {0}. Then the function f : U — V given by f(0) =0 is
obviously linear, and moreover, it vacuously satisfies

f(uy) =vi,...,f(u,) = v, (because n =0, and so both
ui,...,u, and vq,...,v, are empty lists of vectors). The
uniqueness of f follows from Proposition 4.1.6.

From now on, we assume that the vector space U is non-trivial, i.e.
that n # 0.



Proof. Suppose first that the vector space U is trivial, i.e. n =0
and U = {0}. Then the function f : U — V given by f(0) =0 is
obviously linear, and moreover, it vacuously satisfies

f(uy) =vi,...,f(u,) = v, (because n =0, and so both
ui,...,u, and vq,...,v, are empty lists of vectors). The
uniqueness of f follows from Proposition 4.1.6.

From now on, we assume that the vector space U is non-trivial, i.e.
that n # 0. We must prove the existence and the uniqueness of
the linear function f satisfying the required properties.



Proof (continued). Existence. Let f : U — V be defined as in the
statement of the theorem, i.e. for all u € U, we set

flu) = avi+--+ apvy,

Where[u}B:{al ... Qp }T.



Proof (continued). Existence. Let f : U — V be defined as in the
statement of the theorem, i.e. for all u € U, we set

flu) = avi+--+ apvy,
T -
where [ u }B = [ a1 ... Qp } . Note that this means that for
all a,...,a, € F, we have that

flajug + - +apuy) = avi+ -+ apv,.



Proof (continued). Existence. Let f : U — V be defined as in the
statement of the theorem, i.e. for all u € U, we set

flu) = avi+--+ apvy,
T
where [ u }B = [ a1 ... Qp } . Note that this means that for
all a,...,a, € F, we have that
flajug + - +apuy) = avi+ -+ apv,.

Let us show that f is linear and satisfies
f(u) =vi,...,f(uy) = v,.



Proof (continued). Existence. Let f : U — V be defined as in the
statement of the theorem, i.e. for all u € U, we set

f(u) = aivi+--+ apvp,
T
where [ u }B = [ a1 ... Qp } . Note that this means that for
all a,...,a, € F, we have that
flajug + - +apuy) = avi+ -+ apv,.

Let us show that f is linear and satisfies
f(u) = vi,...,f(u,) = v,. For the latter, we note that for all
i€{l,...,n}, we have that

f(uj)) = f(Ouy+---+0uj—1 + 1u; + Ouj1 + - - - + Ouy,)
= 0Ovi+---+0vi1+1vi+0vip1 + -+ 0vp

= Vj.

This proves that f(uy) =vy,...,f(u,) = v,.



Proof (continued). Let us now show that f is linear. We verify that
f satisfies the two axioms from the definition of a linear function.



Proof (continued). Let us now show that f is linear. We verify that
f satisfies the two axioms from the definition of a linear function.

1. Fixx,y € U. WTS f(x +y) = f(x) + f(y).



Proof (continued). Let us now show that f is linear. We verify that
f satisfies the two axioms from the definition of a linear function.

1. Fix x,y € U. WTS f(x—i;y) = f(x) + f(y). Set .
[x],=[a oo an] ond[y], =[5 . 8]



Proof (continued). Let us now show that f is linear. We verify that
f satisfies the two axioms from the definition of a linear function.

1. Fix x,y € U. WTS f(x+y) = f(x) + f(y). Set
[X}B:{al an}Tand[y}B:[Bl BH}T.We

T
thenhavethat[x—l—y}B:{m%—ﬁl a,,—l—ﬁn} ,



Proof (continued). Let us now show that f is linear. We verify that
f satisfies the two axioms from the definition of a linear function.

1. Fix x,y € U. WTS f(x+y) = f(x) + f(y). Set

[X}B:{al an}Tand[y}B:[Bl BH}T.We
thenhavethat[x—l—y}B:{m%—ﬁl an—i—ﬁn}T,and
we see that

f(x+y) © (a1 + B1)vi+ -+ (an + Bn)Vn

= (alvl +--+ anvn) + (ﬁlvl + -+ ﬁnvn)
(%)

where both (*) and (**) follow from the construction of f.



Proof (continued). 2. Fixu € U and o € F. WTS f(au) = af(u).



Proof (continued). 2. Fixu € U and o € F. WTS f(au) = af(u).
T
Set[u}B:[al oz,,} .



Proof (continued). 2. Fixu € U and o € F. WTS f(au) = af(u).
T
Set[u}B:[al oz,,} . Then

[ou] =[oar ... aay ],



Proof (continued). 2. Fixu € U and o € F. WTS f(au) = af(u).
T
Set[u}B:[al oz,,} . Then

[au}gz{aal aan}T, and we see that
f(au) “ (op)vy + - + (n)vp
= afoqvi+ -+ apvp)
= af(u),

where both (*) and (**) follow from the construction of f.



Proof (continued). 2. Fixu € U and o € F. WTS f(au) = af(u).
T
Set[u}B:[al oz,,} . Then

T
[au}gz{aal aan} , and we see that
f(au) © (aag)vy + -+ + (can)vy
= afavi+ -+ apvp)

= af(u)

where both (*) and (**) follow from the construction of f.

By 1. and 2., we see that f is linear. This completes the proof of
existence.



Proof (continued). Uniqueness. Let fi,f, : U — V be linear
functions that satisfy f1(uy) = vi,...,fi(u,) = v, and

fg(ul) = Vi,..., f2(u,,) = Vj. WTS fl = f2



Proof (continued). Uniqueness. Let fi,f, : U — V be linear
functions that satisfy f1(uy) = vi,...,fi(u,) = v, and

f(uy) =vi,...,H(u,) =v,. WTS fi = . Fixue U. WTS
fl(u) = fz(u).



Proof (continued). Uniqueness. Let fi,f, : U — V be linear
functions that satisfy f1(uy) = vi,...,fi(u,) = v, and

f(uy) =vi,...,H(u,) =v,. WTS fi = . Fixue U. WTS
T
fi(u) = fr(u). Set { u ]B: { a1 ... Qp } .



Proof (continued). Uniqueness. Let fi,f, : U — V be linear

functions that satisfy f1(uy) = vi,...,fi(u,) = v, and
f(uy) =vi,...,H(u,) =v,. WTS fi = . Fixue U. WTS
T
fi(u) = fr(u). Set { u ]B: { a1 ... Qp } . Then
filu) = Alaur + -+ asup)
by the linearity of f
= aifi(ur) + -+ a,fi(u,) (and more precisely,
_by Proposition 4.1.5)
Vit ay because
- r Au) = v, Aup) = v
because
T BBl ) = ) v
by the linearity of £,
= fHaug + -+ ayuy) (and more precisely,

by Proposition 4.1.5)
= f(u).

Thus, f; = f,. This proves uniqueness. [



Theorem 4.3.2

Let U and V be vector spaces over a field IF, and assume that U is
finite-dimensional. Let B = {uy,...,u,} be a basis of U, and let
Vi,...,V, € V.7 Then there exists a unique linear function
f:U— Vst f(uy) =vy,...,f(u,) = v, Moreover, if the vector

space U is non-trivial (i.e. n # 0), then this unique linear function
f : U — V satisfies the following: for all u € U, we have that

flu) = agvi+ -+ apvp,

-
where [ u L’s = [ a1 ... Qp } . On the other hand, if U is
trivial (i.e. U = {0}),® then f : U — V is given by f(0) = 0.

“Here, v1, ..., v, are arbitrary vectors in V. They are not necessarily
pairwise distinct.
PNote that in this case, we have that n =0 and B = .




Corollary 4.3.3

Let U and V be vector spaces over a field F, and assume that U is

finite-dimensional. Let {uj,...,ux} be a linearly independent set
of vectors in U, and let vi,...,vix € V.7 Then there exists a linear
function f : U — V s.t. f(u1) = v, ..., f(ux) = vk. Moreover, if
V is non-trivial, then this linear function f is unique iff
{u1,...,ux} is a basis of U.

“Here, v, ..., vk are arbitrary vectors in V. They are not necessarily

pairwise distinct.

e Remark: If V is trivial (i.e. V = {0}, and consequently
vi = --- = v, = 0), then there exists exactly one function
from U to V, this function maps all elements of U to 0, and
obviously, it is linear.



Corollary 4.3.3

Let U and V be vector spaces over a field F, and assume that U is

finite-dimensional. Let {uj,...,ux} be a linearly independent set
of vectors in U, and let vi,...,vx € V.? Then there exists a linear
function f : U — V s.t. f(ur) = vi,..., f(ux) = vk. Moreover, if
V is non-trivial, then this linear function f is unique iff
{uy,...,ux} is a basis of U.

“Here, v1, ..., vk are arbitrary vectors in V. They are not necessarily

pairwise distinct.

Proof (outline).



Corollary 4.3.3

Let U and V be vector spaces over a field F, and assume that U is

finite-dimensional. Let {uj,...,ux} be a linearly independent set
of vectors in U, and let vi,...,vx € V.? Then there exists a linear
function f : U — V s.t. f(ur) = vi,..., f(ux) = vk. Moreover, if
V is non-trivial, then this linear function f is unique iff
{uy,...,ux} is a basis of U.

“Here, v1, ..., vk are arbitrary vectors in V. They are not necessarily

pairwise distinct.

Proof (outline). Using Theorem 3.2.19, we extend {uy,...,ux} to
a basis of U, and then we apply Theorem 4.3.2. The details are
left as an exercise. [



© Isomorphisms
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@ Recall that, for vector spaces U and V over a field F, a
function f : U — V is an isomorphism if it is linear and a
bijection.



© Isomorphisms

@ Recall that, for vector spaces U and V over a field F, a
function f : U — V is an isomorphism if it is linear and a
bijection.

@ Vector spaces U and V (over the same field F) are
isomorphic, and we write U = V/, if there exits an
isomorphism f : U — V.



Proposition 4.4.1

Let U and V be vector spaces over a field F, and let f : U — V be
an isomorphism. Then f~1: V — U is also an isomorphism.

Proof. The same as for isomorphisms f : F” — F” (details:
Lecture Notes). O



Proposition 4.4.2

Let U, V, and W be vector spaces over a field F, and let
f:U— Vand g: V — W be isomorphisms. Then
gof:U— W is an isomorphism.

gof
.
U 14 1%

Proof.



Proposition 4.4.2

Let U, V, and W be vector spaces over a field F, and let
f:U— Vand g: V — W be isomorphisms. Then
gof:U— W is an isomorphism.

gof
TN
U Vv W

Proof. Since f : U — V and g : V — W are linear functions
(because they are isomorphisms), Proposition 4.1.7 guarantees
that their composition go f : U — W is also linear.



Proposition 4.4.2

Let U, V, and W be vector spaces over a field F, and let
f:U— Vand g: V — W be isomorphisms. Then
gof:U— W is an isomorphism.

gof
TN
U Vv W

Proof. Since f : U — V and g : V — W are linear functions
(because they are isomorphisms), Proposition 4.1.7 guarantees
that their composition go f : U — W is also linear.

Since f : U — V and g : V — W are bijections,
Proposition 1.10.17 guarantees that go f : U — W is also a
bijection.



Proposition 4.4.2

Let U, V, and W be vector spaces over a field F, and let
f:U— Vand g: V — W be isomorphisms. Then
gof:U— W is an isomorphism.

gof
TN
U Vv W

Proof. Since f : U — V and g : V — W are linear functions
(because they are isomorphisms), Proposition 4.1.7 guarantees
that their composition go f : U — W is also linear.

Since f : U — V and g : V — W are bijections,
Proposition 1.10.17 guarantees that go f : U — W is also a
bijection.

So, gof: U — W is linear and a bijection, i.e. it is an
isomorphism. [



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof.



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof. (a) Clearly, Idy : U — U (the identity function on U) is an
isomorphism. So, U = U.



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof. (a) Clearly, Idy : U — U (the identity function on U) is an
isomorphism. So, U = U.

(b) Suppose that U = V.



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof. (a) Clearly, Idy : U — U (the identity function on U) is an
isomorphism. So, U = U.

(b) Suppose that U = V. Then there exists an isomorphism
f:Uu—V.



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof. (a) Clearly, Idy : U — U (the identity function on U) is an
isomorphism. So, U = U.

(b) Suppose that U = V. Then there exists an isomorphism
f: U — V. But then by Proposition 4.4.2, f~1:V — U is also an
isomorphism.



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof. (a) Clearly, Idy : U — U (the identity function on U) is an
isomorphism. So, U = U.

(b) Suppose that U = V. Then there exists an isomorphism
f: U — V. But then by Proposition 4.4.2, f~1:V — U is also an
isomorphism. So, V = U.



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof. (a) Clearly, Idy : U — U (the identity function on U) is an
isomorphism. So, U = U.

(b) Suppose that U = V. Then there exists an isomorphism
f: U — V. But then by Proposition 4.4.2, f~1:V — U is also an
isomorphism. So, V = U.

(c) Suppose that U= V and V = W.



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof. (a) Clearly, Idy : U — U (the identity function on U) is an
isomorphism. So, U = U.

(b) Suppose that U = V. Then there exists an isomorphism
f: U — V. But then by Proposition 4.4.2, f~1:V — U is also an
isomorphism. So, V = U.

(c) Suppose that U = V and V = W. Then there exist
isomorphisms f : U — Vand g: V — W.



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof. (a) Clearly, Idy : U — U (the identity function on U) is an
isomorphism. So, U = U.

(b) Suppose that U = V. Then there exists an isomorphism
f: U — V. But then by Proposition 4.4.2, f~1:V — U is also an
isomorphism. So, V = U.

(c) Suppose that U = V and V = W. Then there exist
isomorphisms f : U — V and g : V — W. But then by
Proposition 4.4.2, gof : U — W is an isomorphism.



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof. (a) Clearly, Idy : U — U (the identity function on U) is an
isomorphism. So, U = U.

(b) Suppose that U = V. Then there exists an isomorphism
f: U — V. But then by Proposition 4.4.2, f~1:V — U is also an
isomorphism. So, V = U.

(c) Suppose that U = V and V = W. Then there exist
isomorphisms f : U — V and g : V — W. But then by

Proposition 4.4.2, gof : U — W is an isomorphism. So,
u=zw.Od



@ Reminder: Theorem 4.2.13 (schematically and informally):

IR %
if f is 1-1
(a)-(b) uip,...,u; are = f(ay),..., f(ug) are
linearly independent |<: linearly independent
always

if f is onto
— X
(c)-(d) uy,...,uy span U flu), ..., f(ug) span V
if fis 1-1



@ Reminder: Theorem 4.2.13 (schematically and informally):

linear

U —V
if f is 1-1
(a)-(b) uip,...,u; are = f(ay),..., f(ug) are
linearly independent |<: linearly independent
alway
if f is onto
=
(c)-(d) uy,...,uy span U — flu), ..., f(ug) span V
if f s 1-1

Theorem 4.4.4

Let U and V be vector spaces over a field F, let f : U — V be an

isomorphism, and let uy,...,u, € U. Then all the following hold:

@ vectors ujy, ..., u, are linearly independent in U iff vectors
f(u1),...,f(ug) are linearly independent in V;

@ vectors uy,...,u, span U iff vectors f(uy),..., f(uk) span V;

@ {u1,...,ux}is a basis of U iff {f(u1),...,f(ux)} is a basis of
V.

Proof. This follows from Theorem 4.2.13 (details: Lecture Notes).




Theorem 4.4.4

Let U and V be vector spaces over a field IF, let f : U — V be an
isomorphism, and let uy,...,ux € U. Then all the following hold:

@ vectors ujy, ..., u, are linearly independent in U iff vectors
f(u1),..., f(ug) are linearly independent in V;

@ vectors uy, ..., u, span U iff vectors f(uy),..., f(uk) span V;
@ {uy,...,ux}is a basis of U iff {f(u1),...,f(ux)} is a basis of
V.

@ Proposition 4.4.5 (next slide) is a converse of sorts of
Theorem 4.4.4(c).

o It essentially states that any linear function that (injectively)
maps a basis onto a basis is an isomorphism.




Proposition 4.4.5

Let U and V be finite-dimensional vector spaces over a field FF.
Assume that dim(U) = dim(V) =: n. Let {uy,...,u,} be a basis

for U, and let {v1,...,vp} be a basis for V. Then there exists a
unique linear function f : U — V s.t. f(u1) =vi1,...,f(u,) = v,.
Moreover, this linear function f is an isomorphism.
f
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Proof.



Proposition 4.4.5

Let U and V be finite-dimensional vector spaces over a field FF.
Assume that dim(U) = dim(V) =: n. Let {uy,...,u,} be a basis

for U, and let {v1,...,vp} be a basis for V. Then there exists a
unique linear function f : U — V s.t. f(u1) =vi1,...,f(u,) = v,.
Moreover, this linear function f is an isomorphism.
f
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Proof. The existence and uniqueness of the linear function f
follows from Theorem 4.3.2.



Proposition 4.4.5

Let U and V be finite-dimensional vector spaces over a field FF.
Assume that dim(U) = dim(V) =: n. Let {uy,...,u,} be a basis

for U, and let {v1,...,vp} be a basis for V. Then there exists a
unique linear function f : U — V s.t. f(u1) =vi1,...,f(u,) = v,.
Moreover, this linear function f is an isomorphism.
f
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Proof. The existence and uniqueness of the linear function f
follows from Theorem 4.3.2. But by hypothesis, U and V are
finite-dimensional vector spaces satisfying dim(U) = dim(V/), and
so by Corollary 4.2.10, it is enough to show that f is onto.




Proof (continued). Fix v € V.

J
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Proof (continued). Fix v € V. Since {vi,..

we know that there exist scalars agq, ..

V=oQiV]+ -+ apVp.

*

.,Vpn} is a basis for V,
ap € F st



&
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Proof (continued). Fix v € V. Since {vi,...,v,} is a basis for V,
we know that there exist scalars a1,...,a, € F s.t.
V= ooiVy + -+ apv,. But now
flagup + -+ aptn) 2 arf(u) + -+ anf(un)
= QqVi+ -+ QpVp

= V’

where (*) follows from the linearity of f (and more precisely, from
Proposition 4.1.5). So, f is onto, and we are done. [J



Proposition 4.4.5

Let U and V be finite-dimensional vector spaces over a field F.
Assume that dim(U) = dim(V) =: n. Let {uy,...,u,} be a basis

for U, and let {v1,...,vp} be a basis for V. Then there exists a
unique linear function f : U — V s.t. f(u1) = v1,...,f(uy) = v,.
Moreover, this linear function f is an isomorphism.
!
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@ Reminder:

Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);
@ if f is onto, then dim(U) > dim(V);
@ if f is an isomorphism, then dim(U) = dim(V).




@ Reminder:

Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);
@ if f is onto, then dim(U) > dim(V);
@ if f is an isomorphism, then dim(U) = dim(V).

@ By Theorem 4.2.14(c), any two isomorphic vector spaces have
the same dimension.



@ Reminder:

Theorem 4.2.14
Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);
@ if f is onto, then dim(U) > dim(V);
@ if f is an isomorphism, then dim(U) = dim(V).

@ By Theorem 4.2.14(c), any two isomorphic vector spaces have
the same dimension.

@ Theorem 4.4.6 (next slide) guarantees that, in the case of
finite-dimensional vector spaces, the converse is also true:
any two vector spaces (over the same field) that have the
same finite dimension are isomorphic.

o We give two proofs of Theorem 4.4.6!




Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

@ Warning: This theorem is only true for finite-dimensional
vector spaces, and it becomes false for infinite-dimensional
ones.



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#1.



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#1. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V).



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#1. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V).

Suppose, conversely, that dim(U) = dim(V) =: n.



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#1. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V).

Suppose, conversely, that dim(U) = dim(V) =: n. Fix any basis
B = {by,...,by} of U and any basis C = {ci1,...,c,} of V.



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#1. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V).

Suppose, conversely, that dim(U) = dim(V) =: n. Fix any basis

B = {by,...,by} of U and any basis C = {ci1,...,c,} of V. By
Proposition 4.3.1, [ . }B U — F" and { . ]C V. — F" are both
isomorphisms,



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#1. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V).

Suppose, conversely, that dim(U) = dim(V) =: n. Fix any basis

B = {by,...,by} of U and any basis C = {ci1,...,c,} of V. By
Proposition 4.3.1, [ . }B U — F" and { . ]C V. — F" are both
isomorphisms, and consequently, U = F" and V = F".



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#1. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V).

Suppose, conversely, that dim(U) = dim(V) =: n. Fix any basis
B = {by,...,by} of U and any basis C = {ci1,...,c,} of V. By
Proposition 4.3.1, [ . }B U — F" and { . ]C V. — F" are both

isomorphisms, and consequently, U = F" and V = F". But now
Theorem 4.4.3 guarantees that U = V. [



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#2.



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#2. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V).



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#2. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V). Suppose, conversely, that
dim(U) = dim(V) =: n.



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#2. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V). Suppose, conversely, that
dim(U) = dim(V) =: n. Fix a basis B = {by,...,b,} of U and a
basis C = {c1,...,¢cp} of V.



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#2. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V). Suppose, conversely, that
dim(U) = dim(V) =: n. Fix a basis B = {by,...,b,} of U and a
basis C = {c1,...,¢cp} of V. Then by Proposition 4.4.5, there
exists a unique linear function f : U — V s.t.

f(b1) =c1,...,f(b,) = cp,, and moreover, this linear function f is
an isomorphism.
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Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#2. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V). Suppose, conversely, that
dim(U) = dim(V) =: n. Fix a basis B = {by,...,b,} of U and a
basis C = {c1,...,¢cp} of V. Then by Proposition 4.4.5, there
exists a unique linear function f : U — V s.t.

f(b1) =c1,...,f(b,) = cp,, and moreover, this linear function f is
an isomorphism.

™ c3
™
™S <

QU‘U‘U‘

So, U and V are isomorphic. [J



Proposition 4.4.7

Let U and V be a vector spaces over a field F, and let f : U — V

be an isomorphism, and let U’ C U. Then U’ is a subspace of U iff

V' := f[U'] is a subspace of V. Moreover, in this case, all the

following hold:

@ the function f': U’ — V'’ given by f'(u) = f(u) for all u € U’
is an isormophism;

@ U=V,

@ dim(U') = dim(V").

Proof. Lecture Notes. [J




@ An application of isomorphisms: transforming polynomials and
matrices into vectors



@ An application of isomorphisms: transforming polynomials and
matrices into vectors

@ Reminder:

Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).




@ An application of isomorphisms: transforming polynomials and
matrices into vectors

@ Reminder:

Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

@ By Theorem 4.4.6, for all positive integers n and fields F,
every n-dimensional vector space V over F is isomorphic to
F".



@ An application of isomorphisms: transforming polynomials and
matrices into vectors

@ Reminder:

Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

@ By Theorem 4.4.6, for all positive integers n and fields F,
every n-dimensional vector space V over F is isomorphic to
F".

@ Moreover, by Proposition 4.3.1, given any basis 5 of such a

vector space V/, the coordinate function [ . }B :V = F"is an
isomorphism.



@ An application of isomorphisms: transforming polynomials and
matrices into vectors

@ Reminder:

Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

@ By Theorem 4.4.6, for all positive integers n and fields F,
every n-dimensional vector space V over F is isomorphic to
",

@ Moreover, by Proposition 4.3.1, given any basis 5 of such a
vector space V/, the coordinate function [ . }B :V = F"is an
isomorphism.

e This is useful because we have developed powerful
computational tools for vectors in F".

e By using isomorphisms, we can reduce problems of computing
in an arbitrary n-dimensional vector space to problems of
computing in F", which we know how to do in many cases.



@ Remark: When working with coordinate vectors, we must
always specify the basis that we are working with (i.e. with
respect to which the coordinate vectors are computed).



@ Remark: When working with coordinate vectors, we must
always specify the basis that we are working with (i.e. with
respect to which the coordinate vectors are computed).

e Choosing a different basis will, in general, produce different
coordinate vectors.



@ Remark: When working with coordinate vectors, we must
always specify the basis that we are working with (i.e. with
respect to which the coordinate vectors are computed).

e Choosing a different basis will, in general, produce different
coordinate vectors.

o For instance, consider the real vector space PZ of all
polynomials of degree at most 2 and with coefficients in R.



@ Remark: When working with coordinate vectors, we must
always specify the basis that we are working with (i.e. with
respect to which the coordinate vectors are computed).

e Choosing a different basis will, in general, produce different
coordinate vectors.

o For instance, consider the real vector space PZ of all
polynomials of degree at most 2 and with coefficients in R.

o There are two “obvious” bases to chose for P2, namely

Ar = {1,x,x?} and Ay = {x?,x,1}.



@ Remark: When working with coordinate vectors, we must
always specify the basis that we are working with (i.e. with
respect to which the coordinate vectors are computed).

e Choosing a different basis will, in general, produce different
coordinate vectors.

o For instance, consider the real vector space PZ of all
polynomials of degree at most 2 and with coefficients in R.

e There are two “obvious” bases to chose for IP’]%, namely
Ar = {1,x,x?} and Ay = {x?,x,1}.

o For a polynomial p(x) = apx? + a1x + ag (with ag, a1, a2 € R),
we have



@ Remark: When working with coordinate vectors, we must
always specify the basis that we are working with (i.e. with
respect to which the coordinate vectors are computed).

Choosing a different basis will, in general, produce different
coordinate vectors.

For instance, consider the real vector space P of all
polynomials of degree at most 2 and with coefficients in R.
There are two “obvious” bases to chose for P2, namely

Ar = {1,x,x?} and Ay = {x?,x,1}.

For a polynomial p(x) = axx? + ay1x + ap (with ag, a1, a2 € R),
we have

ao as
(o) L= | o | ad [p0) = | =

As we can see, the coordinate vectors are different (whenever
ap # ap), which is why we have to be careful to specify what
basis we are working with.



Proposition 4.4.8

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B ={by,...,b,} be a basis of V. Let vi,...,vp,

(m > 1) be some vectors in V, and for all i € {1,...,n}, set
aj = v }B. Set A:=[a ... ap |. Then all the following
hold:

@ {vi,...,vp} is a linearly independent set in V iff
rank(A) = m (i.e. A has full column rank);

@ {vi,...,vm} is a spanning set of V iff rank(A) = n (i.e. A has
full row rank);

@ {vi,...,vn} is a basis of V iff rank(A)=n=m(i.e. Ais a
square matrix of full rank).

@ Proof: Lecture Notes. (Follows easily from results that we
have already proven.)




Example 4.4.9

Consider the following sets of polynomials (with coefficients
understood to be in R):

@ A= {X2+X,X3+l,x,x2+1};
@ B={33+2x>+x+1,6x>+4x? +5x + 6,5x + 6,2x + 2};
@ C={3+1,x3+x3 x> +x,x+1,1,x}
@ D= {x32x%+3x,4x>+5x +6}.
For each of the four sets above, determine whether
@ it is linearly independent in ]P’%;
e it spans P3;

e it is a basis of P3.

e We give a solution of (a) and (d). For parts (b) and (d), see
the Lecture Notes.

Solution.



Example 4.4.9

Consider the following sets of polynomials (with coefficients
understood to be in R):

@ A= {X2+X,X3+l,x,x2+1};
@ B={33+2x>+x+1,6x>+4x? +5x + 6,5x + 6,2x + 2};
@ C={+1,x3+x%x2+x,x+1,1,x};
@ D= {x%2x2+3x,4x> +5x + 6}.
For each of the four sets above, determine whether
@ it is linearly independent in ]P’%;
e it spans P3;

e it is a basis of P3.

e We give a solution of (a) and (d). For parts (b) and (d), see
the Lecture Notes.

Solution. In what follows, we will use the basis P = {1, x, x?, x3}
of P3.



Example 4.4.9
@ A= {X2+x,x3—|—l,x,x2+1};

Solution (continued). Reminder: P = {1, x, x?, x3}.



Example 4.4.9
@ A= {X2+x,x3—|—l,x,x2+1};

Solution (continued). Reminder: P = {1, x, x?, x3}.

(a) We set

oalz[x2+x]73: 01101

oay=[x*+1],=[1 00 1]

eaz=[x],=[0 10 0]

ea;=[x2+1],=[101 0]

Further, we set 010
A::[a1a2a3a4]:18(1)

0 1 0

O O



Example 4.4.9
@ A= {X2+x,x3—|—l,x,x2+1};

Solution (continued). Reminder: P = {1, x, x?, x3}.

(a) We set

oalzz[x2+x]73: 01101

oay=[x+1],=[10 0 1]

oay:[x}P:{O 10 O}T;

ea;=[x2+1],=[101 0]

Further, we set 01 0 1
A:[a1a2a3a4]:18(1)(1)

01 0 0

By row reducing, we get that RREF(A) = I, and consequently,
rank(A) = 4.



Example 4.4.9
@ A= {X2+x,x3—|—l,x,x2+1};

Solution (continued). Reminder: P = {1, x, x?, x3}.

(a) We set

oalzz[x2+x]P:[O 11 0]

°oa=[x3+1],=[1 00 1]"

oay:[x}P:{O 10 O}T;

ea;=[x2+1],=[101 0]

Further, we set 01 0 1
A—[a1a2a3a4]:18(1)(1)

01 0 0

By row reducing, we get that RREF(A) = I, and consequently,
rank(A) = 4. So, by Proposition 4.4.8, A is a basis of P3, and in
particular, it is a linearly independent set in P3, as well as a
spanning set of IP%.



Example 4.4.9
@ C= {x3+1,x3+x2,x2+x,x+l, ,X};

Solution (continued). Reminder: P = {1, x, x%, x3}.



Example 4.4.9
@ C= {x3+1,x3+x2,x2+x,x+1, ,X};

Solution (continued). Reminder: P = {1, x, x%, x3}.

(c) We set
eci=[x+1],=[10 0 1]T;
oc=[x*+x2],=[0 0 1 1]
o= x*+x],=[0 11 O}T;
°ec=[x+1],=[1 10 0]
° :[ ]p:
°oc=[x],=[0 10 0]

Further, we set

C = |a & g g G | =

= O O =
== O o
O = = O
O O = =
O O~ O



Example 4.4.9
@ C= {x3+1,x3+x2,x2+x,x+1, ,X};

Solution (continued). Reminder: P = {1, x, x%, x3}.

(c) We set

°ec=[x*+1],=[10 0 1]

oc=[x*+x2],=[0 0 1 1]

o= x*+x],=[0 11 O}T;

°ec=[x+1],=[1 10 0]

° :[ ]p:

°oc=[x],=[0 10 0]

Further, we set 100 1 0

C = |a & g g cﬁ}:g(l)i(l) (1)
1100 0

By row reducing, we get that (next slide):



Example 4.4.9

@ C= {x3+1,x3+x2,xz+x,x+1, ,X};

Solution (continued). Reminder: P = {1, x, x%, x3}.

(c)
100 10 1
010 -10 -1
RREF(C) = 1o 01 10 1]
000 01 -1



Example 4.4.9

@ C= {x3+1,x3+x2,xz+x,x+1, ,X};

Solution (continued). Reminder: P = {1, x, x%, x3}.

(c)
100 10 1
010 -1 0 -1
RREF(C) = 0 01 1 0 1]’
000 01 -1
and consequently, rank(C) = 4.



Example 4.4.9

@ C= {><3Jr1,><3—|-X2,><2+x,><+17 ,X};

Solution (continued). Reminder: P = {1, x, x%, x3}.

(c)
100 10 1
010 -10 -1
RREF(C) = 1001 10 1
000 01 -1

and consequently, rank(C) = 4. So, by Proposition 4.4.8, C is not
linearly independent, it is spanning set of IP’]?{, and it is not a basis
of P3. O



Example 4.4.9

Consider the following sets of polynomials (with coefficients
understood to be in R):

@ A= {X2+x,x3+l,x,x2+1};
@ B={33+2x>+x+1,6x>+4x> 4+ 5x + 6,5x + 6,2x + 2};
@ C= {><3Jr1,><3Jr><2,><2+><,><+17 ,X};
@ D= {x32x*+3x,4x>+5x +6}.
For each of the four sets above, determine whether
@ it is linearly independent in ]P’%;
o it spans P3;
e it is a basis of P3.

@ See the Lecture Notes for a similar problem, only with
matrices instead of polynomials.



Example 4.4.12
Consider the following polynomials in Pz,:
o pi(x) =x*+2; o pya(x) = 2x* 4+ x3 4+ x> + 1;
o po(x) = x3 + x?; @ ps(x) =2x+ 1.
o p3(x) =x*+x3+x2+2;
Set U := Span(pi(x),...,ps(x)). Find a basis B of U. What is
dim(U)? For each i € {1,...,5} s.t. pj(x) is not in the basis 5,
express pj(x) as a linear combination of the basis vectors in B.

Solution.



Example 4.4.12
Consider the following polynomials in Pz,:
o pi(x) =x*+2; o pya(x) = 2x* 4+ x3 4+ x> + 1;
o po(x) = x3 + x?; @ ps(x) =2x+ 1.
o p3(x) =x*+x3+x2+2;
Set U := Span(pi(x),...,ps(x)). Find a basis B of U. What is
dim(U)? For each i € {1,...,5} s.t. pj(x) is not in the basis 5,
express pj(x) as a linear combination of the basis vectors in B.

Solution. Note that polynomials p1(x), ..., ps(x) are all of degree
at most 4, and they all belong to IP>4Z3. Thus,
U = Span(p1(x),...,ps(x)) is a subspace of P . We know that

A = {1,x,x%,x3, x*}

is a basis of P7_. The coordinate vectors of py(x), ..., ps(x) with
respect to the basis A are as follows (next slide):



Example 4.4.12

Consider the following polynomials in Pz,:

o pi(x) =x*+2;
o po(x) = x3 + x%;

o p3(x)=x*+x3+x2+2;

Set U := Span(pi(x),...

,ps(x)). Find a basis B of U. What is
dim(U)? For each i € {1,...,5} s.t. pj(x) is not in the basis B,
express pi(x) as a linear combination of the basis vectors in .

o py(x) = 2x* 4+ x3 + x> + 1;
e ps(x) =2x+ 1.

Solution (continued). Reminder: A = {1,x, x?,x3,x*}.

o [pm()],=[20
o [p(x) J,=[0 0
o [p(x)],=[2 0
o [p(x)],=[10
°[P5(X”A=[1 2

0
1
1

0
1
1



Solution (continued). Reminder: A = {1,x, x?,x3,x*}.

and by row reducing, we obtain the following (pivot columns are
in red, and non-pivot columns are in blue):

0

0

1 .

0 ]

0

RREF(A) = [

We see that the pivot columns of A are its first, second, and fifth
column. Therefore, C:={ [ pi(x) ], [ p2(x) ]is[ ps(x) ] }is
a basis of Col(A) —Span([ X) | 50 [ ps(x )}A).
Consequently, B := { 1(x), p2(x), p (X)} is a basis of

U = Span(pi(x), ..., ps(x)), and it follows that dim(U) = 3.

We form the matrix

A= [ [m], o [w], ] - [

orrROO
HRRON
NH RO R
cocoNR

coocor
cooroO
cCoOo R
coo~N



Solution (cont.). Reminder: A= [ [ pi(x) |, [ ps(x) ], ],
1 0 1 2 0
0 1 1 1 0
RREF(A) = 0 0 0 0 1 s
0 0 0 0 0
0 0 0 0 0

B .= {pl(x),pz(x),p5(x)} is a basis of U = Span(p1(x),...,ps(x)).



Solution (cont.). Reminder: A= [ [ pi(x) |, [ ps(x) ], ],
1 0 1 2 0
0 1 1 1 0
RREF(A) = 0 0 0 0 1 s
0 0 0 0 0
0 0 0 0 0

B:= {pl(x),pz(x),p5(x)} is a basis of U = Span(p1(x),...,ps(x)).

It remains to express p3(x) and psa(x) as a linear combination of
the vectors (polynomials) in B. First, we have that

o [ p3(x) 1 2 ,m) 1+ P 14, C [ s +pa(x) |y

o [ pa(x) ], (;)2[ pi(x) ] 4+ p2(x) ] 4 () [ 2p1(x) + pa(x) ],
where both instances of (*) were obtained from the matrix
RREF(A), and both instances of (**) follow from the fact that
[ - ], :P3, — Z3 is linear (because it is an isomorphism). Since
[ . }A is also one-to-one (again, because it is an isomorphism), we
get that

o p3(x) = p1(x) + p2(x), ® pa(x) = 2p1(x) + p2(x),
and we are done. [



Example 4.4.14

Consider the following polynomials in IP’%3:

o pi(x) =x3+1; o p3(x) =x2+2x+1

o po(x) =2x3+2; o pg(x) = 2x3 4+ x2 + 2x.
Find a basis By of U := Span(pi(x), p2(x), p3(x), pa(x)), extend it

to a basis B of P, and for each i € {1,2,3,4} sit. pi(x) ¢ B,
express pi(x) as a linear combination of the basis vectors in B.

Solution.
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Solution. We know that A := {1, x,x? x3} is a basis of P3_,
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o po(x) =2x3+2; o pg(x) = 2x3 4+ x2 + 2x.
Find a basis By of U := Span(pi(x), p2(x), p3(x), pa(x)), extend it

to a basis B of P, and for each i € {1,2,3,4} sit. pi(x) ¢ B,
express pi(x) as a linear combination of the basis vectors in B.

Solution. We know that A := {1, x,x? x3} is a basis of IP_, and
we let V be the image of U under the isomorphism [ - | ,.



Example 4.4.14

Consider the following polynomials in IP’%3:

o pi(x) =x3+1; o p3(x) =x2+2x+1

o po(x) =2x3+2; o pg(x) = 2x3 4+ x2 + 2x.
Find a basis By of U := Span(pi(x), p2(x), p3(x), pa(x)), extend it

to a basis B of P, and for each i € {1,2,3,4} sit. pi(x) ¢ B,
express pi(x) as a linear combination of the basis vectors in B.

Solution. We know that A := {1, x,x? x3} is a basis of IP_, and

we let V be the image of U under the isomorphism [ - | .
Further, we consider the standard basis

& = {ey,ere3 e} = {[1JA7[X]A’[X2 Jar [ JA}

of Z4.



Example 4.4.14

Consider the following polynomials in IP’%3:

o pi(x) =x3+1; o p3(x) =x2+2x+1

o po(x) =2x3+2; o pg(x) = 2x3 4+ x2 + 2x.
Find a basis By of U := Span(pi(x), p2(x), p3(x), pa(x)), extend it

to a basis B of P, and for each i € {1,2,3,4} sit. pi(x) ¢ B,
express pi(x) as a linear combination of the basis vectors in B.

Solution. We know that A := {1, x,x? x3} is a basis of IP_, and

we let V' be the image of U under the isomorphism [ -
Further, we consider the standard basis

& = {ey,ere3 e} = {[1JA7[X]A’[X2 Jar [ JA}

of Z4. We now form the 4 x 8 matrix C whose columns are the
coordinate vectors of the polynomials

L

pl(X)> p2(X), p3(X)7 p4(X), 1) X, X2’ X3
with respect to the basis A.



Solution (continued). Here is the matrix C explicitly (with tiny
font and dots so that it would fit on the page):

e e L PR I PO N Vo N PR R P



Solution (continued). Here is the matrix C explicitly (with tiny
font and dots so that it would fit on the page):

e e L PR I PO N Vo N PR R P

We then have that

NooN
or N R
NRNO
coro
oroo
~ooo
—_

By row reducing, we obtain

RREF(C) = [ 1

and we see that the pivot columns of C are its first, third, fifth,
and sixth column.

coowr
cocown
coro
oroO
= O OO
RN RO
[SENR-N



Solution (continued). Here is the matrix C explicitly (with tiny
font and dots so that it would fit on the page):

e e L PR I PO N Vo N PR R P

We then have that

N o oN
O RN
N =N O
coro
or oo

= o oo
—_

cocown
coro
oroO
= O OO
RN RO
[SENR-N

] ,

and we see that the pivot columns of C are its first, third, fifth,
and sixth column. By Proposition 3.3.23, the pivot columns of C
to the left of the vertical dotted line form a basis of V/, and all the
pivot columns of C together form a basis of Z3.



Solution (continued). Reminder:

RREF(C) = [

So, { [ p1(x) ]A,[ p3(x) ]A} is a basis of V, whereas

{[ pr(x) | o[ pe(x) ][ 1], x ]A} is a basis of Z3 that
extends our basis of V.

co o~
coonN
coro
o~oo
=k=X=]
=N RO
oNO



Solution (continued). Reminder:

RREF(C) = [

So, { [ p1(x) ]A,[ p3(x) ]A} is a basis of V, whereas

{[ pr(x) | o[ pe(x) ][ 1], x ]A} is a basis of Z3 that
extends our basis of V. Since | - is an isomorphism, we see that

coor
coonNn
coro
ormooO
= O OO
[ =)
onvoOo R

L4

Bu = {p(x)ps(x)}

is a basis of U, and that
B = {p().ps(x).1.x}

is a basis of ]P)%3 that extends our basis By of U.



Solution (continued). Reminder:

RREF(C) = [

So, { [ p1(x) ]A,[ p3(x) ]A} is a basis of V, whereas

{[ pr(x) | o[ pe(x) ][ 1], x ]A} is a basis of Z3 that
extends our basis of V. Since | - is an isomorphism, we see that

coor
coonNn
coro
ormooO
= O OO
[ =)
onvoOo R

L4

Bu = {m(x),ps(x)}
is a basis of U, and that
B = {p(x) ps(x), 1,x}
is a basis of ]P)%3 that extends our basis By of U. Finally, we can
read off from RREF(C) that
° p2(x) = 2p1(x),

o p4(x) = 2p1(x) + p3(x),
and we are done. [



