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This lecture has five parts:

1 The column space and row space of a matrix (and their
relationship with rank)

2 Matrices of full rank
3 The rank of matrix products. Left and right inverses of a

matrix
4 The null space of a matrix
5 The Invertible Matrix Theorem (version 2)
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1 The column space and row space of a matrix (and their
relationship with rank)

Reminder:

Theorem 3.1.11
Let V be a vector space over a field F, and let u1, . . . , uk ∈ V
(k ≥ 0). Then all the following hold:

(a) u1, . . . , uk ∈ Span(u1, . . . , uk);
(b) Span(u1, . . . , uk) is a subspace of V ;
(c) for all subspaces U of V s.t. u1, . . . , uk ∈ U, Span(u1, . . . , uk)

is a subspace of U;
(d) Span(u1, . . . , uk) is precisely the intersection of all subspaces

of V that contain the vectors u1, . . . , uk .
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Definition
For a field F and a matrix A ∈ Fn×m, we define the following:

the column space of A, denoted by Col(A), is the subspace of
Fn spanned by the columns of A;a

the row space of A, denoted by Row(A), is the subspace of
F1×m spanned by the rows of A.b

aMore precisely, if A =
[

a1 . . . am
]
, then Col(A) := Span(a1, . . . , am).

The fact that Col(A) really is a subspace of Fn follows from Theorem 3.1.11.

bMore precisely, if A =

 r1
...
rn

 (i.e. r1, . . . , rn are the rows of A, appearing

in A in that order, from top to bottom), then Row(A) := Span(r1, . . . , rn). The
fact that Row(A) really is a subspace of F1×m follows from Theorem 3.1.11.



Proposition 3.3.2
Let F be a field, and let A ∈ Fn×m be a matrix. Then both the
following hold:

(a) Col(A) = {Ax | x ∈ Fm};
(b) Row(A) = {xA | x ∈ F1×n}.a

aNote that in the expression xA, we have that x is a row vector with n
entries.

Proof.

For (a), we set A =
[

a1 . . . am
]
, and we observe that

Col(A) = Span(a1, . . . , am) by the definition of Col(A)

=
{
Ax | x ∈ Fm}

by Proposition 1.4.4.

The proof of (b) is in the Lecture Notes (easy). □
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Our first goal is to prove the following two theorems, which
give a recipe for finding bases of the column space and row
space of a matrix.

Theorem 3.3.4
Let F be a field, and let A ∈ Fn×m. Then the pivot columns of A
form a basis of Col(A). Moreover, dim

(
Col(A)

)
= rank(A).

Theorem 3.3.9
Let F be a field, let A ∈ Fn×m, and let U be any matrix in row
echelon form that is row equivalent to A.a Then the non-zero rows
of U form a basis of Row(A). Moreover, dim

(
Row(A)

)
= rank(A).

aIt may be that U = RREF(A), but this assumption is not necessary. U may
be any matrix in row echelon form obtained from A via a sequence of
elementary row operations. For instance, U may be the matrix obtained from A
by performing only the “forward” part of the row reduction algorithm in order to
transform A into a matrix in row echelon form.

First an example, then the proofs (or rather: proof outlines).
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Example 3.3.10
Consider the matrix

A =


0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15
0 1 −2 2 2 1


with entries understood to be in R.
(a) Compute rank(A).
(b) Find a basis of Col(A).
(c) Find a basis of Row(A).

Solution.

By performing the “forward” part of the row reduction
algorithm, we see that the following matrix is a row echelon form
of A:

U =


3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4
0 0 0 0 0 0

 .
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(a) Compute rank(A).
(b) Find a basis of Col(A).
(c) Find a basis of Row(A).

Solution (continued). Reminder:[
0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15
0 1 −2 2 2 1

]
︸ ︷︷ ︸

=A

∼

[
3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4
0 0 0 0 0 0

]
︸ ︷︷ ︸

=U

(a) The matrix U has three pivot columns, and so rank(A) = 3.



(b) Find a basis of Col(A).
Solution (continued). Reminder:[

0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15
0 1 −2 2 2 1

]
︸ ︷︷ ︸

=A

∼

[
3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4
0 0 0 0 0 0

]
︸ ︷︷ ︸

=U

(b) The pivot columns of U are its first, second, and fifth column.
So, the pivot columns of A are its first, second, and fifth column,
and so those columns of A form a basis of Col(A). More precisely,
the following is a basis of Col(A):

{ 
0
3
3
0

 ,


3

−7
−9

1

 ,


4
8
6
2

 }
.



(c) Find a basis of Row(A).
Solution (continued). Reminder:[

0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15
0 1 −2 2 2 1

]
︸ ︷︷ ︸

=A

∼

[
3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4
0 0 0 0 0 0

]
︸ ︷︷ ︸

=U

(c) The non-zero rows of U form a basis of Row(A). So, the
following is a basis of Row(A):{[

3 −9 12 −9 6 15
]

,
[

0 2 −4 4 2 −6
]

,
[

0 0 0 0 1 4
]}

.

□



Let’s outline the proof of Theorem 3.3.4.

Theorem 3.3.4
Let F be a field, and let A ∈ Fn×m. Then the pivot columns of A
form a basis of Col(A). Moreover, dim

(
Col(A)

)
= rank(A).

Our proof of Theorem 3.3.4 relies on the following proposition:

Proposition 3.3.3
Let F be a field, let a1, . . . , ak ∈ Fn, and let B ∈ Fn×n be an
invertible matrix. Then both the following hold:

(a) {a1, . . . , ak} is linearly independent iff {Ba1, . . . , Bak} is
linearly independent;

(b) ∀v ∈ Fn: v ∈ Span(a1, . . . , ak) iff Bv ∈ Span(Ba1, . . . , Bak);

Proof: Lecture Notes.
Easy! Just use the appropriate definitions.
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Theorem 3.3.4
Let F be a field, and let A ∈ Fn×m. Then the pivot columns of A
form a basis of Col(A). Moreover, dim

(
Col(A)

)
= rank(A).

Proof (outline).

Since r := rank(A) is equal to the number of pivot
columns of A the first statement implies the second.

It remains to prove the first statement. Set A =
[

a1 . . . am
]
.

Let ai1 , . . . , air (with 1 ≤ i1 < · · · < ir ≤ m) be the pivot columns
of A. WTS {ai1 , . . . , air } is a basis of Col(A).

Set U := RREF(A). Then A ∼ U, and so by Theorem 1.11.13,
there exists an invertible matrix B ∈ Fn×n s.t.
U = BA =

[
Ba1 . . . Bam

]
.
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
0 ■ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ■ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ■ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 ■ ∗ ∗
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0




0 1 ∗ 0 0 ∗ ∗ 0 ∗ ∗
0 0 0 1 0 ∗ ∗ 0 ∗ ∗
0 0 0 0 1 ∗ ∗ 0 ∗ ∗
0 0 0 0 0 0 0 1 ∗ ∗
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


REF RREF

Proof (outline, cont.). Reminder: A =
[

a1 . . . am
]
; ai1 , . . . , air

are the pivot col.’s of A; RREF(A) = U = BA =
[

Ba1 . . . Bam
]

(B is invertible). WTS {ai1 , . . . , air } is a basis of Col(A).

But now since U = RREF(A), we see that all the following hold:
(i) Bai1 , . . . , Bair are the pivot columns of U;
(ii) for all j ∈ {1, . . . , r}, we have that Baij = en

j ;
(iii) in any column of U, only the top r entries may possibly be

non-zero (the other entries are all zero).
So, {en

1, . . . , en
r } = {Bai1 , . . . , Bair } is a basis of

Col(U) = Span(Ba1, . . . , Bam). But now Proposition 3.3.3 implies
that {ai1 , . . . , air } is a basis of Col(A) = Span(a1, . . . , am) (full
details: Lecture Notes). □
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Theorem 3.3.4
Let F be a field, and let A ∈ Fn×m. Then the pivot columns of A
form a basis of Col(A). Moreover, dim

(
Col(A)

)
= rank(A).

Now let’s outline the proof of Theorem 3.3.9.

Theorem 3.3.9
Let F be a field, let A ∈ Fn×m, and let U be any matrix in row
echelon form that is row equivalent to A.a Then the non-zero rows
of U form a basis of Row(A). Moreover, dim

(
Row(A)

)
= rank(A).

aIt may be that U = RREF(A), but this assumption is not necessary. U may
be any matrix in row echelon form obtained from A via a sequence of
elementary row operations. For instance, U may be the matrix obtained from A
by performing only the “forward” part of the row reduction algorithm in order to
transform A into a matrix in row echelon form.
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Proposition 3.3.8
Let F be a field. Then any two row equivalent matrices in Fn×m

have the same row space.

Proof (outline).

By definition, two matrices are row equivalent iff
one can be obtained from the other via a sequence of elementary
row operations. So, it is enough to prove that applying one
elementary row operation to a matrix does not alter the row space.
More precisely, it is enough to prove the following claim.

Claim. Let A, B ∈ Fn×m be matrices such that B is ob-
tained from A by performing one elementary row operation.
Then Row(A) = Row(B).



Proposition 3.3.8
Let F be a field. Then any two row equivalent matrices in Fn×m

have the same row space.

Proof (outline). By definition, two matrices are row equivalent iff
one can be obtained from the other via a sequence of elementary
row operations.

So, it is enough to prove that applying one
elementary row operation to a matrix does not alter the row space.
More precisely, it is enough to prove the following claim.

Claim. Let A, B ∈ Fn×m be matrices such that B is ob-
tained from A by performing one elementary row operation.
Then Row(A) = Row(B).



Proposition 3.3.8
Let F be a field. Then any two row equivalent matrices in Fn×m

have the same row space.

Proof (outline). By definition, two matrices are row equivalent iff
one can be obtained from the other via a sequence of elementary
row operations. So, it is enough to prove that applying one
elementary row operation to a matrix does not alter the row space.

More precisely, it is enough to prove the following claim.

Claim. Let A, B ∈ Fn×m be matrices such that B is ob-
tained from A by performing one elementary row operation.
Then Row(A) = Row(B).



Proposition 3.3.8
Let F be a field. Then any two row equivalent matrices in Fn×m

have the same row space.

Proof (outline). By definition, two matrices are row equivalent iff
one can be obtained from the other via a sequence of elementary
row operations. So, it is enough to prove that applying one
elementary row operation to a matrix does not alter the row space.
More precisely, it is enough to prove the following claim.

Claim. Let A, B ∈ Fn×m be matrices such that B is ob-
tained from A by performing one elementary row operation.
Then Row(A) = Row(B).



Claim. Let A, B ∈ Fn×m be matrices such that B is ob-
tained from A by performing one elementary row operation.
Then Row(A) = Row(B).

Proof of the Claim (outline). Set A =

 a1
...

an

 and B =

 b1
...

bn


(so, a1, . . . , an are the rows of A appearing in that order in A, from
top to bottom, and similar for B).

By definition,
Row(A) = Span(a1, . . . , an) and Row(B) = Span(b1, . . . , bn).

Since B is obtained from A by performing one elementary row
operation R, we know that A can be obtained from B by
performing one elementary row operation (the one that “undoes”
R). So, it is enough to show that Row(A) ⊆ Row(B), for then an
analogous argument will establish that Row(B) ⊆ Row(A), and
then the result will follow.
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Claim. Let A, B ∈ Fn×m be matrices such that B is ob-
tained from A by performing one elementary row operation.
Then Row(A) = Row(B).

Proof of the Claim (outline, continued). There are three types of
elementary row operations: swapping two rows; multiplying a row
by a non-zero scalar; adding a scalar multiple of one row to
another.

We consider only the third type (the other two types are
easier; see the Lecture Notes).

So, suppose that B is obtained from A by adding a scalar multiple
of one row to another row. Then there exist distinct indices
i , j ∈ {1, . . . , n} and a scalar α ∈ F such that bj = aj + αai , and
bk = ak for all k ∈ {1, . . . , n} \ {j}.

So, we applied the elementary row operation “Rj → Rj + αRi .”
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Claim. Let A, B ∈ Fn×m be matrices such that B is ob-
tained from A by performing one elementary row operation.
Then Row(A) = Row(B).

Proof of the Claim (outline, continued). Reminder: B Rj →Rj +αRi∼ A.
WTS Row(A) ⊆ Row(B).

Now, fix v ∈ Row(A). Then ∃α1, . . . , αn ∈ F s.t.
v = α1a1 + · · · + αnan. We now set βi := αi − αjα, and we set
βk := αk for all k ∈ {1, . . . , n} \ {i}. Then

βibi + βjbj = (αi − αjα)ai + αj(aj + αai) = αiai + αjaj ,

whereas βkbk = αkak for all k ∈ {1, . . . , n} \ {i , j}. Thus,

β1b1 + · · · + βnbn = α1a1 + · · · + αnan = v,

and it follows that v ∈ Row(B). Thus, Row(A) ⊆ Row(B). ♦ □
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Proposition 3.3.8
Let F be a field. Then any two row equivalent matrices in Fn×m

have the same row space.

Theorem 3.3.9
Let F be a field, let A ∈ Fn×m, and let U be any matrix in row
echelon form that is row equivalent to A. Then the non-zero rows
of U form a basis of Row(A). Moreover, dim

(
Row(A)

)
= rank(A).

Proof (outline). Since r := rank(A) is equal to the number of
non-zero rows of U, the first statement implies the second.
Moreover, by Proposition 3.3.8, Row(A) = Row(U). So, it suffices
to show that the non-zero rows of U form a basis of Row(U).

Let u1, . . . , ur be the non-zero rows of U, appearing in that order
(from top to bottom) in U. WTS {u1, . . . , ur } is a basis of
Row(U). Clearly, Row(U) = Span(u1, . . . , ur ). It remains to show
that {u1, . . . , ur } is a linearly independent set.
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
i →

j

↓
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Theorem 3.3.9
Let F be a field, let A ∈ Fn×m, and let U be any matrix in row
echelon form that is row equivalent to A. Then the non-zero rows
of U form a basis of Row(A). Moreover, dim

(
Row(A)

)
= rank(A).



Theorem 3.3.4
Let F be a field, and let A ∈ Fn×m. Then the pivot columns of A
form a basis of Col(A). Moreover, dim

(
Col(A)

)
= rank(A).

Theorem 3.3.9
Let F be a field, let A ∈ Fn×m, and let U be any matrix in row
echelon form that is row equivalent to A. Then the non-zero rows
of U form a basis of Row(A). Moreover, dim

(
Row(A)

)
= rank(A).

Corollary 3.3.11
Let F be a field, and let A ∈ Fn×m. Then both the following hold:

(a) dim
(
Col(A)

)
= dim

(
Row(A)

)
= rank(A);

(b) rank(A) = rank(AT ).

Proof. Part (a) follows immediately from Theorems 3.3.4
and 3.3.9.
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Let F be a field, and let A ∈ Fn×m. Then both the following hold:

(a) dim
(
Col(A)

)
= dim

(
Row(A)

)
= rank(A);
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Proof (continued). For (b), we observe that

rank(A) (a)= dim
(
Col(A)

)
= dim

(
Row(AT )

) (a)= rank(AT ),

and we are done. □



2 Matrices of full rank

We simply state a theorem and a corollary (without proof).
The theorem and the corollary essentially summarize various
results that we have obtained so far.
The full proof is in the Lecture Notes (and essentially consists
of references to previously proven results).
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Theorem 3.3.14
Let F be a field, and let A ∈ Fn×m. Then all the following hold:

(a) the columns of A are linearly independent iff rank(A) = m
(i.e. A has full column rank);

(b) the columns of A span Fn (i.e. Col(A) = Fn) iff rank(A) = n
(i.e. A has full row rank);

(c) the rows of A are linearly independent iff rank(A) = n (i.e. A
has full row rank);

(d) the rows of A span F1×m (i.e. Row(A) = F1×m) iff
rank(A) = m (i.e. A has full column rank).

Remarks:
Parts (a) and (b) were proven in an earlier lecture.
To obtain (c) and (d), we apply (a) and (b), respectively, to
the matrix AT , and we use the fact that rank(AT ) = rank(A).



Corollary 3.3.15
Let F be a field, and let A ∈ Fn×n be a square matrix. Then the
following are equivalent:

(a) rank(A) = n;
(b) rank(AT ) = n;
(c) the columns of A are linearly independent;
(d) the columns of A span Fn (i.e. Col(A) = Fn);
(e) the columns of A form a basis of Fn;
(f) the rows of A are linearly independent;
(g) the rows of A span F1×n (i.e. Row(A) = F1×n);
(h) the rows of A form a basis of F1×n.



3 The rank of matrix products. Left and right inverses of a
matrix

Proposition 3.3.16
Let F be a field, and let A ∈ Fn×m. Then all the following hold:

(a) for all invertible matrices S ∈ Fn×n, we have that
rank(SA) = rank(A);

(b) for all invertible matrices S ∈ Fm×m, we have that
rank(AS) = rank(A);

(c) for all invertible matrices S1 ∈ Fn×n and S2 ∈ Fm×m, we have
that rank(S1AS2) = rank(A).

Proof. We first prove (a). Fix an invertible matrix S ∈ Fn×n. By
Theorem 1.11.13, A and SA are row equivalent, and so by
Proposition 1.6.2, they have the same rank. This proves (a).
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Proof (continued). We now prove (b).

Fix an invertible matrix
S ∈ Fm×m. Then by the Invertible Matrix Theorem (version 1),
ST is also invertible. We now compute:

rank(AS) = rank
(
(AS)T )

by Corollary 3.3.11(b)
= rank

(
ST AT )

by Proposition 1.8.1(d)
= rank

(
AT )

by (a), since ST is invertible
= rank(A) by Corollary 3.3.11(b).

This proves (b).
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(a) for all invertible matrices S ∈ Fn×n, we have that
rank(SA) = rank(A);

(b) for all invertible matrices S ∈ Fm×m, we have that
rank(AS) = rank(A);
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Proof (continued). Finally, for (c), we fix invertible matrices
S1 ∈ Fn×n and S2 ∈ Fm×m, and we observe that

rank(S1AS2) (a)= rank(AS2) (b)= rank(A),

and we are done. □



Theorem 3.3.17
Let F be a field, and let A ∈ Fn×m and B ∈ Fm×p. Then

rank(AB) ≤ min
{

rank(A), rank(B)
}

.

Proof.

Set A =
[

a1 . . . am
]

and B =
[

b1 . . . bp
]
. WTS

rank(AB) ≤ rank(A) and rank(AB) ≤ rank(B).
We first prove that rank(AB) ≤ rank(A). By definition, we have
that AB =

[
Ab1 . . . Abp

]
, and in particular, every column of

AB is a linear combination of the columns of A, i.e. every column
of AB belongs to Span(a1, . . . , am) = Col(A).
Since Col(A) is a subspace of Fn (and is therefore a vector space in
its own right), Theorem 3.1.11(b) now guarantees that
Col(AB) = Span(Ab1, . . . , Abp) is a subspace of Col(A). Since
Col(A) is finite-dimensional, Theorem 3.2.21 now implies that

dim
(
Col(AB)

)
≤ dim

(
Col(A)

)
,

and we deduce that (next slide):
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Proof (continued).

rank(AB) (∗)= dim
(
Col(AB)

)
≤ dim

(
Col(A)

) (∗)= rank(A),

where both instances of (*) follow from Theorem 3.3.4 (or
alternatively, from Corollary 3.3.11(a)).
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Proof (continued). We have now shown that rank(AB) ≤ rank(A).

A completely analogous argument shows that
rank(BT AT ) ≤ rank(BT ), and we deduce that

rank(AB) (∗)= rank
(
(AB)T )

= rank(BT AT )

≤ rank(BT )

(∗)= rank(B)

where both instances of (*) follow from Corollary 3.3.11(b). □
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Corollary 3.3.18
Let F be a field, and let A, B ∈ Fn×n. Then AB is invertible iff A
and B are both invertible.

Proof.

If A and B are invertible, then Proposition 1.11.8(d)
guarantees that AB is invertible.

For the other direction, assume that AB is invertible. Then by the
Invertible Matrix Theorem (version 1), we have that rank(AB) = n,
and it suffices to show that rank(A) = n and rank(B) = n.

By Theorem 3.3.17, we have that
n = rank(AB) ≤ min

{
rank(A), rank(B)

}
, and it follows that

rank(A) ≥ n and rank(B) ≥ n. But since A and B are n × n
matrices, Proposition 1.6.3 now implies that rank(A) = n and
rank(B) = n, and we are done. □
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Definition
Suppose that A ∈ Fn×m, where F is some field. A left inverse of A
is a matrix B ∈ Fm×n such that BA = Im, and a right inverse of A
is a matrix C ∈ Fm×n such that AC = In.

Thus, a left inverse (resp. right inverse) of a matrix A is a
matrix that we can multiply A by on the left (resp. on the
right) in order to obtain the identity matrix of the appropriate
size.

Consider, for example, matrices

A1 =
[

2 0 0
0 0 1/3

]
and A2 =

 1/2 0
0 0
0 3

 ,

with entries understood to be in R. Then A1A2 = I2, and
consequently, A1 is a left inverse of A2, and A2 is a right
inverse of A1.



Definition
Suppose that A ∈ Fn×m, where F is some field. A left inverse of A
is a matrix B ∈ Fm×n such that BA = Im, and a right inverse of A
is a matrix C ∈ Fm×n such that AC = In.

Thus, a left inverse (resp. right inverse) of a matrix A is a
matrix that we can multiply A by on the left (resp. on the
right) in order to obtain the identity matrix of the appropriate
size.
Consider, for example, matrices

A1 =
[

2 0 0
0 0 1/3

]
and A2 =

 1/2 0
0 0
0 3

 ,

with entries understood to be in R. Then A1A2 = I2, and
consequently, A1 is a left inverse of A2, and A2 is a right
inverse of A1.



Definition
Suppose that A ∈ Fn×m, where F is some field. A left inverse of A
is a matrix B ∈ Fm×n such that BA = Im, and a right inverse of A
is a matrix C ∈ Fm×n such that AC = In.

Obviously, a matrix need not have a left or a right inverse.
For example, zero matrices have no left inverses and no right
inverses.

On the other hand, a matrix may possibly have more than one
left inverse or more than one right inverse.
However, as Corollary 3.3.19 (next slide) shows, any matrix A
that has both a left inverse and a right inverse is in fact
invertible (and in particular, square), and moreover, both its
left inverse and its right inverse are unique are equal to A−1.
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Corollary 3.3.19
Let F be a field, let A ∈ Fn×m be a matrix, and assume that
B ∈ Fm×n is a left inverse of A (i.e. BA = Im) and that C ∈ Fm×n

is a right inverse of A (i.e. AC = In). Then A is invertible (and in
particular square, i.e. m = n), and B = C = A−1.

Proof.

First, we have that

m = rank(Im) (∗)= rank(BA)
(∗∗)
≤ min

{
rank(B), rank(A)

} (∗∗∗)
≤ n,

where (*) follows from the fact that BA = Im, (**) follows from
Theorem 3.3.17, and (***) follows from Proposition 1.6.3
(because A is an n × m matrix and B is an m × n matrix).

Since AC = In, an analogous argument establishes that n ≤ m (we
simply use the fact that AC = In instead of BA = Im).

So, m = n. In particular, we have that A, B, C ∈ Fn×n, and that
BA = Im = In and AC = In.
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)C = InC = C .

So, AB = BA = In. Thus, A is invertible, and its inverse is
B = C . This completes the argument. □
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But now

B = BIn = B(AC︸︷︷︸
=In

) = ( BA︸︷︷︸
=In

)C = InC = C .

So, AB = BA = In.

Thus, A is invertible, and its inverse is
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B ∈ Fm×n is a left inverse of A (i.e. BA = Im) and that C ∈ Fm×n

is a right inverse of A (i.e. AC = In). Then A is invertible (and in
particular square, i.e. m = n), and B = C = A−1.

Remark: Corollary 3.3.19 is the reason that we defined
invertibility only for square matrices.

Any reasonable definition of an invertible matrix would entail
the existence of both a left and a right inverse for that matrix,
and by Corollary 3.3.19, only square matrices can have both a
left and a right inverse.



Reminder:
Theorem 3.3.17
Let F be a field, and let A ∈ Fn×m and B ∈ Fm×p. Then

rank(AB) ≤ min
{

rank(A), rank(B)
}

.

As a corollary of Theorem 3.3.17 for square matrices, we get
the following.

Corollary 3.3.20
Let F be field, and let A, B ∈ Fn×n be such that AB = In or
BA = In. Then AB = BA = In, i.e. A and B are both invertible
and are each other’s inverses.

Proof: Lecture Notes.
Remark: Note that Corollary 3.3.20 implies that if a square
matrix A has a left or a right inverse B, then B is in fact a
“two-sided inverse” of A, i.e. the (ordinary) inverse of A, and
in particular, A is invertible.
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4 The null space of a matrix

Definition
For field F and a matrix A ∈ Fn×m, we define the null space of A,
denoted by Nul(A), to be the set of all solutions of the
homogeneous matrix-vector equation Ax = 0, i.e.

Nul(A) :=
{
x ∈ Fm | Ax = 0

}
.

Notation: In some texts, notation Ker(A) is used instead of
Nul(A). “Ker” stands for “kernel.”

Proposition 3.3.25
Let F be a field, and let A ∈ Fn×m. Then Nul(A) is a subspace of
Fm.

Proof: Lecture Notes.
Terminology: The dimension of Nul(A) is called the nullity of
the matrix A.
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Proposition 3.3.26
Let F be a field, and let A ∈ Fm×n. Then the columns of A are
linearly independent iff Nul(A) = {0}.

Proof.

By definition, Nul(A) is the set of all solutions of the
homogeneous matrix-vector equation Ax = 0; consequently,

Nul(A) = {0} ⇐⇒ the homogeneous matrix-vector equation Ax = 0
has only the trivial solution (i.e. the sol’n x = 0)

(∗)⇐⇒ the columns of A are linearly independent,

where (*) follows from Proposition 3.2.1. □
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Example 3.3.27
Let

A =

 1 0 1 0 1
0 1 0 1 0
1 1 1 1 1

 ,

with entries understood to be in Z2. Find a basis of Nul(A).
What is dim

(
Nul(A)

)
?

Solution.

We begin by finding the general solution of the
homogeneous matrix-vector equation Ax = 0. By row reducing, we
get

RREF(A) =

 1 0 1 0 1
0 1 0 1 0
0 0 0 0 0

 .
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Solution (continued). Reminder:
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So,

B :=
{
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
1
0
0
0
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
}

is a basis of Nul(A), and it follows that dim
(
Nul(A)

)
= 3. □
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Remark: Let A ∈ Fn×m (where F is some field).

1 We note that dim
(
Nul(A)

)
(i.e. the number of vectors in any

basis of Nul(A)) will always be equal to the number of free
variables in the general solution of the homogeneous
matrix-vector equation Ax = 0.

We omit a fully formal proof of this, but the basic argument is
as in our solution of Example 3.3.27.

2 If the homogeneous matrix-vector equation Ax = 0 has only
the trivial solution, i.e. the solution x = 0, then Nul(A) = {0},
and ∅ is the (unique) basis of Nul(A).
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The rank–nullity theorem (matrix version).
Let F be a field, and let A ∈ Fn×m. Then

rank(A) + dim
(
Nul(A)

)
= m︸︷︷︸

= number of
columns of A

.

An informal diagram summarizing the rank-nullity theorem
(matrix version):

rank(A)︸ ︷︷ ︸
= number of

pivot
columns of A

= number of
basic variables

+ dim
(
Nul(A)

)︸ ︷︷ ︸
= number of

non-pivot
columns of A

= number of
free variables

= m︸︷︷︸
= number of

columns of A



5 The Invertible Matrix Theorem (version 2)

The Invertible Matrix Theorem (version 2)
Let F be a field, and let A ∈ Fn×n be a square matrix. Further, let
f : Fn → Fn be given by f (x) = Ax for all x ∈ Fn.a Then the
following are equivalent:

(a) A is invertible (i.e. A has an inverse);
(b) AT is invertible;
(c) RREF(A) = In;
(d) RREF

( [
A In

] )
=

[
In B

]
for some matrix B ∈ Fn×n;

(e) rank(A) = n;
(f) rank(AT ) = n;
(g) A is a product of elementary matrices;

aSince f is a matrix transformation, Proposition 1.10.4 guarantees that f is
linear. Moreover, A is the standard matrix of f .
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The Invertible Matrix Theorem (version 2) - continued

(h) the homogeneous matrix-vector equation Ax = 0 has only the
trivial solution (i.e. the solution x = 0);

(i) there exists some vector b ∈ Fn such that the matrix-vector
equation Ax = b has a unique solution;

(j) for all vectors b ∈ Fn, the matrix-vector equation Ax = b has
a unique solution;

(k) for all vectors b ∈ Fn, the matrix-vector equation Ax = b has
at most one solution;

(l) for all vectors b ∈ Fn, the matrix-vector equation Ax = b is
consistent;

(m) f is one-to-one;
(n) f is onto;
(o) f is an isomorphism;



The Invertible Matrix Theorem (version 2) - continued

(p) there exists a matrix B ∈ Fn×n such that BA = In (i.e. A has
a left inverse);

(q) there exists a matrix C ∈ Fn×n such that AC = In (i.e. A has
a right inverse);

(r) the columns of A are linearly independent;
(s) the columns of A span Fn (i.e. Col(A) = Fn);
(t) the columns of A form a basis of Fn;
(u) the rows of A are linearly independent;
(v) the rows of A span F1×n (i.e. Row(A) = F1×n);
(w) the rows of A form a basis of F1×n;
(x) Nul(A) = {0} (i.e. dim

(
Nul(A)

)
= 0).


