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This lecture covers sections 1.4-1.8 of the Lecture Notes
(https://iuuk.mff.cuni.cz/˜ipenev/LALectureNotes.pdf).
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This lecture has six parts:

1 Algebraic operations on vectors and linear span
2 Matrix-vector multiplication
3 Matrix-vector equations
4 The rank of a matrix
5 Matrix operations
6 The transpose of a matrix
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1 Algebraic operations on vectors and linear span

Let F be a field.

For vectors x =

 x1
...

xn

 and y =

 y1
...

yn

 in Fn, we define

x + y :=

 x1 + y1
...

xn + yn

; x − y :=

 x1 − y1
...

xn − yn

.

For a vector x =

 x1
...

xn

 in Fn and a scalar α ∈ F, we define

αx :=

 αx1
...

αxn

.
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Example 1.4.1

Consider the vectors x =


0
1
2
2

 and y =


1
0
2
1

 in Z4
3. Then

x + y =


0 + 1
1 + 0
2 + 2
2 + 1

 =


1
1
1
0

; 2x =


2 · 0
2 · 1
2 · 2
2 · 2

 =


0
2
1
1

.



Vector addition and scalar multiplication in R2 have a nice
geometric interpretation.

To add two vectors in R2, say a =
[

a1
a2

]
and b =

[
b1
b2

]
,

we apply the “parallelogram rule.”

x1

x2

a1

a2
a

b1

b2

a2 + b2

a2 + b2

a + b

b



Scalar multiplication can be interpreted as follows.

Suppose we are given a vector a =
[

a1
a2

]
and a scalar c ∈ R.

If c > 0:

x1

x2

a1

a2
a

x1

x2

ca1

ca2

ca

c > 0

If c < 0:

x1

x2

a1

a2
a

ca

ca1

ca2

(c < 0)

If c = 0, then ca = 0, which is simply the origin.
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For vectors a =
[

a1
a2

]
and b =

[
b1
b2

]
in R2, we note that

a− b = a + (−1)b.

x1

x2

a
a− b

b

−b

For vectors in R3, we have a similar geometric interpretation
of vector addition and scalar multiplication (and vector
subtraction), only in the three-dimensional Euclidean space.
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Definition
Suppose F is some field. A linear combination of vectors v1, . . . , vk
in Fn is any sum of the form

k∑
i=1

αivi = α1v1 + · · ·+ αkvk ,

where α1, . . . , αk are scalars from the field F.



For example, in R3, vectors

 5
6
5

,

 0
3
0

, and

 −3
−9
−3

 are

linear combinations of the vectors

 1
3
1

 and

 1
0
1

 because

 5
6
5

 = 2

 1
3
1

 + 3

 1
0
1

; 0
3
0

 =

 1
3
1

−
 1

0
1

 = 1

 1
3
1

 + (−1)

 1
0
1

; −3
−9
−3

 = −3

 1
3
1

 = (−3)

 1
3
1

 + 0

 1
0
1

.

Similarly,
[

2
1

]
is a linear combination of the vector

[
1
2

]
in Z2

3 because
[

2
1

]
= 2

[
1
2

]
.
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Definition
Suppose F is some field. A linear combination of vectors v1, . . . , vk
in Fn is any sum of the form

k∑
i=1

αivi = α1v1 + · · ·+ αkvk ,

where α1, . . . , αk are scalars from the field F.

We note that in Fn (where F is a field), the zero vector 0 is a
linear combination of any vectors v1, . . . , vk because

0 = 0v1 + · · ·+ 0vk .

Moreover, we define the “empty sum” of vectors in Fn (or the
sum of an “empty list” of vectors in Fn) to be 0, where 0 is
the zero vector in Fn.
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Definition
The linear span (or simply span) of vectors v1, . . . , vk in Fn (where
F is a field), denoted by Span({v1, . . . , vk}) or simply
Span(v1, . . . , vk), is the set of all linear combinations of vectors
v1, . . . , vk . In other words,

Span(v1, . . . , vk) =
{ k∑

i=1
αivi | α1, . . . , αk ∈ F

}
.

So, by definition, a vector v belongs to Span(v1, . . . , vk) iff it
can be written as a linear combination the vectors v1, . . . , vk .
As a special case, the empty sum of vectors is equal to the
zero vector, and so Span(∅) = {0}.
Obviously, Span(0) = {0}.
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Here is a geometric intuition for the special case of Rn.

As we discussed above, Span(∅) = {0} and Span(0) = {0}.
If v ̸= 0, then Span(v) = {αv | α ∈ R} is the line through the
origin containing v: indeed, Span(v) is the set of all scalar
multiples of v, which is precisely the line through 0 and v.

Span(v)

v

x1

x2
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What if we have two vectors v1 and v2?

If neither of those vectors is a scalar multiple of the other
(and in particular, neither of the two vectors is 0), then
Span(v1, v2) is the plane through 0, v1, v2.
The case that is particularly easy to visualize is that of the

vectors e1 :=

 1
0
0

 and e2 :=

 0
1
0

 in R3:

Span(e1, e2) =
{

a1e1 + a2e2 | a1, a2 ∈ R
}

=
{  a1

a2
0

 | a1, a2 ∈ R
}

,

which is simply the x1x2-plane in R3 (next slide).
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e1 =


1

0

0



e2 =


0

1

0



x1

x2

x3

Span(e1, e2)

Span(e1, e2) =
{

a1e1 + a2e2 | a1, a2 ∈ R
}

=
{  a1

a2
0

 | a1, a2 ∈ R
}



But what if we have two vectors, one of which is a scalar
multiple of the other?

If v1, v2 ∈ Rn, with v2 = αv1 for some scalar α ∈ R and
v1 ̸= 0, then Span(v1, v2) is the line through the origin, v1,
and v2.

Span(v1,v2)

v1

x1

x2

v2 = αv1

In general, for vectors v1, . . . , vk in Rn, the set
Span(v1, . . . , vk) is the smallest “flat” (point, line, plane, or
higher dimensional generalization) containing the origin and
all the vectors v1, . . . , vk .
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2 Matrix-vector multiplication

Definition
Suppose that F is some field. Given a matrix A ∈ Fn×m and a
vector x ∈ Fm, say

A =
[

a1 . . . am
]

and x =

 x1
...

xm

 ,

we define the matrix-vector product Ax as follows:

Ax :=
m∑

i=1
xiai = x1a1 + · · ·+ xmam.

Thus, Ax is a linear combination of the columns of A, and the
weights/scalars in front of the columns are determined by the
entries of the vector x.
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Reminder: For a matrix A =
[

a1 . . . am
]
Fn×m and

vector x =

 x1
...

xm

 in Fm (where F is a field):

Ax =
m∑

i=1
xiai = x1a1 + · · ·+ xmam.

Note that, for the matrix-vector product Ax to be defined,
two conditions must be satisfied:

entries of the matrix A and entries of the vector x must belong
to the same field;
the number of columns of A must be the same as the number
of entries of x.

Schematically, we have the following:

A︸︷︷︸
∈Fn×m

x︸︷︷︸
∈Fm

= Ax︸︷︷︸
∈Fn

.
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Example 1.4.2
Consider the matrix A ∈ R3×2 and vector x ∈ R2, given below:

A =

 −1 2
2 0
3 −2

 and x =
[

2
3

]
.

Then

Ax =

 −1 2
2 0
3 −2

 [
2
3

]

= 2

 −1
2
3

 + 3

 2
0
−2



=

 4
4
0

 .



Example 1.4.3
Consider the matrix A ∈ Z2×3

2 and vector x ∈ Z3
2, given below:

A =
[

1 1 0
1 0 1

]
and x =

 1
1
0

 .

Then

Ax =
[

1 1 0
1 0 1

]  1
1
0



= 1
[

1
1

]
+ 1

[
1
0

]
+ 0

[
0
1

]

=
[

0
1

]
.



Proposition 1.4.4
Let F be a field, let a1, . . . , am ∈ Fn, and set A :=

[
a1 . . . am

]
.

Then
Span(a1, . . . , am) =

{
Ax | x ∈ Fm}

.

Proof.

We compute:

Span(a1, . . . , am) =
{

x1a1 + · · ·+ xmam | x1, . . . , xm ∈ F
}

=
{ [

a1 . . . am
]  x1

...
xm

 | x1, . . . , xm ∈ F
}

=
{

Ax | x ∈ Fm}
.

This completes the argument. □



Proposition 1.4.4
Let F be a field, let a1, . . . , am ∈ Fn, and set A :=

[
a1 . . . am

]
.

Then
Span(a1, . . . , am) =

{
Ax | x ∈ Fm}

.

Proof. We compute:

Span(a1, . . . , am) =
{

x1a1 + · · ·+ xmam | x1, . . . , xm ∈ F
}

=
{ [

a1 . . . am
]  x1

...
xm

 | x1, . . . , xm ∈ F
}

=
{

Ax | x ∈ Fm}
.

This completes the argument. □



Proposition 1.4.4
Let F be a field, let a1, . . . , am ∈ Fn, and set A :=

[
a1 . . . am

]
.

Then
Span(a1, . . . , am) =

{
Ax | x ∈ Fm}

.

Remark: Suppose that a1, . . . , am ∈ Fn, where F is some
field, and set A :=

[
a1 . . . am

]
.

Proposition 1.4.4 states that Span(a1, . . . , am), which we
defined as the set of all linear combinations of the vectors
a1, . . . , am, is in fact the set of all possible matrix-vector
products Ax.

Here, our matrix A =
[

a1 . . . am
]

is fixed, and the
vector x ∈ Fm is allowed to vary.

Span(a1, . . . , am), the span of the columns of A, has a special
name: it is called the “column space” of the matrix A, and it is
denoted by Col(A).

To be studied later in the course.
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Let F be a field. For each positive integer n and index
i ∈ {1, . . . , n}, the vector en

i is the vector in Fn whose i-th
entry is 1, and all of whose other entries are 0’s.

en
i =



0
...
0
1
0
...
0


←− i-th entry

When n is clear from context, we drop the superscript n, and
we write e1, . . . , en instead of en

1, . . . , en
n, respectively.

Vectors e1, . . . , en are called the standard basis vectors of Fn,
and the set En := {e1, . . . , en} is called the standard basis of
Fn.



en
i =



0
...
0
1
0
...
0


←− i-th entry

We note that any vector v =

 v1
...

vn

 in Fn can be expressed

as a linear combination of the standard basis vectors
e1, . . . , en in a unique way, namely

v = v1e1 + · · ·+ vnen.



Proposition 1.4.5

Let F be a field, and let A =
[

a1 . . . am
]

be a matrix in
Fn×m. Then for all indices i ∈ {1, . . . , m}, we have that Aem

i = ai .

Remark: Proposition 1.4.4 states that multiplying a matrix
by the i-th standard basis vector yields the i-th column of the
matrix that we started with.



Proposition 1.4.5

Let F be a field, and let A =
[

a1 . . . am
]

be a matrix in
Fn×m. Then for all indices i ∈ {1, . . . , m}, we have that Aem

i = ai .

Proof. Fix i ∈ {1, . . . , m}. Then

Aem
i =

[
a1 . . . ai−1 ai ai+1 . . . am

]


0
...
0
1
0
...
0


←− i-th entry

= 0a1 + · · ·+ 0ai−1 + 1ai + 0ai+1 + · · ·+ 0am = ai ,

which is what we needed to show. □



For a field F, the identity matrix in Fn×n is the n × n matrix

In :=
[

en
1 . . . en

n

]
.

In other words, the identity matrix In is the n × n matrix with
1’s on the main diagonal and 0’s elsewhere (where the 1’s and
the 0’s are from the field F). Schematically, we have that

In =



1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1


n×n

for all positive integers n.
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Proposition 1.4.6
Let F be a field. Then for all vectors v ∈ Fn, we have that Inv = v.

Remark: Proposition 1.4.5 states that if we multiply the
identity matrix by a vector, we obtain that same vector.

For any vector v =

 v1
...

vn

 in Fn, we have that (next slide):



Inv =
[

en
1 en

2 . . . en
n

]


v1
v2
...

vn


= v1en

1 + v2en
2 + · · ·+ vnen

n

= v1


1
0
...
0

 + v2


0
1
...
0

 + · · ·+ vn


0
0
...
1



=


v1
v2
...

vn

 = v. □



Proposition 1.4.5

Let F be a field, and let A =
[

a1 . . . am
]

be a matrix in
Fn×m. Then for all indices i ∈ {1, . . . , m}, we have that Aem

i = ai .

Proposition 1.4.6
Let F be a field. Then for all vectors v ∈ Fn, we have that Inv = v.

Proposition 1.4.6
Let F be a field. Then both the following hold:

(a) for all v ∈ Fm, we have that On×mv = 0;a
(b) for all matrices A ∈ Fn×m, we have that A0 = 0.b

aHere, the zero vector 0 belongs to Fn.
bIn the expression A0 = 0, we have that 0 ∈ Fm and 0 ∈ Fn.

Proof. This readily follows from the definition of matrix-vector
multiplication.
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3 Matrix-vector equations

A matrix-vector equation is an equation of the form

Ax = b,

where the matrix A and vector b are known, and the vector x
is unknown.

Here, the entries of A and b must come from the same field F.
Moreover, the number of rows of A must be the same as the
number of entries of b.
Any solution x will then be a vector in Fm, where m is the
number of columns of A.

A matrix-vector equation Ax = b is equivalent to a system of
linear equations whose augmented matrix is

[
A b

]
.

Details: next slide.
The matrix

[
A b

]
will also be referred to as the augmented

matrix of the matrix-vector equation Ax = b.
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Ax = b ⇐⇒

 a1,1 a1,2 . . . a1,m
a2,1 a2,2 . . . a2,m

...
...

. . .
...

an,1 an,2 . . . an,m


︸ ︷︷ ︸

=A

 x1
x2
...

xm


︸ ︷︷ ︸

=x

=

 b1
b2
...

bn


︸ ︷︷ ︸

=b

⇐⇒ x1

 a1,1
a2,1

...
an,1

 + x2

 a1,2
a2,2

...
an,2

 + · · · + xm

 a1,m
a2,m

...
an,m

 =

 b1
b2
...

bn



⇐⇒

 a1,1x1 + a1,2x2 + · · · + a1,mxm
a2,1x1 + a2,2x2 + · · · + a2,mxm

...
an,1x1 + an,2x2 + · · · + an,mxm

 =

 b1
b2
...

bn



⇐⇒


a1,1x1 + a1,2x2 + · · · + a1,mxm = b1
a2,1x1 + a2,2x2 + · · · + a2,mxm = b2

...
an,1x1 + an,2x2 + · · · + an,mxm = bn



Example 1.5.1
Solve the matrix-vector equation Ax = b, where

A =
[

1 2
3 6

]
and b =

[
2
6

]
,

with entries understood to be in R. How many solutions does the
matrix-vector equation Ax = b have?

Solution.

The augmented matrix of Ax = b is[
A b

]
=

[
1 2 2
3 6 6

]
.

We now row reduce in order to find RREF
( [

A b
] )

, as follows:

[
A b

]
=

[
1 2 2
3 6 6

]
R3→R3−3R1∼

[
1 2 2
0 0 0

]
.
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3 6 6
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.



Example 1.5.1
Solve the matrix-vector equation Ax = b, where

A =
[

1 2
3 6

]
and b =

[
2
6

]
,

with entries understood to be in R. How many solutions does the
matrix-vector equation Ax = b have?

Solution. The augmented matrix of Ax = b is[
A b

]
=

[
1 2 2
3 6 6

]
.

We now row reduce in order to find RREF
( [

A b
] )

, as follows:

[
A b

]
=

[
1 2 2
3 6 6

]
R3→R3−3R1∼

[
1 2 2
0 0 0

]
.



Solution (continued). The last matrix from the computation above
is in reduced row echelon form, and we deduce that

RREF
( [

A b
] )

=
[

1 2 2
0 0 0

]
.

The matrix RREF
( [

A b
] )

is the augmented matrix of the
linear system below.

x1 + 2x2 = 2
0 = 0

The system is consistent, with one free variable (namely, x2). We
read off the solutions as follows.

x1 = −2s + 2
x2 = s, where s ∈ R.



Solution (continued). The last matrix from the computation above
is in reduced row echelon form, and we deduce that

RREF
( [

A b
] )

=
[

1 2 2
0 0 0

]
.

The matrix RREF
( [

A b
] )

is the augmented matrix of the
linear system below.

x1 + 2x2 = 2
0 = 0

The system is consistent, with one free variable (namely, x2). We
read off the solutions as follows.

x1 = −2s + 2
x2 = s, where s ∈ R.



Solution (continued). The last matrix from the computation above
is in reduced row echelon form, and we deduce that

RREF
( [

A b
] )

=
[

1 2 2
0 0 0

]
.

The matrix RREF
( [

A b
] )

is the augmented matrix of the
linear system below.

x1 + 2x2 = 2
0 = 0

The system is consistent, with one free variable (namely, x2). We
read off the solutions as follows.

x1 = −2s + 2
x2 = s, where s ∈ R.



Solution (continued). So, the general solution of the matrix-vector
equation Ax = b is

x =
[
−2s + 2

s

]
, where s ∈ R.

Here is another way to write the general solution of the
matrix-vector equation Ax = b:

x =
[

2
0

]
+ s

[
−2

1

]
, where s ∈ R.

The set of solutions of the matrix-vector equation Ax = b is

{ [
−2s + 2

s

]
| s ∈ R

}
=

{ [
2
0

]
+ s

[
−2

1

]
| s ∈ R

}
.

Since the parameter s can take infinitely many values (because R
is infinite), the matrix-vector equation Ax = b has infinitely many
solutions. □
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Solution (continued). So, the general solution of the matrix-vector
equation Ax = b is

x =
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−2s + 2

s
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, where s ∈ R.
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1
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Since the parameter s can take infinitely many values (because R
is infinite), the matrix-vector equation Ax = b has infinitely many
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Reminder: The solution set is{ [
−2s + 2

s

]
| s ∈ R

}
=

{ [
2
0

]
+ s

[
−2

1

]
| s ∈ R

}
.

This solution set has a geometric interpretation:

{
s

[
−2

1

]
| s ∈ R

}
︸ ︷︷ ︸

=Span

( −2

1

)

{[
2

0

]
+ s

[
−2

1

]
| s ∈ R

}
︸ ︷︷ ︸

=

 2

0

+Span

( −2

1

)

[
2

0

]
x1

x2[
−2

1

]



Reminder: The solution set is{ [
−2s + 2

s

]
| s ∈ R

}
=

{ [
2
0

]
+ s

[
−2

1

]
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}
.
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−2
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︸ ︷︷ ︸
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)

{[
2

0
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−2

1
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=

 2

0

+Span

( −2

1

)

[
2

0

]
x1

x2[
−2

1

]



Example 1.5.2
Solve the matrix-vector equation Ax = b, where

A =

 1 2 0 1
1 0 1 0
2 2 1 1

 and b =

 2
2
0

 ,

with entries understood to be in Z3. How many solutions does the
matrix-vector equation Ax = b have?

Solution.

The augmented matrix of the matrix-vector equation
Ax = b is

[
A b

]
=

 1 2 0 1 2
1 0 1 0 2
2 2 1 1 0

 .

We now row reduce in order to find RREF
( [

A b
] )

, as follows
(next slide):
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Example 1.5.2
Solve the matrix-vector equation Ax = b, where

A =

 1 2 0 1
1 0 1 0
2 2 1 1

 and b =

 2
2
0
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with entries understood to be in Z3. How many solutions does the
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Solution. The augmented matrix of the matrix-vector equation
Ax = b is

[
A b

]
=

 1 2 0 1 2
1 0 1 0 2
2 2 1 1 0

 .

We now row reduce in order to find RREF
( [

A b
] )

, as follows
(next slide):



Solution (continued).[
A b

]
=

[
1 2 0 1 2
1 0 1 0 2
2 2 1 1 0

]
R2→R2+2R1
R3→R3+R1∼

[
1 2 0 1 2
0 1 1 2 0
0 1 1 2 2

]
R3→R3+2R2∼

[
1 2 0 1 2
0 1 1 2 0
0 0 0 0 2

]
R3→2R3∼

[
1 2 0 1 2
0 1 1 2 0
0 0 0 0 1

]
R1→R1+R3∼

[
1 2 0 1 0
0 1 1 2 0
0 0 0 0 1

]
R1→R1+R2∼

[
1 0 1 0 0
0 1 1 2 0
0 0 0 0 1

]
.



Solution (continued). The last matrix from the computation above
is in reduced row echelon form, and we deduce that

RREF
( [

A b
] )

=

 1 0 1 0 0
0 1 1 2 0
0 0 0 0 1

 .

We see from RREF
( [

A b
] )

that the rightmost column of[
A b

]
is a pivot column; consequently, the matrix-vector

equation Ax = b is inconsistent, i.e. the solution set of the
equation Ax = b is ∅. (The number of solutions of the
matrix-vector equation Ax = b is zero.) □

Here is the row reduction again (next slide):
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Solution (continued). The last matrix from the computation above
is in reduced row echelon form, and we deduce that

RREF
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 .

We see from RREF
( [
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that the rightmost column of[
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]
is a pivot column; consequently, the matrix-vector

equation Ax = b is inconsistent, i.e. the solution set of the
equation Ax = b is ∅. (The number of solutions of the
matrix-vector equation Ax = b is zero.) □

Here is the row reduction again (next slide):



[
A b

]
=

[
1 2 0 1 2
1 0 1 0 2
2 2 1 1 0

]
R2→R2+2R1
R3→R3+R1∼

[
1 2 0 1 2
0 1 1 2 0
0 1 1 2 2

]
R3→R3+2R2∼

[
1 2 0 1 2
0 1 1 2 0
0 0 0 0 2

]
R3→2R3∼

[
1 2 0 1 2
0 1 1 2 0
0 0 0 0 1

]
R1→R1+R3∼

[
1 2 0 1 0
0 1 1 2 0
0 0 0 0 1

]
R1→R1+R2∼

[
1 0 1 0 0
0 1 1 2 0
0 0 0 0 1

]
.



[
A b

]
∼

 1 2 0 1 2
0 1 1 2 0
0 0 0 0 2



We could in fact have stopped as soon as we got the red
matrix (despite the fact that this matrix is not in reduced row
echelon form).
This is because the bottom row of the red matrix encodes the
equation 0 = 2, which is has no solutions.
Indeed, as soon as we obtain a row of the form[

0 . . . 0 ■
]
, where ■ is a non-zero number, we can

stop row reducing, and we can deduce that the system has no
solutions (because this row encodes the equation 0 = ■, and
■ is non-zero).
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Indeed, as soon as we obtain a row of the form[

0 . . . 0 ■
]
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stop row reducing, and we can deduce that the system has no
solutions (because this row encodes the equation 0 = ■, and
■ is non-zero).



[
A b

]
∼

 1 2 0 1 2
0 1 1 2 0
0 0 0 0 2


We could in fact have stopped as soon as we got the red
matrix (despite the fact that this matrix is not in reduced row
echelon form).
This is because the bottom row of the red matrix encodes the
equation 0 = 2, which is has no solutions.

Indeed, as soon as we obtain a row of the form[
0 . . . 0 ■

]
, where ■ is a non-zero number, we can

stop row reducing, and we can deduce that the system has no
solutions (because this row encodes the equation 0 = ■, and
■ is non-zero).



[
A b

]
∼

 1 2 0 1 2
0 1 1 2 0
0 0 0 0 2


We could in fact have stopped as soon as we got the red
matrix (despite the fact that this matrix is not in reduced row
echelon form).
This is because the bottom row of the red matrix encodes the
equation 0 = 2, which is has no solutions.
Indeed, as soon as we obtain a row of the form[

0 . . . 0 ■
]
, where ■ is a non-zero number, we can

stop row reducing, and we can deduce that the system has no
solutions (because this row encodes the equation 0 = ■, and
■ is non-zero).



4 The rank of a matrix

The rank of a matrix A (with entries in some field F), denoted
by rank(A), is the number of pivot columns of A.
Equivalently, rank(A) is the number of pivot positions of A, or
the number of non-zero rows of any row echelon form of A.
To find the rank of a matrix, we first find some row echelon
form of that matrix (e.g. by performing the forward phase of
row reduction; the backward phase is optional), and we count
the number of pivot columns (or alternatively, the number of
pivot positions, or the number of non-zero rows) of that row
echelon matrix.

0 ■ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ■ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ■ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 ■ ∗ ∗
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0





Example 1.6.1
Find the rank of each of the following matrices.

(a) A =

 0 −3 −6 3 4 −1
2 1 −4 13 −4 3
2 3 0 11 −6 5

, with entries understood

to be in R;

(b) B =


0 1 1 0 2
2 1 0 1 1
2 1 1 1 1
1 0 2 2 1

, with entries understood to be in Z3.



Example 1.6.1
Find the rank of each of the following matrices.

(a) A =

 0 −3 −6 3 4 −1
2 1 −4 13 −4 3
2 3 0 11 −6 5

, with entries understood

to be in R;

Solution#1.

(a) In Example 1.3.9, we computed

RREF(A) =

 1 0 −3 7 0 4
0 1 2 −1 0 3
0 0 0 0 1 2

 .

The matrix RREF(A) has three pivot columns (equivalently: three
pivot positions or three non-zero rows), and so rank(A) = 3. □



Example 1.6.1
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Example 1.6.1
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(a) A =

 0 −3 −6 3 4 −1
2 1 −4 13 −4 3
2 3 0 11 −6 5

, with entries understood

to be in R;

Solution#2.

(a) In Example 1.3.9, we saw that the matrix A is row
equivalent to the following matrix in row echelon form: 2 3 0 11 −6 5

0 −2 −4 2 2 −2
0 0 0 0 1 2

 .

This row echelon matrix has three pivot columns (equivalently:
three pivot positions or three non-zero rows), and so
rank(A) = 3. □
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(a) A =

 0 −3 −6 3 4 −1
2 1 −4 13 −4 3
2 3 0 11 −6 5

, with entries understood

to be in R;

Solution#2. (a) In Example 1.3.9, we saw that the matrix A is row
equivalent to the following matrix in row echelon form: 2 3 0 11 −6 5

0 −2 −4 2 2 −2
0 0 0 0 1 2

 .

This row echelon matrix has three pivot columns (equivalently:
three pivot positions or three non-zero rows), and so
rank(A) = 3. □



Example 1.6.1
Find the rank of each of the following matrices.

(a) A =

 0 −3 −6 3 4 −1
2 1 −4 13 −4 3
2 3 0 11 −6 5

, with entries understood

to be in R;

Solution#2. (a) In Example 1.3.9, we saw that the matrix A is row
equivalent to the following matrix in row echelon form: 2 3 0 11 −6 5

0 −2 −4 2 2 −2
0 0 0 0 1 2

 .

This row echelon matrix has three pivot columns (equivalently:
three pivot positions or three non-zero rows), and so
rank(A) = 3. □



Example 1.6.1
Find the rank of each of the following matrices.

(b) B =


0 1 1 0 2
2 1 0 1 1
2 1 1 1 1
1 0 2 2 1

, with entries understood to be in Z3.

Solution#1.

(b) In Example 1.3.10, we computed

RREF(B) =


1 0 0 2 1
0 1 0 0 2
0 0 1 0 0
0 0 0 0 0

 .

The matrix RREF(B) has three pivot columns (equivalently: three
pivot positions or three non-zero rows), and so rank(B) = 3. □
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0 1 0 0 2
0 0 1 0 0
0 0 0 0 0
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The matrix RREF(B) has three pivot columns (equivalently: three
pivot positions or three non-zero rows), and so rank(B) = 3. □
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0 0 0 0 0

 .

The matrix RREF(B) has three pivot columns (equivalently: three
pivot positions or three non-zero rows), and so rank(B) = 3. □



Example 1.6.1
Find the rank of each of the following matrices.

(b) B =


0 1 1 0 2
2 1 0 1 1
2 1 1 1 1
1 0 2 2 1

, with entries understood to be in Z3.

Solution#2.

(b) In Example 1.3.10, we saw that the matrix B is
row equivalent to the following matrix in row echelon form:

1 0 2 2 1
0 1 2 0 2
0 0 1 0 0
0 0 0 0 0

 .

This row echelon matrix has three pivot columns (equivalently:
three pivot positions or three non-zero rows), and so
rank(B) = 3. □



Example 1.6.1
Find the rank of each of the following matrices.

(b) B =


0 1 1 0 2
2 1 0 1 1
2 1 1 1 1
1 0 2 2 1

, with entries understood to be in Z3.

Solution#2. (b) In Example 1.3.10, we saw that the matrix B is
row equivalent to the following matrix in row echelon form:

1 0 2 2 1
0 1 2 0 2
0 0 1 0 0
0 0 0 0 0

 .

This row echelon matrix has three pivot columns (equivalently:
three pivot positions or three non-zero rows), and so
rank(B) = 3. □



Example 1.6.1
Find the rank of each of the following matrices.

(b) B =


0 1 1 0 2
2 1 0 1 1
2 1 1 1 1
1 0 2 2 1

, with entries understood to be in Z3.

Solution#2. (b) In Example 1.3.10, we saw that the matrix B is
row equivalent to the following matrix in row echelon form:

1 0 2 2 1
0 1 2 0 2
0 0 1 0 0
0 0 0 0 0

 .

This row echelon matrix has three pivot columns (equivalently:
three pivot positions or three non-zero rows), and so
rank(B) = 3. □



Corollary 1.3.8
Two matrices (with entries in some field) are row equivalent iff
they have the same reduced row echelon form.

Proposition 1.6.2
Row equivalent matrices (with entries in some field) have the same
rank.

Proof (outline). By Corollary 1.3.8, row equivalent matrices have
te same RREF. By definition, the rank of a matrix can be read off
from its RREF (it is simply the number of non-zero rows of the
RREF). □
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
Proposition 1.6.3
Let A be an n ×m matrix (with entries in some field F). Then
rank(A) ≤ min{n, m}.a

aThis means that rank(A) ≤ n (i.e. rank(A) is at most the number of rows
of A) and rank(A) ≤ m (i.e. rank(A) is at most the number of columns of A).

Proof: Follows immediately from the definition of rank. (The
full details are in the lecture notes.)
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if rank(A) < min{n, m}, then A is said to be rank-deficient.
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As Theorem 1.6.4 (next slide) shows, the number of solutions
of a matrix-vector equation Ax = b can easily be determined
if we know the size of the matrix A (i.e. the number of rows
and columns of A) and we also know rank(A) and
rank

( [
A b

] )
.

The detailed proof of Theorem 1.6.4 is in the Lecture Notes.
An outline of the proof: on the board!



Theorem 1.6.4
Let F be a field, and let A ∈ Fn×m and b ∈ Fn. Then

rank(A) ≤ rank(
[

A b
]
) ≤ rank(A) + 1.

Moreover, all the following hold:
(a) if rank(

[
A b

]
) ̸= rank(A) (and consequently,

rank(
[

A b
]
) = rank(A) + 1), then Ax = b is inconsistent.

(b) if rank(
[

A b
]
) = rank(A) = m, then Ax = b has a unique

solution.
(c) if rank(

[
A b

]
) = rank(A) < m, then Ax = b has more

than one solution, and more precisely,
(c.1) if the field F is finite, then Ax = b has exactly |F|m−rank(A)

many solutions,
(c.2) if the field F is infinite, then Ax = b has infinitely many

solutions.



Proposition 1.6.3
Let F be a field, and let A be an n ×m matrix (with entries in
some field F). Then rank(A) ≤ min{n, m}.

Terminology: For a field F and a matrix A ∈ Fn×m (so, A
has n rows and m columns):

if rank(A) = n, then A is said to have full row rank;
if rank(A) = m, then A is said to have full column rank;
if rank(A) = min{n, m}, then A is said to have full rank;
if rank(A) < min{n, m}, then A is said to be rank-deficient.

Our next goal is to prove a derive a couple of corollaries of
Theorem 1.6.4 for matrices of full rank.
By definition, a matrix of full rank has full column rank or full
row rank (possibly both). We deal with these two cases
separately.
After that, we prove Theorem 1.6.8, which deals with square
matrices of full rank.

Note that such matrices have both full column rank and full
row rank.
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In a matrix of full column rank, all columns are pivot columns.

So, the reduced row echelon form of such a matrix is of the
form 

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0


.

More precisely, if we have an n ×m matrix of full column
rank, then the reduced row echelon form of that matrix is
obtained from the identity matrix Im by adding n −m many
zero rows to the bottom.
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A homogeneous matrix-vector equation is a matrix-vector
equation of the form Ax = 0.

Note that such an equation is always consistent: indeed,
x = 0 is a solution, called the trivial solution.

Corollary 1.6.5
Let F be a field, and let A ∈ Fn×m. Then the following are
equivalent:

(a) rank(A) = m (i.e. A has full column rank);
(b) the homogeneous matrix-vector equation Ax = 0 has only the

trivial solution (i.e. the solution x = 0);
(c) there exists some vector b ∈ Fn s.t. the matrix-vector

equation Ax = b has a unique solution;
(d) for all vectors b ∈ Fn, the matrix-vector equation Ax = b has

at most one solution.
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at most one solution.
Proof (outline).

It is enough to prove following implications:
(a) =⇒ (d)~w w�
(c) ⇐= (b)

The implications “(d) =⇒ (b)” and “(b) =⇒ (c)” are obvious,
and “(c) =⇒ (a)” and “(a) =⇒ (d) follow from Theorem 1.6.4.” □
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We now consider matrices of full row rank.

Note that matrices of full row rank are precisely those
matrices whose reduced row echelon form has no zero rows.

[
0 ■ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ■ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ■ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 ■ ∗ ∗

] [
0 1 ∗ 0 0 ∗ ∗ 0 ∗ ∗
0 0 0 1 0 ∗ ∗ 0 ∗ ∗
0 0 0 0 1 ∗ ∗ 0 ∗ ∗
0 0 0 0 0 0 0 1 ∗ ∗

]

Corollary 1.6.6
Let F be a field, and let A ∈ Fn×m. Then the following are
equivalent:

(a) rank(A) = n (i.e. A has full row rank);
(b) for all vectors b ∈ Fn, the matrix-vector equation Ax = b is

consistent.
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equivalent:

(a) rank(A) = n (i.e. A has full row rank);
(b) for all vectors b ∈ Fn, the matrix-vector equation Ax = b is

consistent.

Proof.

Suppose first that (a) holds. We must prove (b). Fix any
b ∈ Fn. Then

n = rank(A) by (a)

≤ rank(
[

A b
]
) by Theorem 1.6.4

≤ n by Proposition 1.6.3,

and it follows that rank(
[

A b
]
) = rank(A) = n. But now

Theorem 1.6.4 guarantees that the matrix-vector equation Ax = b
is consistent. Thus, (b) holds.
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Suppose now that (a) is false; we must show
that (b) is false, i.e. that there exists some b ∈ Fn s.t. Ax = b is
inconsistent. Since A is an n ×m matrix and rank(A) ̸= n,
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i ∈ {1, . . . , k}, let R ′

i be the elementary row operation that reverses
(undoes) the elementary row operation Ri . Since U has n rows and
r := rank(A) ≤ n− 1, we see that the (r + 1)-th row of U is a zero
row. Then the rightmost column of the matrix

[
U er+1

]
is a

pivot column, and consequently, Ux = er+1 is inconsistent.
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Proof (continued). Now, we perform the elementary row
operations R ′

k , . . . , R ′
1 on the matrix

[
U er+1

]
, and we obtain

the matrix
[

A b
]

for some vector b ∈ Fn.

Since matrices[
U er+1

]
and

[
A b

]
are row equivalent, the matrix-vector

equations Ux = er+1 and Ax = b are equivalent. Since the
matrix-vector equation Ux = er+1 is inconsistent, it follows that
the matrix-vector equation Ax = b is also inconsistent. Thus, (b)
is false. □
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We now consider the special case of square matrices of full
rank.

Proposition 1.6.7
Let F be a field. Then for all square matrices A ∈ Fn×n, we have
that rank(A) = n iff RREF(A) = In. In particular, rank(In) = n.

Proof. In is a matrix in reduced row echelon form, and it has n
pivot columns; so, rank(In) = n. Moreover, it is clear that In is the
only reduced row echelon form matrix in Fn×n of rank n.

Now, fix any matrix A ∈ Fn×n. By Proposition 1.6.2, we have that
rank(A) = rank

(
RREF(A)

)
. Since In is the only reduced row

echelon form matrix in Fn×n of rank n, it follows that rank(A) = n
iff RREF(A) = In. □
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Theorem 1.6.8
Let F be a field, and let A ∈ Fn×n be a square matrix. Then the
following are equivalent:

(a) rank(A) = n (i.e. the square matrix A has full rank);
(b) RREF(A) = In;
(c) the homogeneous matrix-vector equation Ax = 0 has only the

trivial solution (i.e. the solution x = 0);
(d) there exists some vector b ∈ Fn s.t. the matrix-vector

equation Ax = b has a unique solution;
(e) for all vectors b ∈ Fn, the matrix-vector equation Ax = b has

a unique solution;
(f) for all vectors b ∈ Fn, the matrix-vector Ax = b equation has

at most one solution;
(g) for all vectors b ∈ Fn, the matrix-vector equation Ax = b is

consistent.

Proof: Lecture Notes.



5 Matrix operations

Suppose that F is a field.
Given matrices A =

[
ai ,j

]
n×m

and B =
[

bi ,j
]

n×m
in

Fn×m, and given a scalar c, we define
A + B :=

[
ai,j + bi,j

]
n×m;

A− B :=
[

ai,j − bi,j
]

n×m;
cA :=

[
cai,j

]
.

Thus, we add (resp. subtract) matrices by adding (resp.
subtracting) corresponding entries, i.e.[

ai,j
]

n×m +
[

bi,j
]

n×m =
[

ai,j + bi,j
]

n×m;[
ai,j

]
n×m −

[
bi,j

]
n×m =

[
ai,j − bi,j

]
n×m.

Similarly, we multiply a matrix by a scalar (on the left) by
multiplying each entry of the matrix by that scalar, i.e.

c
[

ai,j
]

n×m =
[

cai,j
]

n×m.
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We can also multiply matrices!

Let F be a field, and suppose that we are given two matrices,
A ∈ Fn×m and B ∈ Fm×p, where B =

[
b1 . . . bp

]
.

We define
AB :=

[
Ab1 . . . Abp

]
Note that AB ∈ Fn×p.
Note that, for the product AB to be defined, the number of
columns of A must be the same as the number of rows of B.
The matrix AB has the same number of rows as A, and the
same number of columns as B.
Schematically, we get:

(n ×m) · (m × p) = (n × p).
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Example 1.7.1
Let

A =
[

1 2 −1
0 −3 1

]
and B =

 1 1
−2 1

0 −1

 ,

with entries understood to be in R. Compute AB.

Solution.

We set

b1 =

 1
−2

0

 and b2 =

 1
1
−1

,

so that B =
[

b1 b2
]
. Then AB =

[
Ab1 Ab2

]
. We

compute Ab1 =
[
−3

6

]
and Ab2 =

[
4
−4

]
, which yields

AB =
[
−3 4

6 −4

]
. □
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Proposition 1.7.2
Let F be a field, let m, n, p be positive integers, and let A ∈ Fn×m

be a matrix. Then all the following hold:
(a) InA = AIm = A;
(b) AOm×p = On×p;
(c) Op×nA = Op×m.

Proof.

Parts (b) and (c) readily follow from the appropriate
definitions (the details are left as an easy exercise). Let us
prove (a). Set A =

[
a1 . . . am

]
. To show that InA = A, we

compute (next slide):
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Let F be a field, let m, n, p be positive integers, and let A ∈ Fn×m

be a matrix. Then all the following hold:
(a) InA = AIm = A;

Proof (continued). Reminder: A =
[

a1 . . . am
]
.

InA = In
[

a1 . . . am
]

=
[

Ina1 . . . Inam
] by the definition of

matrix multiplication

=
[

a1 . . . am
]

by Proposition 1.4.5

= A.
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Let F be a field, let m, n, p be positive integers, and let A ∈ Fn×m

be a matrix. Then all the following hold:
(a) InA = AIm = A;

Proof (continued). Reminder: A =
[

a1 . . . am
]
.

On the other hand, to show that AIm = A, we compute:

AIm = A
[

em
1 . . . em

m

]

=
[

Aem
1 . . . Aem

m

] by the definition of
matrix multiplication

=
[

a1 . . . am
]

by Proposition 1.4.4

= A.

This proves (a). □
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Proof (continued). Reminder: A =
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On the other hand, to show that AIm = A, we compute:
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[
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m

]
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[
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] by the definition of
matrix multiplication

=
[

a1 . . . am
]

by Proposition 1.4.4

= A.

This proves (a). □



Proposition 1.7.2
Let F be a field, let m, n, p be positive integers, and let A ∈ Fn×m

be a matrix. Then all the following hold:
(a) InA = AIm = A;
(b) AOm×p = On×p;
(c) Op×nA = Op×m.



There is another way to compute the product of two matrices.

Suppose we are given matrices A =
[

ai,j
]

n×m and
B =

[
bi,j

]
m×p, both with entries in some field F.

Then AB is an n × p matrix whose i , j-th entry is
m∑

k=1
ai ,kbk,j ,

for all indices i ∈ {1, . . . , n} and j ∈ {1, . . . , p}.
Justification: Lecture Notes (not very hard, but notationally a
bit messy).

Another way to write this is as follows:[
ai ,j

]
n×m

[
bi ,j

]
m×p

=
[ m∑

k=1
ai ,kbk,j

]
n×p

,

where in each of the three matrices, the expression between
the square brackets is the general form of the i , j-th entry (i.e.
the entry in the i-th row and j-th column) of the matrix in
question.
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There is another way to compute the product of two matrices.
Suppose we are given matrices A =

[
ai,j

]
n×m and

B =
[

bi,j
]

m×p, both with entries in some field F.
Then AB is an n × p matrix whose i , j-th entry is

m∑
k=1

ai ,kbk,j ,

for all indices i ∈ {1, . . . , n} and j ∈ {1, . . . , p}.
Justification: Lecture Notes (not very hard, but notationally a
bit messy).

Another way to write this is as follows:[
ai ,j

]
n×m

[
bi ,j

]
m×p

=
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k=1
ai ,kbk,j

]
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,

where in each of the three matrices, the expression between
the square brackets is the general form of the i , j-th entry (i.e.
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question.



To obtain the i , j-th entry of the matrix AB, we focus on the
i-th row of A and j-th column of B.
We then take the sum of the products of the corresponding
entries of this row and column, and we obtain the i , j-th entry
of AB.



b1,1 . . . b1,j . . . b1,p
... . . . ... . . . ...

bk,1 . . . bk,j . . . bk,p
... . . . ... . . . ...

bm,1 . . . bm,j . . . bm,p




a1,1 . . . a1,k . . . a1,m
... . . . ... . . . ...

ai ,1 . . . ai ,k . . . ai ,m
... . . . ... . . . ...

an,1 . . . an,k . . . an,m




m∑

k=1
ai ,kbk,j





Example 1.7.3
Let

A =
[

1 0
1 1

]
and B =

[
1 0 1
1 1 0

]
,

with entries understood to be in Z2. Compute the matrix AB.

Solution.

We compute as shown below (the rows of A are color
coded, as are the columns of B).[

1 0 1
1 1 0

]
[

1 0
1 1

] [
1 · 1 + 0 · 1 1 · 0 + 0 · 1 1 · 1 + 0 · 0
1 · 1 + 1 · 1 1 · 0 + 1 · 1 1 · 1 + 1 · 0

]



Example 1.7.3
Let

A =
[

1 0
1 1

]
and B =

[
1 0 1
1 1 0

]
,

with entries understood to be in Z2. Compute the matrix AB.

Solution. We compute as shown below (the rows of A are color
coded, as are the columns of B).[

1 0 1
1 1 0

]
[

1 0
1 1

] [
1 · 1 + 0 · 1 1 · 0 + 0 · 1 1 · 1 + 0 · 0
1 · 1 + 1 · 1 1 · 0 + 1 · 1 1 · 1 + 1 · 0

]



Example 1.7.3
Let

A =
[

1 0
1 1

]
and B =

[
1 0 1
1 1 0

]
,

with entries understood to be in Z2. Compute the matrix AB.

Solution (continued).

AB =
[

1 · 1 + 0 · 1 1 · 0 + 0 · 1 1 · 1 + 0 · 0
1 · 1 + 1 · 1 1 · 0 + 1 · 1 1 · 1 + 1 · 0

]

=
[

1 0 1
0 1 1

]
.

□



Theorem 1.7.5
For any matrices A, B, and C , and any scalars α and β, the
following hold (provided the matrices are of compatible size for the
operation in question, and the entries of our matrices and our
scalars all belong to the same field F):

(a) (α + β)A = αA + βA;
(b) (αβ)A = α(βA)
(c) A + B = B + A;
(d) (A + B) + C = A + (B + C);
(e) (A + B)C = AC + BC ;
(f) A(B + C) = AB + AC ;
(g) (AB)C = A(BC);
(h) (αA)B = α(AB);
(i) A(αB) = α(AB).



The only difficult part of Theorem 1.7.5 is (g).
So, let us prove that.

(g) (AB)C = A(BC)
Proof of (g). Fix matrices A =

[
ai ,j

]
n1×n2

in Fn1×n2 ,

B =
[

bi ,j
]

n2×n3
in Fn2×n3 , and C =

[
ci ,j

]
n3×n4

in Fn3×n4 .

Clearly, both (AB)C and A(BC) are matrices in Fn1×n4 . To prove
that these two matrices are equal, it suffices to prove that their
corresponding entries are equal. So, fix indices i ∈ {1, . . . , n1} and
j ∈ {1, . . . , n4}. We must show that the i , j-th entry of (AB)C is
equal to the i , j-th entry of A(BC).
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The only difficult part of Theorem 1.7.5 is (g).
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(g) (AB)C = A(BC)
Proof of (g). Fix matrices A =

[
ai ,j

]
n1×n2

in Fn1×n2 ,

B =
[

bi ,j
]

n2×n3
in Fn2×n3 , and C =

[
ci ,j

]
n3×n4

in Fn3×n4 .
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(g) (AB)C = A(BC)
Proof of (g) (continued). We first compute the i , j-th entry of
(AB)C .

The i-th row of the n1 × n3 matrix AB is[ n2∑
k=1

ai ,kbk,1
n2∑

k=1
ai ,kbk,2 . . .

n2∑
k=1

ai ,kbk,n3

]
. The j-th column

of the n3 × n4 matrix C is


c1,j
c2,j
...

cn3,j

.

So, the i , j-th entry of the n1 × n4 matrix (AB)C is

n3∑
ℓ=1

(
(

n2∑
k=1

ai ,kbk,ℓ)cℓ,j
)
.



(g) (AB)C = A(BC)
Proof of (g) (continued). We first compute the i , j-th entry of
(AB)C . The i-th row of the n1 × n3 matrix AB is[ n2∑
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The j-th column

of the n3 × n4 matrix C is


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(g) (AB)C = A(BC)
Proof of (g) (continued). We first compute the i , j-th entry of
(AB)C . The i-th row of the n1 × n3 matrix AB is[ n2∑
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(g) (AB)C = A(BC)
Proof of (g) (continued). We first compute the i , j-th entry of
(AB)C . The i-th row of the n1 × n3 matrix AB is[ n2∑

k=1
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n2∑
k=1

ai ,kbk,2 . . .
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n3∑
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(
(

n2∑
k=1

ai ,kbk,ℓ)cℓ,j
)
.



(g) (AB)C = A(BC)
Proof of (g) (continued). We now compute the i , j-th entry of
A(BC).

The i-th row of the n1 × n2 matrix A is[
ai ,1 ai ,2 . . . ai ,n2

]
. The j-th column of the n2 × n4 matrix

BC is



n3∑
k=1

b1,kck,j
n3∑

k=1
b2,kck,j

...
n3∑

k=1
bn2,kck,j


.

So, the i , j-th entry of the n1 × n4 matrix (AB)C is

n2∑
ℓ=1

(
ai ,ℓ(

n3∑
k=1

bℓ,kck,j)
)
.



(g) (AB)C = A(BC)
Proof of (g) (continued). We now compute the i , j-th entry of
A(BC). The i-th row of the n1 × n2 matrix A is[

ai ,1 ai ,2 . . . ai ,n2

]
.

The j-th column of the n2 × n4 matrix
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(g) (AB)C = A(BC)
Proof of (g) (continued). We now compute the i , j-th entry of
A(BC). The i-th row of the n1 × n2 matrix A is[

ai ,1 ai ,2 . . . ai ,n2

]
. The j-th column of the n2 × n4 matrix

BC is


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(g) (AB)C = A(BC)
Proof of (g) (continued). We now compute the i , j-th entry of
A(BC). The i-th row of the n1 × n2 matrix A is[

ai ,1 ai ,2 . . . ai ,n2

]
. The j-th column of the n2 × n4 matrix

BC is



n3∑
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...
n3∑
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.

So, the i , j-th entry of the n1 × n4 matrix (AB)C is

n2∑
ℓ=1

(
ai ,ℓ(

n3∑
k=1

bℓ,kck,j)
)
.



(g) (AB)C = A(BC)
Proof of (g) (continued). Reminder:

the i , j-th entry of (AB)C is
n3∑

ℓ=1

(
(

n2∑
k=1

ai ,kbk,ℓ)cℓ,j
)
;

the i , j-th entry of A(BC) is
n2∑

ℓ=1

(
ai ,ℓ(

n3∑
k=1

bℓ,kck,j)
)
.

It now remains to show that
n3∑

ℓ=1

(
(

n2∑
k=1

ai ,kbk,ℓ)cℓ,j
)

=
n2∑

ℓ=1

(
ai ,ℓ(

n3∑
k=1

bℓ,kck,j)
)
.

For this, we compute (next slide):



(g) (AB)C = A(BC)
Proof of (g) (continued). Reminder:
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(g) (AB)C = A(BC)
Proof of (g) (continued). Reminder:

the i , j-th entry of (AB)C is
n3∑

ℓ=1

(
(
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)
;
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.
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(g) (AB)C = A(BC)
Proof of (g) (continued).

n3∑
ℓ=1

(
(

n2∑
k=1

ai ,kbk,ℓ)cℓ,j
)

=
n3∑

ℓ=1

( n2∑
k=1

ai ,kbk,ℓcℓ,j
)

=
n2∑

k=1

( n3∑
ℓ=1

ai ,kbk,ℓcℓ,j
)

=
n2∑

k=1

(
ai ,k(

n3∑
ℓ=1

bk,ℓcℓ,j)
)

=
n2∑

ℓ=1

(
ai ,ℓ(

n3∑
k=1

bℓ,kck,j)
)

and we obtain the equality that we needed. This proves (g). □



Theorem 1.7.5
For any matrices A, B, and C , and any scalars α and β, the
following hold (provided the matrices are of compatible size for the
operation in question, and the entries of our matrices and our
scalars all belong to the same field F):

(a) (α + β)A = αA + βA;
(b) (αβ)A = α(βA)
(c) A + B = B + A;
(d) (A + B) + C = A + (B + C);
(e) (A + B)C = AC + BC ;
(f) A(B + C) = AB + AC ;
(g) (AB)C = A(BC);
(h) (αA)B = α(AB);
(i) A(αB) = α(AB).



Warning: Matrix multiplication is not commutative, that is,
for matrices A and B,

AB��ZZ=BA.

In fact, it is possible that one of AB and BA is defined, while
the other one is not.

For instance, if A ∈ F2×3 and B ∈ F3×4, where F is some field,
then AB is defined, but BA is not.

Moreover, it is possible that both AB and BA are defined, but
are not of the same size.

For instance, if A ∈ F2×3 and B ∈ F3×2, where F is some field,
then AB ∈ F2×2 and BA ∈ F3×3.
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Corollary 1.7.6
For any matrices A, B, vectors u, v, and w, and scalars α and β,
the following hold (provided the matrices and vectors are of
compatible size for the operation in question, and the entries of
our matrices, the entries of our vectors, and our scalars all belong
to the same field F):

(a) (α + β)u = αu + βu;
(b) (αβ)u = α(βu)
(c) u + v = v + u;
(d) (u + v) + w = u + (v + w);
(e) (A + B)u = Au + Bu;
(f) A(u + v) = Au + Av;
(g) (AB)u = A(Bu);
(h) (αA)u = α(Au);
(i) A(αu) = α(Au).



We can define powers of square matrices in a natural way, as
follows.

For a field F and a square matrix A ∈ Fn×n, we define
A0 := In;
Am+1 := AmA for all non-negative integers m.

So, by convention, we set A0 := In, and for any positive
integer m, we have that

Am = A . . . A︸ ︷︷ ︸
m

,

where we did not have to indicate parentheses since, by
Theorem 1.7.5, matrix multiplication is associative.
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6 The transpose of a matrix

Given a matrix A ∈ Fn×m (where F is a field), the transpose
of A, denoted by AT , is the matrix in Fm×n s.t. the i , j-th
entry of AT is the j , i-th entry of A, for all indices
i ∈ {1, . . . , m} and j ∈ {1, . . . , n}.
In other words, to form AT from A, the columns of A (from
left to right) become the rows of AT (from top to bottom),
and likewise, the rows of A (from top to bottom) become the
columns of AT (from left to right).

A =


♦ ∗ ∗ ∗ ∗ ♢
♦ ∗ ∗ ∗ ∗ ♢
♦ ∗ ∗ ∗ ∗ ♢
♦ ∗ ∗ ∗ ∗ ♢

 −→ AT =


♦ ♦ ♦ ♦
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
♢ ♢ ♢ ♢


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A =


♦ ∗ ∗ ∗ ∗ ♢
♦ ∗ ∗ ∗ ∗ ♢
♦ ∗ ∗ ∗ ∗ ♢
♦ ∗ ∗ ∗ ∗ ♢

 −→ AT =


♦ ♦ ♦ ♦
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
♢ ♢ ♢ ♢



For example, if A =
[

1 2 3
4 5 6

]
, then AT =

 1 4
2 5
3 6

.



In order to save space, we often specify column vectors in
terms of transposes of row vectors.
For instance, we often write something like

u =
[

u1 u2 . . . un
]T

instead of u =


u1
u2
...

un

.



Proposition 1.8.1
For any matrices A and B, and any scalar α, the following hold
(provided the matrices are of compatible size for the operation in
question, and the entries of our matrices and our scalar belong to
the same field F):

(a) (AT )T = A;
(b) (A + B)T = AT + BT ;

(c) (αA)T = αAT

(d) (AB)T = BT AT .

Proof.

Parts (a), (b), and (c) are obvious. Let us prove (d). Fix
matrices A ∈ Fn×m and B ∈ Fm×p, and set A =

[
ai ,j

]
n×m

and

B =
[

bi ,j
]

m×p
. Clearly, AB ∈ Fn×p, and so (AB)T ∈ Fp×n. On

the other hand, we have that BT ∈ Fp×m and AT ∈ Fm×n, and so
BT AT ∈ Fp×n. So, both (AB)T and BT AT are p × n matrices
with entries in F. It remains to show that the corresponding entries
of (AB)T and BT AT are the same.
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(d) (AB)T = BT AT

Proof of (d) (continued).

Fix indices i ∈ {1, . . . , p} and
j ∈ {1, . . . , n}; we will show that the i , j-th entry of (AB)T is
equal to the i , j-th entry of BT AT .

By the definition of matrix transpose, the i , j-th entry of (AB)T is
equal to the j , i-th entry of AB, which is equal to

m∑
k=1

aj,kbk,i .

We now compute the i , j-th entry of BT AT . We observe that i-th
row of the matrix BT is

[
b1,i b2,i . . . bm,i

]
, whereas the j-th

column of the matrix AT is
[

aj,1 aj,2 . . . aj,m
]T

. So, the
i , j-th entry of the matrix BT AT is
b1,iaj,1 + b2,iaj,2 + · · ·+ bm,iaj,m =

m∑
k=1

bk,iaj,k =
m∑

k=1
aj,kbk,i .

We have now shown that the corresponding entries of the p × n
matrices (AB)T and BT AT are the same, and we deduce that
(AB)T = BT AT . This proves (d). □



(d) (AB)T = BT AT

Proof of (d) (continued). Fix indices i ∈ {1, . . . , p} and
j ∈ {1, . . . , n}; we will show that the i , j-th entry of (AB)T is
equal to the i , j-th entry of BT AT .

By the definition of matrix transpose, the i , j-th entry of (AB)T is
equal to the j , i-th entry of AB, which is equal to

m∑
k=1

aj,kbk,i .

We now compute the i , j-th entry of BT AT . We observe that i-th
row of the matrix BT is

[
b1,i b2,i . . . bm,i

]
, whereas the j-th

column of the matrix AT is
[

aj,1 aj,2 . . . aj,m
]T

. So, the
i , j-th entry of the matrix BT AT is
b1,iaj,1 + b2,iaj,2 + · · ·+ bm,iaj,m =

m∑
k=1

bk,iaj,k =
m∑

k=1
aj,kbk,i .

We have now shown that the corresponding entries of the p × n
matrices (AB)T and BT AT are the same, and we deduce that
(AB)T = BT AT . This proves (d). □



(d) (AB)T = BT AT

Proof of (d) (continued). Fix indices i ∈ {1, . . . , p} and
j ∈ {1, . . . , n}; we will show that the i , j-th entry of (AB)T is
equal to the i , j-th entry of BT AT .

By the definition of matrix transpose, the i , j-th entry of (AB)T is
equal to the j , i-th entry of AB, which is equal to

m∑
k=1

aj,kbk,i .

We now compute the i , j-th entry of BT AT .

We observe that i-th
row of the matrix BT is

[
b1,i b2,i . . . bm,i

]
, whereas the j-th

column of the matrix AT is
[

aj,1 aj,2 . . . aj,m
]T

. So, the
i , j-th entry of the matrix BT AT is
b1,iaj,1 + b2,iaj,2 + · · ·+ bm,iaj,m =

m∑
k=1

bk,iaj,k =
m∑

k=1
aj,kbk,i .

We have now shown that the corresponding entries of the p × n
matrices (AB)T and BT AT are the same, and we deduce that
(AB)T = BT AT . This proves (d). □



(d) (AB)T = BT AT

Proof of (d) (continued). Fix indices i ∈ {1, . . . , p} and
j ∈ {1, . . . , n}; we will show that the i , j-th entry of (AB)T is
equal to the i , j-th entry of BT AT .

By the definition of matrix transpose, the i , j-th entry of (AB)T is
equal to the j , i-th entry of AB, which is equal to

m∑
k=1

aj,kbk,i .

We now compute the i , j-th entry of BT AT . We observe that i-th
row of the matrix BT is

[
b1,i b2,i . . . bm,i

]
, whereas the j-th

column of the matrix AT is
[

aj,1 aj,2 . . . aj,m
]T

.

So, the
i , j-th entry of the matrix BT AT is
b1,iaj,1 + b2,iaj,2 + · · ·+ bm,iaj,m =

m∑
k=1

bk,iaj,k =
m∑

k=1
aj,kbk,i .

We have now shown that the corresponding entries of the p × n
matrices (AB)T and BT AT are the same, and we deduce that
(AB)T = BT AT . This proves (d). □



(d) (AB)T = BT AT

Proof of (d) (continued). Fix indices i ∈ {1, . . . , p} and
j ∈ {1, . . . , n}; we will show that the i , j-th entry of (AB)T is
equal to the i , j-th entry of BT AT .

By the definition of matrix transpose, the i , j-th entry of (AB)T is
equal to the j , i-th entry of AB, which is equal to

m∑
k=1

aj,kbk,i .

We now compute the i , j-th entry of BT AT . We observe that i-th
row of the matrix BT is

[
b1,i b2,i . . . bm,i

]
, whereas the j-th

column of the matrix AT is
[

aj,1 aj,2 . . . aj,m
]T

. So, the
i , j-th entry of the matrix BT AT is
b1,iaj,1 + b2,iaj,2 + · · ·+ bm,iaj,m =

m∑
k=1

bk,iaj,k =
m∑

k=1
aj,kbk,i .

We have now shown that the corresponding entries of the p × n
matrices (AB)T and BT AT are the same, and we deduce that
(AB)T = BT AT . This proves (d). □



(d) (AB)T = BT AT

Proof of (d) (continued). Fix indices i ∈ {1, . . . , p} and
j ∈ {1, . . . , n}; we will show that the i , j-th entry of (AB)T is
equal to the i , j-th entry of BT AT .

By the definition of matrix transpose, the i , j-th entry of (AB)T is
equal to the j , i-th entry of AB, which is equal to

m∑
k=1

aj,kbk,i .

We now compute the i , j-th entry of BT AT . We observe that i-th
row of the matrix BT is

[
b1,i b2,i . . . bm,i

]
, whereas the j-th

column of the matrix AT is
[

aj,1 aj,2 . . . aj,m
]T

. So, the
i , j-th entry of the matrix BT AT is
b1,iaj,1 + b2,iaj,2 + · · ·+ bm,iaj,m =

m∑
k=1

bk,iaj,k =
m∑

k=1
aj,kbk,i .

We have now shown that the corresponding entries of the p × n
matrices (AB)T and BT AT are the same, and we deduce that
(AB)T = BT AT . This proves (d). □



Proposition 1.8.1
For any matrices A and B, and any scalar α, the following hold
(provided the matrices are of compatible size for the operation in
question, and the entries of our matrices and our scalar belong to
the same field F):

(a) (AT )T = A;
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(c) (αA)T = αAT

(d) (AB)T = BT AT .


