Linear Algebra 1

Lecture #0

Mathematical induction. Modular arithmetic. Arithmetic in \mathbb{Z}_n

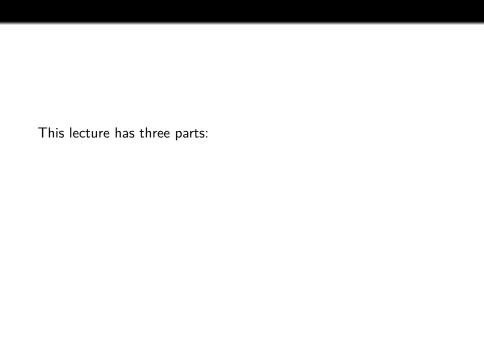
Irena Penev

October 2, 2024

• This lecture covers sections 0.1 and 0.2 of the Lecture Notes
(https://iuuk.mff.cuni.cz/~ipenev/LALectureNotes.pdf).

Notation: Throughout this course, we will use the following notation:

- N is the set of all natural numbers (positive integers);
- \mathbb{N}_0 is the set of all non-negative integers;
- ullet $\mathbb Z$ is the set of all integers;
- Q is the set of all rational numbers;
- ullet R is the set of all real numbers;
- ullet C is the set of all complex numbers.



This lecture has three parts:

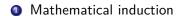
Mathematical induction;

This lecture has three parts:

- Mathematical induction;
- Modular arithmetic;

This lecture has three parts:

- Mathematical induction;
- Modular arithmetic;
- **3** Arithmetic in \mathbb{Z}_n and Fermat's Little Theorem



- Mathematical induction
 - Mathematical induction is a proof technique that can be used to prove that a certain statement holds for all positive integers n.

- Mathematical induction
 - Mathematical induction is a proof technique that can be used to prove that a certain statement holds for all positive integers n.
 - Let P(n) be a statement about the number n.

- Mathematical induction
 - Mathematical induction is a proof technique that can be used to prove that a certain statement holds for all positive integers n.
- Let P(n) be a statement about the number n. In order to prove that P(n) holds for every positive integer n, it suffices to prove the following two statements:

- Mathematical induction
 - Mathematical induction is a proof technique that can be used to prove that a certain statement holds for all positive integers n.
 - Let P(n) be a statement about the number n. In order to prove that P(n) holds for every positive integer n, it suffices to prove the following two statements:
 - Base case: P(1) is true;
 - **Induction step:** for every positive integer n, if P(n) is true , then P(n+1) is true.

"induction hypothesis"

case

$$P(1) \stackrel{\text{ind. step}}{\Longrightarrow} P(2) \stackrel{\text{ind. step}}{\Longrightarrow} P(3) \stackrel{\text{ind. step}}{\Longrightarrow} P(4) \stackrel{\text{ind. step}}{\Longrightarrow} \dots$$

Prove that $1+2+\cdots+n=\frac{n(n+1)}{2}$ for all positive integers n.

Solution.

Prove that $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$ for all positive integers n.

Solution. Let P(n) be the statement that $1+2+\cdots+n=\frac{n(n+1)}{2}$.

Prove that $1+2+\cdots+n=\frac{n(n+1)}{2}$ for all positive integers n.

Solution. Let P(n) be the statement that $1+2+\cdots+n=\frac{n(n+1)}{2}$. Thus:

- P(1) is the statement that $1 = \frac{1 \cdot (1+1)}{2}$;
- P(2) is the statement that $1 + 2 = \frac{2 \cdot (2+1)}{2}$;
- P(3) is the statement that $1 + 2 + 3 = \frac{3 \cdot (3+1)}{2}$;
- etc.

We need to prove that the statement P(n) is true for all positive integers n.

Prove that $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$ for all positive integers n.

Solution (continued). **Reminder:** P(n) is the statement that $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$.

Prove that $1+2+\cdots+n=\frac{n(n+1)}{2}$ for all positive integers n.

Solution (continued). **Reminder:** P(n) is the statement that $1+2+\cdots+n=\frac{n(n+1)}{2}$.

Base case: n = 1. Obviously, $1 = \frac{1 \cdot (1+1)}{2}$. Thus, P(1) is true.

Prove that $1+2+\cdots+n=\frac{n(n+1)}{2}$ for all positive integers n.

Solution (continued). **Reminder:** P(n) is the statement that $1+2+\cdots+n=\frac{n(n+1)}{2}$.

Base case: n = 1. Obviously, $1 = \frac{1 \cdot (1+1)}{2}$. Thus, P(1) is true.

Induction step: Fix a positive integer n, and assume inductively that P(n) is true. We must show that P(n+1) is true.

Prove that $1+2+\cdots+n=\frac{n(n+1)}{2}$ for all positive integers n.

Solution (continued). Reminder: P(n) is the statement that $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$.

Base case: n=1. Obviously, $1=\frac{1\cdot(1+1)}{2}$. Thus, P(1) is true.

Induction step: Fix a positive integer n, and assume inductively that P(n) is true. We must show that P(n+1) is true.

The induction hypothesis states that $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$. Using this, we must prove that

 $1+2+\cdots+n+(n+1)=\frac{(n+1)((n+1)+1)}{2}$. We compute (next slide):

Prove that $1+2+\cdots+n=\frac{n(n+1)}{2}$ for all positive integers n.

Solution (continued). **Reminder:** P(n) is the statement that $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$.

$$1 + 2 + \dots + n + (n+1) = (1 + 2 + \dots + n) + (n+1)$$

$$\stackrel{\text{ind.}}{\stackrel{\text{hyp.}}{=}} \frac{n(n+1)}{2} + (n+1)$$

$$= (n+1)(\frac{n}{2} + 1)$$

$$= \frac{(n+1)((n+1)+1)}{2}.$$

Thus, P(n+1) is true. This completes the induction. \square

ullet Sometimes, the base case may be different from n=1.

- Sometimes, the base case may be different from n = 1.
- This may happen if we need to prove that a statement P(n) is true for all $n \ge k$, where k is an integer other than 1.
 - Typically, we will have k = 0 or k > 1. However, in principle, k may even be a negative integer.

- Sometimes, the base case may be different from n = 1.
- This may happen if we need to prove that a statement P(n) is true for all $n \ge k$, where k is an integer other than 1.
 - Typically, we will have k = 0 or k > 1. However, in principle, k may even be a negative integer.
- In this case, the base case will be n = k, i.e. we will need to prove the following two statements:
 - Base case: P(k) is true;

"induction hypothesis"

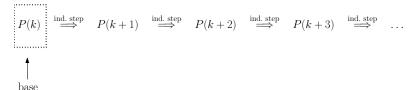
• **Induction step:** for every integer $n \ge k$, if P(n) is true, then P(n+1) is true.

P(n) is true, then P(n+1) is true

- Sometimes, the base case may be different from n = 1.
- This may happen if we need to prove that a statement P(n) is true for all $n \ge k$, where k is an integer other than 1.
 - Typically, we will have k = 0 or k > 1. However, in principle, k may even be a negative integer.
- In this case, the base case will be n=k, i.e. we will need to prove the following two statements:
 - Base case: P(k) is true;
 - **Induction step:** for every integer $n \ge k$, if P(n) is true, then P(n+1) is true.

"induction hypothesis"

case



Prove that $3n < 2^n$ for all integers $n \ge 4$.

Solution.

Prove that $3n < 2^n$ for all integers $n \ge 4$.

Solution. Since we are proving the statement for integers $n \ge 4$, our base case is n = 4.

Prove that $3n < 2^n$ for all integers $n \ge 4$.

Solution. Since we are proving the statement for integers $n \ge 4$, our base case is n = 4.

Base case: n = 4. Clearly, $3 \cdot 4 = 12 < 16 = 2^4$.

Prove that $3n < 2^n$ for all integers $n \ge 4$.

Solution. Since we are proving the statement for integers $n \ge 4$, our base case is n = 4.

Base case: n = 4. Clearly, $3 \cdot 4 = 12 < 16 = 2^4$.

Induction step: Fix an integer $n \ge 4$, and assume inductively that $3n < 2^n$. We must show that $3(n+1) < 2^{n+1}$.

Prove that $3n < 2^n$ for all integers $n \ge 4$.

Solution. Since we are proving the statement for integers $n \ge 4$, our base case is n = 4.

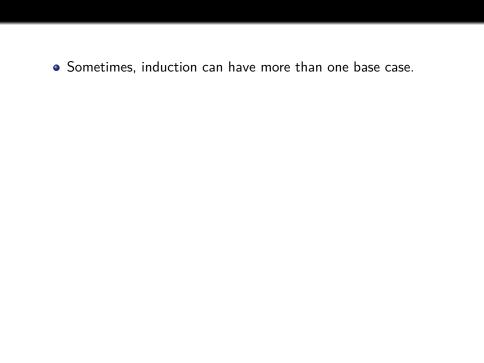
Base case: n = 4. Clearly, $3 \cdot 4 = 12 < 16 = 2^4$.

Induction step: Fix an integer $n \ge 4$, and assume inductively that $3n < 2^n$. We must show that $3(n+1) < 2^{n+1}$. We observe the following:

$$3(n+1) = 3n+3$$

 $< 2^n+3$ by the induction hypothesis
 $< 2^n+2^2$
 $< 2^n+2^n$ because $n>2$
 $= 2^{n+1}$

Thus, the statement is true for n+1. This completes the induction. \square



- Sometimes, induction can have more than one base case.
- Suppose that k is an integer, and that we wish to prove inductively that P(n) holds for all integers $n \ge k$.

- Sometimes, induction can have more than one base case.
- Suppose that k is an integer, and that we wish to prove inductively that P(n) holds for all integers $n \ge k$.
- Ordinarily, we would expect n = k to be the base case.

- Sometimes, induction can have more than one base case.
- Suppose that k is an integer, and that we wish to prove inductively that P(n) holds for all integers $n \geq k$.
- Ordinarily, we would expect n = k to be the base case. However, suppose that we do not know how to prove the

integer (other than 1).

implication " $P(n) \Longrightarrow P(n+1)$," but we do know how to prove that " $P(n) \Longrightarrow P(n+\ell)$," where ℓ is some positive

- Sometimes, induction can have more than one base case.
- Suppose that k is an integer, and that we wish to prove inductively that P(n) holds for all integers $n \geq k$.
- Ordinarily, we would expect n = k to be the base case.
- However, suppose that we do not know how to prove the
- implication " $P(n) \Longrightarrow P(n+1)$," but we do know how to prove that " $P(n) \Longrightarrow P(n+\ell)$," where ℓ is some positive integer (other than 1).
- In this case, we will have a slightly modified induction step $("P(n) \Longrightarrow P(n+\ell)")$ instead of " $P(n) \Longrightarrow P(n+1)"$, and we will have ℓ base cases, namely.

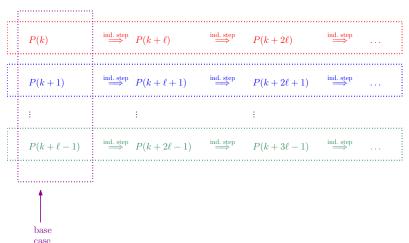
 $P(k), P(k+1), \ldots, P(k+\ell-1).$

- Sometimes, induction can have more than one base case.
- Suppose that k is an integer, and that we wish to prove inductively that P(n) holds for all integers $n \ge k$.
- Ordinarily, we would expect n = k to be the base case.
- However, suppose that we do not know how to prove the implication " $P(n) \Longrightarrow P(n+1)$," but we do know how to prove that " $P(n) \Longrightarrow P(n+\ell)$," where ℓ is some positive integer (other than 1).
- In this case, we will have a slightly modified induction step $("P(n) \Longrightarrow P(n+\ell)"$ instead of $"P(n) \Longrightarrow P(n+1)")$, and we will have ℓ base cases, namely, $P(k), P(k+1), \ldots, P(k+\ell-1)$.
- More precisely, we will need to prove the following (next slide):

- Base case: $P(k), P(k+1), \ldots, P(k+\ell-1)$ are true;
- **Induction step:** for every integer $n \geq k$,

P(n) is true , then $P(n + \ell)$ is true.

"induction hypothesis"



Suppose you have an unlimited number of 3 Kč stamps and 5 Kč stamps (and no other stamps). Show that you can pay any amount of postage greater or equal to 8 Kč (as long as it is in whole Kč).

Solution.

Suppose you have an unlimited number of 3 Kč stamps and 5 Kč stamps (and no other stamps). Show that you can pay any amount of postage greater or equal to 8 Kč (as long as it is in whole Kč).

Solution. We need to show that any integer $n \ge 8$ (our postage in Kč) can be expressed in the form

$$n = 3a + 5b,$$

where a and b are non-negative integers (the number of 3 Kč and 5 Kč stamps, respectively, that we can use to pay our n Kč postage).

Suppose you have an unlimited number of 3 Kč stamps and 5 Kč stamps (and no other stamps). Show that you can pay any amount of postage greater or equal to 8 Kč (as long as it is in whole Kč).

Solution. We need to show that any integer $n \ge 8$ (our postage in Kč) can be expressed in the form

$$n = 3a + 5b,$$

where a and b are non-negative integers (the number of 3 Kč and 5 Kč stamps, respectively, that we can use to pay our n Kč postage). We will prove this by induction on n.

Suppose you have an unlimited number of 3 Kč stamps and 5 Kč stamps (and no other stamps). Show that you can pay any amount of postage greater or equal to 8 Kč (as long as it is in whole Kč).

Solution. We need to show that any integer $n \ge 8$ (our postage in Kč) can be expressed in the form

$$n = 3a + 5b,$$

where a and b are non-negative integers (the number of 3 Kč and 5 Kč stamps, respectively, that we can use to pay our n Kč postage). We will prove this by induction on n.

Obviously, if we can pay n Kč using our stamps, then we can also pay (n+3) Kč: we simply use one 3 Kč stamp more.

Suppose you have an unlimited number of 3 Kč stamps and 5 Kč stamps (and no other stamps). Show that you can pay any amount of postage greater or equal to 8 Kč (as long as it is in whole Kč).

Solution. We need to show that any integer $n \ge 8$ (our postage in Kč) can be expressed in the form

$$n = 3a + 5b,$$

where a and b are non-negative integers (the number of 3 Kč and 5 Kč stamps, respectively, that we can use to pay our n Kč postage). We will prove this by induction on n.

Obviously, if we can pay n Kč using our stamps, then we can also pay (n+3) Kč: we simply use one 3 Kč stamp more. In other words, if the statement is true for n, then it is also true for n+3.

Suppose you have an unlimited number of 3 Kč stamps and 5 Kč stamps (and no other stamps). Show that you can pay any amount of postage greater or equal to 8 Kč (as long as it is in whole Kč).

Solution. We need to show that any integer $n \geq 8$ (our postage in Kč) can be expressed in the form

$$n = 3a + 5b,$$

where a and b are non-negative integers (the number of 3 Kč and 5 Kč stamps, respectively, that we can use to pay our n Kč postage). We will prove this by induction on n.

Obviously, if we can pay n Kč using our stamps, then we can also pay (n+3) Kč: we simply use one 3 Kč stamp more. In other words, if the statement is true for n, then it is also true for n+3. This means that we will need three base cases: n=8, n=9, and n=10.

Suppose you have an unlimited number of 3 Kč stamps and 5 Kč stamps (and no other stamps). Show that you can pay any amount of postage greater or equal to 8 Kč (as long as it is in whole Kč).

Solution. We need to show that any integer $n \geq 8$ (our postage in Kč) can be expressed in the form

$$n = 3a + 5b$$
,

where a and b are non-negative integers (the number of 3 Kč and 5 Kč stamps, respectively, that we can use to pay our n Kč postage). We will prove this by induction on n.

Obviously, if we can pay n Kč using our stamps, then we can also pay (n+3) Kč: we simply use one 3 Kč stamp more. In other words, if the statement is true for n, then it is also true for n+3. This means that we will need three base cases: n=8, n=9, and n=10. Let us give the details.

Suppose you have an unlimited number of 3 Kč stamps and 5 Kč stamps (and no other stamps). Show that you can pay any amount of postage greater or equal to 8 Kč (as long as it is in whole Kč).

Solution (continued).

Suppose you have an unlimited number of 3 Kč stamps and 5 Kč stamps (and no other stamps). Show that you can pay any amount of postage greater or equal to 8 Kč (as long as it is in whole Kč).

Solution (continued). **Base case:** We must show that for each $n \in \{8, 9, 10\}$, there exist non-negative integers a and b s.t. n = 3a + 5b.

Suppose you have an unlimited number of 3 Kč stamps and 5 Kč stamps (and no other stamps). Show that you can pay any amount of postage greater or equal to 8 Kč (as long as it is in whole Kč).

Solution (continued). **Base case:** We must show that for each $n \in \{8, 9, 10\}$, there exist non-negative integers a and b s.t. n = 3a + 5b. But this is clearly true:

- $8 = 3 \cdot 1 + 5 \cdot 1$;
- $9 = 3 \cdot 3 + 5 \cdot 0$;
- $10 = 3 \cdot 0 + 5 \cdot 2$.

Suppose you have an unlimited number of 3 Kč stamps and 5 Kč stamps (and no other stamps). Show that you can pay any amount of postage greater or equal to 8 Kč (as long as it is in whole Kč).

Solution (continued). Base case: We must show that for each $n \in \{8, 9, 10\}$, there exist non-negative integers a and b s.t. n = 3a + 5b. But this is clearly true:

- $8 = 3 \cdot 1 + 5 \cdot 1$;
- $9 = 3 \cdot 3 + 5 \cdot 0$;
- $10 = 3 \cdot 0 + 5 \cdot 2$.

Induction step: Fix an integer $n \ge 8$, and assume inductively that the statement is true for n. WTS it is true for n + 3.

Suppose you have an unlimited number of 3 Kč stamps and 5 Kč stamps (and no other stamps). Show that you can pay any amount of postage greater or equal to 8 Kč (as long as it is in whole Kč).

Solution (continued). Base case: We must show that for each $n \in \{8, 9, 10\}$, there exist non-negative integers a and b s.t. n = 3a + 5b. But this is clearly true:

- $8 = 3 \cdot 1 + 5 \cdot 1$;
- $9 = 3 \cdot 3 + 5 \cdot 0$;
- $10 = 3 \cdot 0 + 5 \cdot 2$.

Induction step: Fix an integer $n \ge 8$, and assume inductively that the statement is true for n. WTS it is true for n + 3. By the induction hypothesis, there exist non-negative integers a and b s.t. n = 3a + 5b.

Suppose you have an unlimited number of 3 Kč stamps and 5 Kč stamps (and no other stamps). Show that you can pay any amount of postage greater or equal to 8 Kč (as long as it is in whole Kč).

Solution (continued). Base case: We must show that for each $n \in \{8, 9, 10\}$, there exist non-negative integers a and b s.t. n = 3a + 5b. But this is clearly true:

- $8 = 3 \cdot 1 + 5 \cdot 1$;
- $9 = 3 \cdot 3 + 5 \cdot 0$;
- $10 = 3 \cdot 0 + 5 \cdot 2$.

Induction step: Fix an integer $n \ge 8$, and assume inductively that the statement is true for n. WTS it is true for n + 3. By the induction hypothesis, there exist non-negative integers a and b s.t. n = 3a + 5b. But then n + 3 = 3(a + 1) + 5b, and so the statement holds for n + 3. This completes the induction. \square

• Suppose, again, that k is an integer, and that we wish to prove inductively that P(n) holds for all integers $n \ge k$.

- Suppose, again, that k is an integer, and that we wish to
- prove inductively that P(n) holds for all integers $n \geq k$. However, suppose that we are not able to prove the implication " $P(n) \Longrightarrow P(n+1)$," but that we are able to

prove that $P(n), P(n+1), \ldots, P(n+\ell-1)$ together imply $P(n + \ell)$, where ℓ is some positive integer (other than 1).

- Suppose, again, that k is an integer, and that we wish to
- prove inductively that P(n) holds for all integers $n \geq k$. However, suppose that we are not able to prove the

• In this case, we will again have ℓ base cases, namely,

 $P(k), P(k+1), \ldots, P(k+\ell-1).$

implication " $P(n) \Longrightarrow P(n+1)$," but that we are able to prove that $P(n), P(n+1), \ldots, P(n+\ell-1)$ together imply

 $P(n+\ell)$, where ℓ is some positive integer (other than 1).

- Suppose, again, that k is an integer, and that we wish to prove inductively that P(n) holds for all integers $n \ge k$.
- However, suppose that we are not able to prove the implication " $P(n) \Longrightarrow P(n+1)$," but that we are able to prove that $P(n), P(n+1), \ldots, P(n+\ell-1)$ together imply $P(n+\ell)$, where ℓ is some positive integer (other than 1).
- In this case, we will again have ℓ base cases, namely, $P(k), P(k+1), \ldots, P(k+\ell-1)$.
- More precisely, we will need to prove the following:
 - Base case: $P(k), P(k+1), \dots, P(k+\ell-1)$ are true:
 - Induction step: for every integer n > k.

• **Induction step:** for every integer
$$n \ge \kappa$$
, if $P(n), P(n+1), \ldots, P(n+\ell-1)$ are all true, then $P(n+\ell)$

"induction hypothesis"

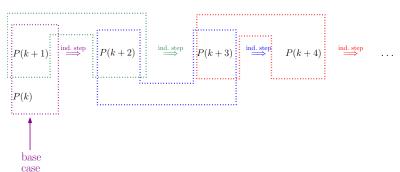
is true.

- Base case: $P(k), P(k+1), ..., P(k+\ell-1)$ are true;
- Induction step: for every integer $n \ge k$, if $P(n), P(n+1), \dots, P(n+\ell-1)$ are all true, then $P(n+\ell)$

"induction hypothesis"

is true.

Illustration for $\ell = 2$:



The Fibonacci numbers are defined as follows:

- F(1) = F(2) = 1;
- F(n+2) = F(n) + F(n+1) for all positive intgers n.

Prove that $F(n) = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}}$ for all positive integers n.

Solution.

The Fibonacci numbers are defined as follows:

- F(1) = F(2) = 1;
- F(n+2) = F(n) + F(n+1) for all positive intgers n.

Prove that $F(n) = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}}$ for all positive integers n.

Solution. The general term is defined in terms of the previous two terms. Thus, instead of one base case, we have two: n = 1 and n = 2.

The Fibonacci numbers are defined as follows:

- F(1) = F(2) = 1;
- F(n+2) = F(n) + F(n+1) for all positive intgers n.

Prove that $F(n) = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n\sqrt{5}}$ for all positive integers n.

Solution. The general term is defined in terms of the previous two terms. Thus, instead of one base case, we have two: n=1 and n=2.

Remark: If the general term were defined in terms of, say, the previous fifteen terms, then we would have fifteen base cases!

The Fibonacci numbers are defined as follows:

- F(1) = F(2) = 1;
- F(n+2) = F(n) + F(n+1) for all positive intgers n.

Prove that $F(n) = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n\sqrt{5}}$ for all positive integers n.

Solution (continued). Base case: For n = 1, we have:

$$\frac{(1+\sqrt{5})^1-(1-\sqrt{5})^1}{2^1\sqrt{5}} = \frac{2\sqrt{5}}{2\sqrt{5}} = 1 = F(1).$$

For n = 2, we have:

$$\tfrac{(1+\sqrt{5})^2-(1-\sqrt{5})^2}{2^2\sqrt{5}} \quad = \quad \tfrac{(1+2\sqrt{5}+5)-(1-2\sqrt{5}+5)}{4\sqrt{5}} \quad = \quad \tfrac{4\sqrt{5}}{4\sqrt{5}} \quad = \quad 1 \quad = \quad \digamma(2).$$

Thus, the statement is true for n = 1 and n = 2.

The Fibonacci numbers are defined as follows:

- F(1) = F(2) = 1;
- F(n+2) = F(n) + F(n+1) for all positive intgers n.

Prove that $F(n) = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n\sqrt{5}}$ for all positive integers n.

Solution (continued). Induction step: Fix a positive integer n, and assume inductively that the statement is true for n and n+1. WTS it is true for n+2.

The Fibonacci numbers are defined as follows:

- F(1) = F(2) = 1;
- F(n+2) = F(n) + F(n+1) for all positive intgers n.

Prove that $F(n) = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}}$ for all positive integers n.

Solution (continued). Induction step: Fix a positive integer n, and assume inductively that the statement is true for n and n+1. WTS it is true for n+2.

By the induction hypothesis, we have that

•
$$F(n) = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}}$$
;

•
$$F(n+1) = \frac{(1+\sqrt{5})^{n+1}-(1-\sqrt{5})^{n+1}}{2^{n+1}\sqrt{5}}$$
.

The Fibonacci numbers are defined as follows:

- F(1) = F(2) = 1;
- F(n+2) = F(n) + F(n+1) for all positive intgers n.

Prove that $F(n) = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}}$ for all positive integers n.

Solution (continued). Induction step: Fix a positive integer n, and assume inductively that the statement is true for n and n+1. WTS it is true for n+2.

By the induction hypothesis, we have that

•
$$F(n) = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n\sqrt{5}}$$
;

•
$$F(n+1) = \frac{(1+\sqrt{5})^{n+1}-(1-\sqrt{5})^{n+1}}{2^{n+1}\sqrt{5}}$$
.

WTS
$$F(n+2) = \frac{(1+\sqrt{5})^{n+2}-(1-\sqrt{5})^{n+2}}{2^{n+2}\sqrt{5}}$$
.

The Fibonacci numbers are defined as follows:

- F(1) = F(2) = 1;
- F(n+2) = F(n) + F(n+1) for all positive intgers n.

Prove that $F(n) = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}}$ for all positive integers n.

Solution (continued). Induction step: Fix a positive integer n, and assume inductively that the statement is true for n and n + 1. WTS it is true for n + 2.

By the induction hypothesis, we have that

•
$$F(n) = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n\sqrt{5}};$$

•
$$F(n+1) = \frac{(1+\sqrt{5})^{n+1}-(1-\sqrt{5})^{n+1}}{2^{n+1}\sqrt{5}}$$
.

WTS
$$F(n+2) = \frac{(1+\sqrt{5})^{n+2}-(1-\sqrt{5})^{n+2}}{2^{n+2}\sqrt{5}}$$
.

We compute (next slide):

Solution (continued):

$$F(n+2) \stackrel{(*)}{=} F(n) + F(n+1)$$

$$\stackrel{(**)}{=} \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n\sqrt{5}} + \frac{(1+\sqrt{5})^{n+1} - (1-\sqrt{5})^{n+1}}{2^{n+1}\sqrt{5}}$$

$$= \frac{4(1+\sqrt{5})^n - 4(1-\sqrt{5})^n}{2^{n+2}\sqrt{5}} + \frac{2(1+\sqrt{5})(1+\sqrt{5})^n - 2(1-\sqrt{5})(1-\sqrt{5})^n}{2^{n+2}\sqrt{5}}$$

$$= \frac{(6+2\sqrt{5})(1+\sqrt{5})^n - (6-2\sqrt{5})(1-\sqrt{5})^n}{2^{n+2}\sqrt{5}}$$

$$= \frac{(1+\sqrt{5})^2(1+\sqrt{5})^n - (1-\sqrt{5})^2(1-\sqrt{5})^n}{2^{n+2}\sqrt{5}}$$

$$= \frac{(1+\sqrt{5})^{n+2} - (1-\sqrt{5})^{n+2}}{2^{n+2}\sqrt{5}},$$

where (*) follows from the definition of Fibonacci numbers, and (**) follows from the induction hypothesis. This completes the induction.

•	We now consider a type of induction (sometimes called "strong induction") that lacks a base case.

- We now consider a type of induction (sometimes called "strong induction") that lacks a base case.
- Again, let P(n) be a statement about the number n.

- We now consider a type of induction (sometimes called "strong induction") that lacks a base case.
- Again, let P(n) be a statement about the number n.
- In order to prove that P(n) holds for every positive integer n, it suffices to prove the following:
 - **Induction step:** for every positive integer n, if $P(1), \ldots, P(n-1)$ are all true, then P(n) is true.

"induction hypothesis"

- We now consider a type of induction (sometimes called "strong induction") that lacks a base case.
- Again, let P(n) be a statement about the number n.
- In order to prove that P(n) holds for every positive integer n, it suffices to prove the following:
 - **Induction step:** for every positive integer n, if $P(1), \ldots, P(n-1)$ are all true, then P(n) is true.
 - "induction hypothesis"
- Here is a slightly different way of writing the same thing:
 - **Induction step:** for every positive integer n, if P(i) is true for all positive integers i < n, then P(n) is true.

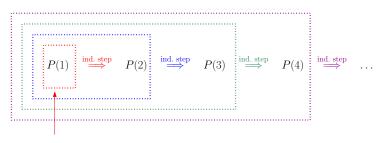
"induction hypothesis"

• Induction step: for every positive integer n, if $P(1), \ldots, P(n-1)$ are all true, then P(n) is true.

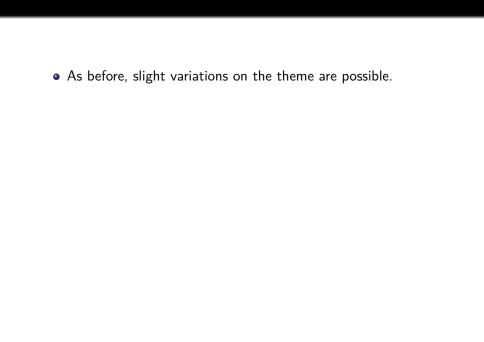
"induction hypothesis"

• Induction step: for every positive integer n, if P(i) is true for all positive integers i < n, then P(n) is true.

"induction hypothesis"



follows from "nothing" via the induction step



- As before, slight variations on the theme are possible.
- In particular, for a fixed integer k, we may wish to prove by strong induction that P(n) holds for all integers $n \ge k$.

- As before, slight variations on the theme are possible.
- In particular, for a fixed integer k, we may wish to prove by strong induction that P(n) holds for all integers $n \ge k$.
- In this case, it is enough to prove the following:

"induction hypothesis"

- Induction step: for every integer n > k,
 - if $P(k), \ldots, P(n-1)$ are all true, then P(n) is true.

- As before, slight variations on the theme are possible.
- In particular, for a fixed integer k, we may wish to prove by strong induction that P(n) holds for all integers $n \ge k$.
- In this case, it is enough to prove the following:
 - Induction step: for every integer $n \ge k$, if $P(k), \ldots, P(n-1)$ are all true, then P(n) is true.
 - "induction hypothesis"

true.

- Another way of writing the same thing is as follows:
 - **Induction step:** for every integer $n \ge k$,
 - if P(i) is true for all integers i s.t. $k \le i < n$, then P(n) is

"induction hypothesis"

Prove that every integer $n \ge 2$ can be written as a product of one or more prime numbers.

Solution.

Prove that every integer $n \ge 2$ can be written as a product of one or more prime numbers.

Solution. Fix an integer $n \ge 2$, and assume inductively that each of $2, \ldots, n-1$ can be written as a product of primes. WTS n can be written as a product of primes.

Prove that every integer $n \ge 2$ can be written as a product of one or more prime numbers.

Solution. Fix an integer $n \ge 2$, and assume inductively that each of $2, \ldots, n-1$ can be written as a product of primes. WTS n can be written as a product of primes.

Clearly, n is either prime or composite.

Prove that every integer $n \ge 2$ can be written as a product of one or more prime numbers.

Solution. Fix an integer $n \ge 2$, and assume inductively that each of $2, \ldots, n-1$ can be written as a product of primes. WTS n can be written as a product of primes.

Clearly, n is either prime or composite.

Suppose first that n is prime.

Prove that every integer $n \ge 2$ can be written as a product of one or more prime numbers.

Solution. Fix an integer $n \ge 2$, and assume inductively that each of $2, \ldots, n-1$ can be written as a product of primes. WTS n can be written as a product of primes.

Clearly, n is either prime or composite.

Suppose first that n is prime. Then, obviously, n can be written as a product of primes, namely

$$n = \underbrace{n}_{\text{prime}}$$

Prove that every integer $n \ge 2$ can be written as a product of one or more prime numbers.

Solution (continued). Suppose now that n is composite.

Prove that every integer $n \ge 2$ can be written as a product of one or more prime numbers.

Solution (continued). Suppose now that n is composite. Then there exist integers n_1, n_2 s.t. $2 \le n_1, n_2 < n$ and $n = n_1 n_2$.

Prove that every integer $n \ge 2$ can be written as a product of one or more prime numbers.

Solution (continued). Suppose now that n is composite. Then there exist integers n_1 , n_2 s.t. $2 \le n_1$, $n_2 < n$ and $n = n_1 n_2$.

By the induction hypothesis, n_1 and n_2 can be written as products of primes. Set $n_1 = p_1 \cdot \dots \cdot p_k$ and $n_2 = q_1 \cdot \dots \cdot q_\ell$, where $p_1, \dots, p_k, q_1, \dots, q_\ell$ are prime numbers.

Prove that every integer $n \ge 2$ can be written as a product of one or more prime numbers.

Solution (continued). Suppose now that n is composite. Then there exist integers n_1 , n_2 s.t. $2 \le n_1$, $n_2 < n$ and $n = n_1 n_2$.

By the induction hypothesis, n_1 and n_2 can be written as products of primes. Set $n_1 = p_1 \cdot \dots \cdot p_k$ and $n_2 = q_1 \cdot \dots \cdot q_\ell$, where $p_1, \dots, p_k, q_1, \dots, q_\ell$ are prime numbers.

Then $n = n_1 n_2 = p_1 \cdot \dots \cdot p_k \cdot q_1 \cdot \dots \cdot q_\ell$. Thus, n is a product of primes. This completes the induction. \square

- Modular arithmetic
 - Given $n \in \mathbb{N}$ and $m \in \mathbb{Z}$, we write $n \mid m$ if m is divisible by n, that is, if there exists some $k \in \mathbb{Z}$ s.t. m = kn.

- Modular arithmetic
- Given $n \in \mathbb{N}$ and $m \in \mathbb{Z}$, we write $n \mid m$ if m is divisible by n, that is, if there exists some $k \in \mathbb{Z}$ s.t. m = kn.
- Given $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$, we say that a and b are congruent modulo n, and we write $a \equiv b \pmod{n}$ or $a \equiv_n b$, provided that $n \mid (a b)$, i.e. a b = kn for some $k \in \mathbb{Z}$.

- Modular arithmetic
- Given $n \in \mathbb{N}$ and $m \in \mathbb{Z}$, we write $n \mid m$ if m is divisible by n, that is, if there exists some $k \in \mathbb{Z}$ s.t. m = kn.
- Given $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$, we say that a and b are congruent modulo n, and we write $a \equiv b \pmod{n}$ or $a \equiv_n b$, provided that $n \mid (a b)$, i.e. a b = kn for some $k \in \mathbb{Z}$.
- Equivalently, we have that $a \equiv b \pmod{n}$ provided that a and b leave the same remainder when divided by n (where the remainder is required to be one of the integers $0, 1, \ldots, n-1$).

- Modular arithmetic
 - Given $n \in \mathbb{N}$ and $m \in \mathbb{Z}$, we write $n \mid m$ if m is divisible by n, that is, if there exists some $k \in \mathbb{Z}$ s.t. m = kn.
- Given $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$, we say that a and b are congruent modulo n, and we write $a \equiv b \pmod{n}$ or $a \equiv_n b$, provided that $n \mid (a b)$, i.e. a b = kn for some $k \in \mathbb{Z}$.
- Equivalently, we have that $a \equiv b \pmod{n}$ provided that a and b leave the same remainder when divided by n (where the
- remainder is required to be one of the integers $0, 1, \ldots, n-1$). Note that for a positive integer n and an integer a, we have that a is divisible by n (equivalently: a is a multiple of n) iff $a \equiv 0 \pmod{n}$.

- Modular arithmetic
 - Given $n \in \mathbb{N}$ and $m \in \mathbb{Z}$, we write $n \mid m$ if m is divisible by n, that is, if there exists some $k \in \mathbb{Z}$ s.t. m = kn.
 - Given $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$, we say that a and b are congruent modulo n, and we write $a \equiv b \pmod{n}$ or $a \equiv_n b$, provided that $n \mid (a b)$, i.e. a b = kn for some $k \in \mathbb{Z}$.
 - Equivalently, we have that $a \equiv b \pmod{n}$ provided that a and b leave the same remainder when divided by n (where the remainder is required to be one of the integers $0, 1, \ldots, n-1$).
 - Note that for a positive integer n and an integer a, we have that a is divisible by n (equivalently: a is a multiple of n) iff $a \equiv 0 \pmod{n}$.

- $2 \equiv 17 \pmod{3}$;
- $-13 \equiv 8 \pmod{7}$;
- $-1 \equiv 7 \pmod{4}$;

- $2 \not\equiv 17 \pmod{2}$;
- $-13 \not\equiv 8 \pmod{5}$;
- -13 ≠ 0 (1110d 3)
- $-1 \not\equiv 7 \pmod{6}$.

• Reminder: $a \equiv b \pmod{n}$ means that $n \mid (a - b)$.

- Reminder: $a \equiv b \pmod{n}$ means that $n \mid (a b)$.
- For fixed $n \in \mathbb{N}$, every integer is congruent modulo n to exactly one of the following n integers: $0, \ldots, n-1$.

- Reminder: $a \equiv b \pmod{n}$ means that $n \mid (a b)$.
- For fixed $n \in \mathbb{N}$, every integer is congruent modulo n to exactly one of the following n integers: $0, \ldots, n-1$.
 - As we shall see, doing arithmetic modulo n essentially boils down to doing arithmetic with only n values (namely $0, \ldots, n-1$), as opposed to infinitely many. This is quite useful for certain applications.

- Reminder: $a \equiv b \pmod{n}$ means that $n \mid (a b)$.
- Congruence modulo n can be visualized in terms of an "n-hour clock" (see the picture below for the case n=5).

- Reminder: $a \equiv b \pmod{n}$ means that $n \mid (a b)$.
- Congruence modulo n can be visualized in terms of an "n-hour clock" (see the picture below for the case n=5).

• Suppose we are given an integer a, and we wish to determine which of $0, 1, \ldots, n-1$ it is congruent to modulo n.

- Reminder: $a \equiv b \pmod{n}$ means that $n \mid (a b)$.
- Congruence modulo n can be visualized in terms of an "n-hour clock" (see the picture below for the case n=5).

- Suppose we are given an integer a, and we wish to determine which of $0, 1, \ldots, n-1$ it is congruent to modulo n.
- Obviously, if a = 0, then $a \equiv 0 \pmod{n}$.

- Reminder: $a \equiv b \pmod{n}$ means that $n \mid (a b)$.
- Congruence modulo n can be visualized in terms of an "n-hour clock" (see the picture below for the case n=5).

- Suppose we are given an integer a, and we wish to determine which of $0, 1, \ldots, n-1$ it is congruent to modulo n.
- Obviously, if a = 0, then $a \equiv 0 \pmod{n}$.
- If a is positive, then we start at 0 and make a clockwise steps; the number we finish at is the number we need.
 - For example, $14 \equiv 4 \pmod{5}$.

- Reminder: $a \equiv b \pmod{n}$ means that $n \mid (a b)$.
- Congruence modulo n can be visualized in terms of an "n-hour clock" (see the picture below for the case n = 5).

- Suppose we are given an integer a, and we wish to determine which of $0, 1, \ldots, n-1$ it is congruent to modulo n.
- Obviously, if a = 0, then $a \equiv 0 \pmod{n}$.
- If a is positive, then we start at 0 and make a clockwise steps; the number we finish at is the number we need.
 - For example, $14 \equiv 4 \pmod{5}$.
- On the other hand, if a is negative, then we make |a| = -a many counterclockwise steps.
 - For example, $-7 \equiv 3 \pmod{5}$.

Let $n \in \mathbb{N}$ and $a, b, c \in \mathbb{Z}$. Then the following hold:

- if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Let $n \in \mathbb{N}$ and $a, b, c \in \mathbb{Z}$. Then the following hold:

- (a) if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Remark: Proposition 0.2.2 states that congruence modulo n is an "equivalence relation" on \mathbb{Z} . (If you are not yet familiar with equivalence relations, you will soon learn about them in Discrete Math.)

Let $n \in \mathbb{N}$ and $a, b, c \in \mathbb{Z}$. Then the following hold:

- (a) if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Remark: Proposition 0.2.2 states that congruence modulo n is an "equivalence relation" on \mathbb{Z} . (If you are not yet familiar with equivalence relations, you will soon learn about them in Discrete Math.)

Proof.

Let $n \in \mathbb{N}$ and $a, b, c \in \mathbb{Z}$. Then the following hold:

Remark: Proposition 0.2.2 states that congruence modulo n is an "equivalence relation" on \mathbb{Z} . (If you are not yet familiar with equivalence relations, you will soon learn about them in Discrete Math.)

Proof. (a) and (b) are obvious.

Let $n \in \mathbb{N}$ and $a, b, c \in \mathbb{Z}$. Then the following hold:

- \bigcirc if $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$;
- \bigcirc if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Remark: Proposition 0.2.2 states that congruence modulo n is an "equivalence relation" on \mathbb{Z} . (If you are not yet familiar with equivalence relations, you will soon learn about them in Discrete Math.)

Proof. (a) and (b) are obvious. For (c), assume that $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$. Then $n \mid (a - b)$ and $n \mid (b - c)$, i.e. there exist $k, \ell \in \mathbb{Z}$ s.t. a - b = kn and $b - c = \ell n$.

Let $n \in \mathbb{N}$ and $a, b, c \in \mathbb{Z}$. Then the following hold:

- b if $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$;
- \bigcirc if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Remark: Proposition 0.2.2 states that congruence modulo n is an "equivalence relation" on \mathbb{Z} . (If you are not yet familiar with equivalence relations, you will soon learn about them in Discrete Math.)

Proof. (a) and (b) are obvious. For (c), assume that $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$. Then $n \mid (a - b)$ and $n \mid (b - c)$, i.e. there exist $k, \ell \in \mathbb{Z}$ s.t. a - b = kn and $b - c = \ell n$. But then

$$a-c = (a-b)+(b-c) = kn+\ell n = (k+\ell)n,$$

i.e.
$$n \mid (a - c)$$
. Thus, $a \equiv c \pmod{n}$. \square

Let $n \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$, and assume that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then:

Proof.

Let $n \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$, and assume that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then:

Proof. Since $a \equiv b \pmod n$, we have that n | (a - b), and so there exists some $k \in \mathbb{Z}$ s.t. a - b = kn. Similarly, since $c \equiv d \pmod n$, there exists some $\ell \in \mathbb{Z}$ s.t. $c - d = \ell n$.

Let $n \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$, and assume that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then:

- \bigcirc $ac \equiv bd \pmod{n}$.

Proof. Since $a \equiv b \pmod n$, we have that n | (a - b), and so there exists some $k \in \mathbb{Z}$ s.t. a - b = kn. Similarly, since $c \equiv d \pmod n$, there exists some $\ell \in \mathbb{Z}$ s.t. $c - d = \ell n$.

To prove (a), we observe that

$$(a+c)-(b+d) = (a-b)+(c-d) = kn+\ell n = (k+\ell)n,$$

and so $n \mid ((a+c)-(b+d))$. Thus, $a+c \equiv b+d \pmod{n}$. This proves (a).

Let $n \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$, and assume that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then:

- \bigcirc $ac \equiv bd \pmod{n}$.

Proof. Since $a \equiv b \pmod n$, we have that n | (a - b), and so there exists some $k \in \mathbb{Z}$ s.t. a - b = kn. Similarly, since $c \equiv d \pmod n$, there exists some $\ell \in \mathbb{Z}$ s.t. $c - d = \ell n$.

To prove (a), we observe that

$$(a+c)-(b+d) = (a-b)+(c-d) = kn+\ell n = (k+\ell)n,$$

and so $n \mid ((a+c)-(b+d))$. Thus, $a+c \equiv b+d \pmod{n}$. This proves (a).

The proof of (b) is similar (details: Lecture Notes).

Let $n \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$, and assume that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then:

Proof (continued). Reminder: a - b = kn and $c - d = \ell n$.

Let $n \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$, and assume that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then:

- \bigcirc $ac \equiv bd \pmod{n}$.

Proof (continued). Reminder: a - b = kn and $c - d = \ell n$.

For (c), we have that

$$ac - bd = ac - ad + ad - bd$$

 $= a(c - d) + (a - b)d$
 $= a\ell n + knd$
 $= (a\ell + dk)n$

and so $n \mid (ac - bd)$. Thus, $ac \equiv bd \pmod{n}$. This proves (c). \square

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. Assume that $a \equiv b \pmod{n}$. Then $a^t \equiv b^t \pmod{n}$ for all integers $t \geq 0$.

Proof.

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. Assume that $a \equiv b \pmod{n}$. Then $a^t \equiv b^t \pmod{n}$ for all integers t > 0.

Proof. We proceed by induction on *t*.

Base case: t = 0. By definition, $r^0 = 1$ for all integers r. So, $a^0 = 1 = b^0$, and so $a^0 \equiv b^0 \pmod{n}$.

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. Assume that $a \equiv b \pmod{n}$. Then $a^t \equiv b^t \pmod{n}$ for all integers t > 0.

Proof. We proceed by induction on *t*.

Base case: t = 0. By definition, $r^0 = 1$ for all integers r. So, $a^0 = 1 = b^0$, and so $a^0 \equiv b^0 \pmod{n}$.

Induction case: Fix a non-negative integer t, and assume inductively that $a^t \equiv b^t \pmod{n}$.

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. Assume that $a \equiv b \pmod{n}$. Then $a^t \equiv b^t \pmod{n}$ for all integers t > 0.

Proof. We proceed by induction on t.

Base case: t = 0. By definition, $r^0 = 1$ for all integers r. So, $a^0 = 1 = b^0$, and so $a^0 \equiv b^0 \pmod{n}$.

Induction case: Fix a non-negative integer t, and assume inductively that $a^t \equiv b^t \pmod{n}$. Since we also have that $a \equiv b \pmod{n}$, Proposition 0.2.3(c) implies that $a^t a \equiv b^t b \pmod{n}$, i.e. that $a^{t+1} \equiv b^{t+1} \pmod{n}$. This completes the induction. \square

Let $n \in \mathbb{N}$ and $a, b, c \in \mathbb{Z}$. Then the following hold:

- (a) if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Proposition 0.2.3

Let $n \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$, and assume that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then:

- $a+c \equiv b+d \; (\bmod \; n);$
- \bigcirc ac \equiv bd (mod n).

Proposition 0.2.4

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. Assume that $a \equiv b \pmod{n}$. Then $a^t \equiv b^t \pmod{n}$ for all integers t > 0.

• **Notation:** For $a_n, a_{n-1}, ..., a_0 \in \{0, 1, ..., 9\}$, we define:

$$\overline{a_n a_{n-1} \dots a_0} := \sum_{k=0}^n a_k 10^k.$$

Thus, $\overline{a_n a_{n-1} \dots a_0}$ is the number whose first digit is a_n , whose second digit is a_{n-1} , and so on.

• **Notation:** For $a_n, a_{n-1}, ..., a_0 \in \{0, 1, ..., 9\}$, we define:

$$\overline{a_n a_{n-1} \dots a_0} := \sum_{k=0}^n a_k 10^k.$$

Thus, $\overline{a_n a_{n-1} \dots a_0}$ is the number whose first digit is a_n , whose second digit is a_{n-1} , and so on.

- It is possible that this first digit is zero.
- We could eliminate this possibility, but that would result in a messier definition.

Proposition 0.2.6

Let $a = \overline{a_n a_{n-1} \dots a_0}$. Then $a \equiv a_n + a_{n-1} + \dots + a_0 \pmod{9}$. Therefore, a positive integer is divisible by 9 iff the sum of its digits is divisible by 9.

Proof.

Proposition 0.2.6

Let $a = \overline{a_n a_{n-1} \dots a_0}$. Then $a \equiv a_n + a_{n-1} + \dots + a_0 \pmod{9}$. Therefore, a positive integer is divisible by 9 iff the sum of its digits is divisible by 9.

Proof. By definition, an integer is divisible by 9 iff it is congruent to 0 modulo 9. So, the second statement of the proposition follows immediately from the first.

It remains to prove the first statement.

Proposition 0.2.6

Let $a = \overline{a_n a_{n-1} \dots a_0}$. Then $a \equiv a_n + a_{n-1} + \dots + a_0 \pmod{9}$. Therefore, a positive integer is divisible by 9 iff the sum of its digits is divisible by 9.

Proof. By definition, an integer is divisible by 9 iff it is congruent to 0 modulo 9. So, the second statement of the proposition follows immediately from the first.

It remains to prove the first statement. Note that $10 \equiv 1 \pmod{9}$.

Proposition 0.2.6

Let $a = \overline{a_n a_{n-1} \dots a_0}$. Then $a \equiv a_n + a_{n-1} + \dots + a_0 \pmod{9}$. Therefore, a positive integer is divisible by 9 iff the sum of its digits is divisible by 9.

Proof. By definition, an integer is divisible by 9 iff it is congruent to 0 modulo 9. So, the second statement of the proposition follows immediately from the first.

It remains to prove the first statement. Note that $10 \equiv 1 \pmod{9}$. So, by Proposition 0.2.4, we have that $10^k \equiv 1 \pmod{9}$ for all non-negative integers k.

Proposition 0.2.6

Let $a = \overline{a_n a_{n-1} \dots a_0}$. Then $a \equiv a_n + a_{n-1} + \dots + a_0 \pmod{9}$. Therefore, a positive integer is divisible by 9 iff the sum of its digits is divisible by 9.

Proof. By definition, an integer is divisible by 9 iff it is congruent to 0 modulo 9. So, the second statement of the proposition follows immediately from the first.

It remains to prove the first statement. Note that $10 \equiv 1 \pmod 9$. So, by Proposition 0.2.4, we have that $10^k \equiv 1 \pmod 9$ for all non-negative integers k. It follows that for all $k \in \{0, \dots, n\}$, we have that $a_k \cdot 10^k \equiv a_k \pmod 9$.

Proposition 0.2.6

Let $a = \overline{a_n a_{n-1} \dots a_0}$. Then $a \equiv a_n + a_{n-1} + \dots + a_0 \pmod{9}$. Therefore, a positive integer is divisible by 9 iff the sum of its digits is divisible by 9.

Proof. By definition, an integer is divisible by 9 iff it is congruent to 0 modulo 9. So, the second statement of the proposition follows immediately from the first.

It remains to prove the first statement. Note that $10 \equiv 1 \pmod{9}$. So, by Proposition 0.2.4, we have that $10^k \equiv 1 \pmod{9}$ for all non-negative integers k. It follows that for all $k \in \{0, \ldots, n\}$, we have that $a_k \cdot 10^k \equiv a_k \pmod{9}$. Consequently,

$$a = \overline{a_n a_{n-1} \dots a_0} = \sum_{k=0}^n a_k 10^k \equiv_9 \sum_{k=0}^n a_k = a_n + a_{n-1} + \dots + a_0,$$

which is what we needed to show. \square

Proposition 0.2.6

Let $a = \overline{a_n a_{n-1} \dots a_0}$. Then $a \equiv a_n + a_{n-1} + \dots + a_0 \pmod{9}$. Therefore, a positive integer is divisible by 9 iff the sum of its digits is divisible by 9.

Proposition 0.2.6

Let $a = \overline{a_n a_{n-1} \dots a_0}$. Then $a \equiv a_n + a_{n-1} + \dots + a_0 \pmod{9}$. Therefore, a positive integer is divisible by 9 iff the sum of its digits is divisible by 9.

Proposition 0.2.7

Let $a = \overline{a_n a_{n-1} \dots a_0}$. Then $a \equiv a_n + a_{n-1} + \dots + a_0 \pmod{3}$. Therefore, a positive integer is divisible by 3 iff the sum of its digits is divisible by 3.

Proof. The proof is completely analogous to that of Proposition 0.2.6: just replace 9 with 3 throughout.

lacktriangle Arithmetic in \mathbb{Z}_n and Fermat's Little Theorem

- **3** Arithmetic in \mathbb{Z}_n and Fermat's Little Theorem
- Given $n \in \mathbb{N}$ and $a \in \mathbb{Z}$, we set

$$[a]_n := \{x \in \mathbb{Z} \mid x \equiv a \pmod{n}\};$$

- **3** Arithmetic in \mathbb{Z}_n and Fermat's Little Theorem
 - Given $n \in \mathbb{N}$ and $a \in \mathbb{Z}$, we set

$$[a]_n := \{x \in \mathbb{Z} \mid x \equiv a \pmod{n}\};$$

- For example:
 - $[0]_2 = {\ldots, -4, -2, 0, 2, 4, \ldots};$
 - $[1]_2 = {\ldots, -3, -1, 1, 3, 5, \ldots};$
 - $[0]_3 = \{\ldots, -6, -3, 0, 3, 6, \ldots\};$
 - $[1]_3 = {\ldots, -5, -2, 1, 4, 7, \ldots};$
 - $[2]_3 = \{\ldots, -4, -1, 2, 5, 8, \ldots\}.$

- **3** Arithmetic in \mathbb{Z}_n and Fermat's Little Theorem
- Given $n \in \mathbb{N}$ and $a \in \mathbb{Z}$, we set

$$[a]_n := \{x \in \mathbb{Z} \mid x \equiv a \pmod{n}\};$$

- For example:
 - $[0]_2 = \{\ldots, -4, -2, 0, 2, 4, \ldots\};$
 - $[1]_2 = \{\ldots, -3, -1, 1, 3, 5, \ldots\};$
 - $[0]_3 = \{\ldots, -6, -3, 0, 3, 6, \ldots\};$
 - $[1]_3 = \{\ldots, -5, -2, 1, 4, 7, \ldots\};$
 - $[1]_3 = \{\ldots, -3, -2, 1, 4, 7, \ldots\},$ • $[2]_3 = \{\ldots, -4, -1, 2, 5, 8, \ldots\}.$
- [2]3 = {..., 4, 1,2,3,0,...}.
- Note also that $a \in [a]_n$, since $a \equiv a \pmod{n}$.

- **3** Arithmetic in \mathbb{Z}_n and Fermat's Little Theorem
- Given $n \in \mathbb{N}$ and $a \in \mathbb{Z}$, we set

$$[a]_n := \{x \in \mathbb{Z} \mid x \equiv a \pmod{n}\};$$

- For example:
 - $[0]_2 = \{\ldots, -4, -2, 0, 2, 4, \ldots\};$
 - $[1]_2 = {\ldots, -3, -1, 1, 3, 5, \ldots};$
 - $[0]_3 = {\ldots, -6, -3, 0, 3, 6, \ldots};$
 - $[1]_3 = \{\ldots, -5, -2, 1, 4, 7, \ldots\};$
 - $[2]_3 = \{\ldots, -3, -2, 1, 4, 7, \ldots\}$, • $[2]_3 = \{\ldots, -4, -1, 2, 5, 8, \ldots\}$.
- Note also that $a \in [a]_n$, since $a \equiv a \pmod{n}$.
- We define

$$\mathbb{Z}_n := \{[a]_n \mid a \in \mathbb{Z}\}.$$

Proposition 0.2.9

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. Then:

- ① if $a \equiv b \pmod{n}$, then $[a]_n = [b]_n$;

Proof.

Proposition 0.2.9

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. Then:

Proof. This follows from the fact that, by Proposition 0.2.2, congruence modulo n is an equivalence relation on \mathbb{Z} . If you are not familiar with the theory of equivalence relations, here is a detailed proof.

Proposition 0.2.9

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. Then:

Proof (continued). We first prove (a).

Proposition 0.2.9

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. Then:

- ① if $a \equiv b \pmod{n}$, then $[a]_n = [b]_n$;

Proof (continued). We first prove (a). Suppose that $a \equiv b \pmod{n}$. WTS $[a]_n = [b]_n$.

Proposition 0.2.9

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. Then:

- ① if $a \equiv b \pmod{n}$, then $[a]_n = [b]_n$;

Proof (continued). We first prove (a). Suppose that $a \equiv b \pmod{n}$. WTS $[a]_n = [b]_n$. It suffices to show that $[a]_n \subseteq [b]_n$ (the proof of the reverse inclusion is analogous).

Proposition 0.2.9

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. Then:

- o if $a \equiv b \pmod{n}$, then $[a]_n = [b]_n$;

Proof (continued). We first prove (a). Suppose that $a \equiv b \pmod{n}$. WTS $[a]_n = [b]_n$. It suffices to show that $[a]_n \subseteq [b]_n$ (the proof of the reverse inclusion is analogous).

Fix $x \in [a]_n$. Then $x \equiv a \pmod{n}$. Since $a \equiv b \pmod{n}$, Proposition 0.2.2 guarantees that $x \equiv b \pmod{n}$.

Proposition 0.2.9

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. Then:

- ① if $a \equiv b \pmod{n}$, then $[a]_n = [b]_n$;

Proof (continued). We first prove (a). Suppose that $a \equiv b \pmod{n}$. WTS $[a]_n = [b]_n$. It suffices to show that $[a]_n \subseteq [b]_n$ (the proof of the reverse inclusion is analogous).

Fix $x \in [a]_n$. Then $x \equiv a \pmod{n}$. Since $a \equiv b \pmod{n}$, Proposition 0.2.2 guarantees that $x \equiv b \pmod{n}$. Consequently, $x \in [b]_n$, and we deduce that $[a]_n \subseteq [b]_n$. This proves (a).

Proposition 0.2.9

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. Then:

- ① if $a \equiv b \pmod{n}$, then $[a]_n = [b]_n$;

Proof (continued). It remains to prove (b).

Proposition 0.2.9

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. Then:

- o if $a \equiv b \pmod{n}$, then $[a]_n = [b]_n$;

Proof (continued). It remains to prove (b). We prove the contrapositive: if $[a]_n \cap [b]_n \neq \emptyset$, then $a \equiv b \pmod{n}$.

Proposition 0.2.9

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. Then:

- $aller{b}$ if $a \equiv b \pmod{n}$, then $[a]_n = [b]_n$;

Proof (continued). It remains to prove (b). We prove the contrapositive: if $[a]_n \cap [b]_n \neq \emptyset$, then $a \equiv b \pmod{n}$. So, assume that $[a]_n \cap [b]_n \neq \emptyset$, and fix some $x \in [a]_n \cap [b]_n$.

Proposition 0.2.9

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. Then:

- o if $a \equiv b \pmod{n}$, then $[a]_n = [b]_n$;

Proof (continued). It remains to prove (b). We prove the contrapositive: if $[a]_n \cap [b]_n \neq \emptyset$, then $a \equiv b \pmod{n}$. So, assume that $[a]_n \cap [b]_n \neq \emptyset$, and fix some $x \in [a]_n \cap [b]_n$.

Since $x \in [a]_n$, we have that $x \equiv a \pmod{n}$, and since $x \in [b]_n$, we have that $x \equiv b \pmod{n}$.

Proposition 0.2.9

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. Then:

- o if $a \equiv b \pmod{n}$, then $[a]_n = [b]_n$;

Proof (continued). It remains to prove (b). We prove the contrapositive: if $[a]_n \cap [b]_n \neq \emptyset$, then $a \equiv b \pmod{n}$. So, assume that $[a]_n \cap [b]_n \neq \emptyset$, and fix some $x \in [a]_n \cap [b]_n$.

Since $x \in [a]_n$, we have that $x \equiv a \pmod{n}$, and since $x \in [b]_n$, we have that $x \equiv b \pmod{n}$.

But now by Proposition 0.2.2, we have that $a \equiv b \pmod{n}$. This proves (b). \square

• Note that for $n \in \mathbb{N}$, every integer is congruent to exactly one of $0, \ldots, n-1$ modulo n.

- Note that for $n \in \mathbb{N}$, every integer is congruent to exactly one of $0, \ldots, n-1$ modulo n.
 - By Proposition 0.2.9, it follows that for all $x \in \mathbb{Z}$, the set $[x]_n$ is equal to exactly one of the following: $[0]_n, \ldots, [n-1]_n$.

- Note that for $n \in \mathbb{N}$, every integer is congruent to exactly one of $0, \ldots, n-1$ modulo n.
 - By Proposition 0.2.9, it follows that for all $x \in \mathbb{Z}$, the set $[x]_n$ is equal to exactly one of the following: $[0]_n, \ldots, [n-1]_n$.
- This implies that, in fact:

$$\mathbb{Z}_n = \{[0]_n, \ldots, [n-1]_n\}.$$

- Note that for $n \in \mathbb{N}$, every integer is congruent to exactly one of $0, \ldots, n-1$ modulo n.
 - By Proposition 0.2.9, it follows that for all $x \in \mathbb{Z}$, the set $[x]_n$ is equal to exactly one of the following: $[0]_n, \ldots, [n-1]_n$.
- This implies that, in fact:

$$\mathbb{Z}_n = \{[0]_n, \ldots, [n-1]_n\}.$$

• Moreover, by Proposition 0.2.9, no two of $0, \ldots, n-1$ are congruent to each other modulo n, and consequently, $[0]_n, \ldots, [n-1]_n$ are pairwise disjoint.

- Note that for $n \in \mathbb{N}$, every integer is congruent to exactly one of $0, \dots, n-1$ modulo n.
 - By Proposition 0.2.9, it follows that for all $x \in \mathbb{Z}$, the set $[x]_n$ is equal to exactly one of the following: $[0]_n, \ldots, [n-1]_n$.
- This implies that, in fact:

$$\mathbb{Z}_n = \{[0]_n, \ldots, [n-1]_n\}.$$

- Moreover, by Proposition 0.2.9, no two of 0, ..., n-1 are congruent to each other modulo n, and consequently, $[0]_n, ..., [n-1]_n$ are pairwise disjoint.
- We now deduce that the sets $[0]_n, \ldots, [n-1]_n$ form a "partition" of \mathbb{Z} , that is:

- Note that for $n \in \mathbb{N}$, every integer is congruent to exactly one of $0, \ldots, n-1$ modulo n.
 - By Proposition 0.2.9, it follows that for all $x \in \mathbb{Z}$, the set $[x]_n$ is equal to exactly one of the following: $[0]_n, \ldots, [n-1]_n$.
- This implies that, in fact:

$$\mathbb{Z}_n = \{[0]_n, \ldots, [n-1]_n\}.$$

- Moreover, by Proposition 0.2.9, no two of 0, ..., n-1 are congruent to each other modulo n, and consequently, $[0]_n, ..., [n-1]_n$ are pairwise disjoint.
- We now deduce that the sets $[0]_n, \ldots, [n-1]_n$ form a "partition" of \mathbb{Z} , that is:
 - $\mathbb{Z} = [0]_n \cup \cdots \cup [n-1]_n$, and

- Note that for $n \in \mathbb{N}$, every integer is congruent to exactly one of $0, \ldots, n-1$ modulo n.
 - By Proposition 0.2.9, it follows that for all $x \in \mathbb{Z}$, the set $[x]_n$ is equal to exactly one of the following: $[0]_n, \ldots, [n-1]_n$.
- This implies that, in fact:

$$\mathbb{Z}_n = \{[0]_n, \ldots, [n-1]_n\}.$$

- Moreover, by Proposition 0.2.9, no two of $0, \ldots, n-1$ are congruent to each other modulo n, and consequently, $[0]_n, \ldots, [n-1]_n$ are pairwise disjoint.
- We now deduce that the sets $[0]_n, \ldots, [n-1]_n$ form a "partition" of \mathbb{Z} , that is:
 - $\mathbb{Z} = [0]_n \cup \cdots \cup [n-1]_n$, and
 - the sets $[0]_n, \ldots, [n-1]_n$ are pairwise disjoint.

- Note that for $n \in \mathbb{N}$, every integer is congruent to exactly one of $0, \dots, n-1$ modulo n.
 - By Proposition 0.2.9, it follows that for all $x \in \mathbb{Z}$, the set $[x]_n$ is equal to exactly one of the following: $[0]_n, \ldots, [n-1]_n$.
- This implies that, in fact:

$$\mathbb{Z}_n = \{[0]_n, \dots, [n-1]_n\}.$$

- Moreover, by Proposition 0.2.9, no two of 0, ..., n-1 are congruent to each other modulo n, and consequently, $[0]_n, ..., [n-1]_n$ are pairwise disjoint.
- We now deduce that the sets $[0]_n, \ldots, [n-1]_n$ form a "partition" of \mathbb{Z} , that is:
 - $\mathbb{Z} = [0]_n \cup \cdots \cup [n-1]_n$, and

associated equivalence classes.

- the sets $[0]_n, \ldots, [n-1]_n$ are pairwise disjoint.
- If you are familiar with "equivalence relations," then note that congruence modulo n is an equivalence relation on \mathbb{Z} (by Proposition 0.2.2), and the sets $[0]_n, \ldots, [n-1]_n$ are the

- **Reminder:** For a positive integer *n*:
 - $[a]_n := \{x \in \mathbb{Z} \mid x \equiv a \pmod{n}\}$ for all $a \in \mathbb{Z}$;
 - $\mathbb{Z}_n := \{[a]_n \mid a \in \mathbb{Z}\} = \{[0]_n, \dots, [n-1]_n\}.$
- **Notation:** When working in \mathbb{Z}_n , we often write simply $0, \ldots, n-1$ instead of $[0]_n, \ldots, [n-1]_n$, respectively.
 - We may do this **only** if we have previously made it clear that our numbers (which are technically sets of integers) are in \mathbb{Z}_n .

- **Reminder:** For a positive integer *n*:
 - $[a]_n := \{x \in \mathbb{Z} \mid x \equiv a \pmod{n}\}$ for all $a \in \mathbb{Z}$;
 - $\mathbb{Z}_n := \{[a]_n \mid a \in \mathbb{Z}\} = \{[0]_n, \dots, [n-1]_n\}.$
- **Notation:** When working in \mathbb{Z}_n , we often write simply $0, \ldots, n-1$ instead of $[0]_n, \ldots, [n-1]_n$, respectively.
 - We may do this **only** if we have previously made it clear that our numbers (which are technically sets of integers) are in \mathbb{Z}_n .

For n=2, $[0]_2=\{2t\mid t\in\mathbb{Z}\}$ and $[1]_2=\{1+2t\mid t\in\mathbb{Z}\}$, and we have that $\mathbb{Z}_2=\{[0]_2,[1]_2\}$. Typically, we write simply $\mathbb{Z}_2=\{0,1\}$, but technically, 0 stands for the set $[0]_2$, and 1 stands for $[1]_2$.

 $^{^{\}rm a} ln$ other words, $[0]_2$ is the set of all even numbers, and $[1]_2$ is the set of all odd numbers.

Let $n \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$, and assume that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then:

Let $n \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$, and assume that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then:

- \bigcirc $ac \equiv bd \pmod{n}$.
 - By Proposition 0.2.3, for all $n \in \mathbb{N}$ and $a, a', b, b' \in \mathbb{Z}$, if $[a]_n = [a']_n$ and $[b]_n = [b']_n$, then
 - $[a+b]_n = [a'+b']_n$,
 - $[a-b]_n = [a'-b']_n$, and
 - $[ab]_n = [a'b']_n$.

Let $n \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$, and assume that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then:

- $b a c \equiv b d \pmod{n};$
- - By Proposition 0.2.3, for all $n \in \mathbb{N}$ and $a, a', b, b' \in \mathbb{Z}$, if $[a]_n = [a']_n$ and $[b]_n = [b']_n$, then
 - $[a+b]_n = [a'+b']_n$
 - $[a-b]_n = [a'-b']_n$, and
 - $[ab]_n = [a'b']_n$.

• Thus, we may define addition, subtraction, and multiplication in \mathbb{Z}_n as follows.

Let $n \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$, and assume that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then:

- $a+c \equiv b+d \pmod{n};$
- - By Proposition 0.2.3, for all $n \in \mathbb{N}$ and $a, a', b, b' \in \mathbb{Z}$, if $[a]_n = [a']_n$ and $[b]_n = [b']_n$, then
 - $[a+b]_n = [a'+b']_n$, • $[a-b]_n = [a'-b']_n$, and
 - [ab]_n = [a'b']_n.
 Thus, we may define addition, subtraction, and multiplication
 - in \mathbb{Z}_n as follows.
 - For n∈ N and a, b∈ Z, we define
 [a]_n + [b]_n = [a + b]_n;
 [a]_n [b]_n = [a b]_n;
 [a]_n[b]_n = [ab]_n.

Let $n \in \mathbb{N}$. Then all the following hold:

- addition and multiplication are commutative in \mathbb{Z}_n , that is, for all $a, b \in \mathbb{Z}_n$, we have that a + b = b + a and ab = ba;
- addition and multiplication are associative in \mathbb{Z}_n , that is, for all $a, b, c \in \mathbb{Z}_n$, we have that (a + b) + c = a + (b + c) and (ab)c = a(bc);
- omultiplication is distributive over addition in \mathbb{Z}_n , that is, for all $a,b,c\in\mathbb{Z}_n$, we have that a(b+c)=ab+ac.

Proof.

Let $n \in \mathbb{N}$. Then all the following hold:

- addition and multiplication are commutative in \mathbb{Z}_n , that is, for all $a, b \in \mathbb{Z}_n$, we have that a + b = b + a and ab = ba;
- addition and multiplication are associative in \mathbb{Z}_n , that is, for all $a, b, c \in \mathbb{Z}_n$, we have that (a + b) + c = a + (b + c) and (ab)c = a(bc);
- multiplication is distributive over addition in \mathbb{Z}_n , that is, for all $a,b,c\in\mathbb{Z}_n$, we have that a(b+c)=ab+ac.

Proof. This essentially follows from the definition of \mathbb{Z}_n , from the fact that addition and multiplication are commutative and associative in \mathbb{Z} , and from the fact that multiplication is distributive over addition in \mathbb{Z} .

The proof of the commutativity of addition is in the Lecture Notes. The rest is an exercise. \Box

• Let us now take a look at the addition and multiplication tables for \mathbb{Z}_n , for a few small values of n.

• Let us now take a look at the addition and multiplication tables for \mathbb{Z}_n , for a few small values of n.

Example 0.2.12

Below are the addition and multiplication tables for \mathbb{Z}_2 .

+	$[0]_2$	$[1]_2$		$[0]_2$	$[1]_2$
[0] ₂	[0] ₂	$[1]_2$	[0] ₂	[0] ₂	[0]2
$[1]_2$	$[1]_2$	$[0]_2$	$[1]_2$	$[0]_2$	$[1]_{2}$

If we omit square brackets and subscripts (as we usually do), we obtain the addition and multiplication tables for \mathbb{Z}_2 shown below.

_+	0	1		0	1
0	0	1	0	0	0
0	1	0	1	0	1

Below are the addition and multiplication tables for \mathbb{Z}_3 .

+					0		
0				0	0	0	0
1	1	2	0	1	0	1	2
2	2	0	1	2	0	2	1

 $[^]a Remember, in this context, 0 stands for <math display="inline">[0]_3,\, 1$ stands for $[1]_3,\, and\, 2$ stands for $[2]_3.$

Below are the addition and multiplication tables for $\mathbb{Z}_4.^a$

+	0	1	2	3	•	0	1	2	3	
0								0		
1	1	2	3	0	1	0	1	2	3	
	2				2	0	2	0	2	
3	3	0	1	2	3	0	3	2	1	

^aRemember, in this context, 0 stands for $[0]_4$, 1 stands for $[1]_4$, 2 stands for $[2]_4$, and 3 stands for $[3]_4$.

Below are the addition and multiplication tables for \mathbb{Z}_5 .

+	0	1	2	3	4	•	0	1	2	3	4
		1					0				
1	1	2	3	4	0		0				
2	2	3	4	0	1	2	0	2	4	1	3
3	3	4	0	1	2	3	0	3	1	4	2

^aRemember, in this context, 0 stands for $[0]_5$, 1 stands for $[1]_5$, 2 stands for

 $^[2]_5$, 3 stands for $[3]_5$, and 4 stands for $[4]_5$.

	+	0	1						0	1				
\mathbb{Z}_2 :	0	0	1					0	0	0				
	1	1	0					1	0	1				
		0	1	2					0	1	2			
\mathbb{Z}_3 :	0	0	1	2	•			0	0	0	0			
∠3 .	1	1	2	0				1	0	1	2			
	2	2	0	1				2	0	2	1			
	$\overline{+}$	0	1	2	3				0	1	2	3		
	0	0	1	2	3			0	0	0	0	0		
\mathbb{Z}_4 :	1	1	2	3	0			1	0	1	2	3		
	2	2	3	0	1			2	0	2	0	2		
	3	3	0	1	2			3	0	3	2	1		
	$\overline{+}$	0	1	2	3	4			0	1	2	3	4	
	0	0	1	2	3	4	-	0	0	0	0	0	0	
\mathbb{Z}_5 :	1	1	2	3	4	0		1	0	1	2	3	4	
<i>∠</i> 15 ·	2	2	3	4	0	1		2	0	2	4	1	3	
	3	3	4	0	1	2		3	0	3	1	4	2	
	4	4	0	1	2	3		4	0	4	3	2	1	

• Remark/Notation: Note that for all positive integers n, each number a in \mathbb{Z}_n has a unique "additive inverse," denoted by -a, i.e. the number (element of \mathbb{Z}_n) that we need to add to a in order to obtain 0 (here, $0 = [0]_n$).

- **Remark/Notation:** Note that for all positive integers *n*, each number a in \mathbb{Z}_n has a unique "additive inverse," denoted by
- -a, i.e. the number (element of \mathbb{Z}_n) that we need to add to a in order to obtain 0 (here, $0 = [0]_n$).
- When using square brackets and subscripts, we do, of course, get $-[a]_n = [-a]_n = [n-a]_n$ for all positive integers n and all integers a.

- Remark/Notation: Note that for all positive integers n, each number a in \mathbb{Z}_n has a unique "additive inverse," denoted by -a, i.e. the number (element of \mathbb{Z}_n) that we need to add to a
- in order to obtain 0 (here, 0 = [0]_n).
 When using square brackets and subscripts, we do, of course, get -[a]_n = [-a]_n = [n-a]_n for all positive integers n and all
- get $-[a]_n = [-a]_n = [n-a]_n$ for all positive integers n and a integers a.
- However, we will usually work in \mathbb{Z}_n without such brackets.

- **Remark/Notation:** Note that for all positive integers n, each number a in \mathbb{Z}_n has a unique "additive inverse," denoted by -a, i.e. the number (element of \mathbb{Z}_n) that we need to add to a
- When using square brackets and subscripts, we do, of course, get $-[a]_n = [-a]_n = [n-a]_n$ for all positive integers n and all integers a.
- However, we will usually work in \mathbb{Z}_n without such brackets.
- For small values of n, we get the following:

in order to obtain 0 (here, $0 = [0]_n$).

- - in \mathbb{Z}_2 : -0 = 0, -1 = 1; • in \mathbb{Z}_3 : -0 = 0, -1 = 2, -2 = 1:
 - in \mathbb{Z}_4 : -0 = 0, -1 = 3, -2 = 2. -3 = 1:
 - in \mathbb{Z}_5 : -0 = 0, -1 = 4, -2 = 3. -3 = 2. -4 = 1.

	+	0	1				•	0	1	_		
\mathbb{Z}_2 :	0	0	1				0	0	0			
	1	1	0				1	0	1			
	+	0	1	2			 	0	1	2		
\mathbb{Z}_3 :	0	0	1	2			0	0	0	0		
∠ 3 .	1	1	2	0			1	0	1	2		
	2	2	0	1			2	0	2	1		
		0	1	2	3		 	0	1	2	3	
	0	0	1	2	3		0	0	0	0	0	
\mathbb{Z}_4 :	1	1	2	3	0		1	0	1	2	3	
	2	2	3	0	1		2	0	2	0	2	
	3	3	0	1	2		3	0	3	2	1	
		0	1	2	3	4	 	0	1	2	3	4
	0	0	1	2	3	4	0	0	0	0	0	0
7 77	1	1	2	3	4	0	1	0	1	2	3	4
\mathbb{Z}_5 :	2	2	3	4	0	1	2	0	2	4	1	3
	3	3	4	0	1	2	3	0	3	1	4	2
	4	4	0	1	2	3	4	0	4	3	2	1

- **Remark:** Note that for n = 2, 3, 5, every non-zero member of \mathbb{Z}_n has a "multiplicative inverse," i.e. a number that we can
- multiply it by to get 1.
- However, for n = 4, this is not the case.
 As Theorem 0.2.16 and Corollary 0.2.17 (see below) show, this is not an accident!

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ be relatively prime.^a Then there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{n}$, and therefore, $[a]_n[b]_n = [1]_n$.

^aThis means that the greatest common divisor of n and a, denoted by $\gcd(n,a)$, is 1. In other words, the only positive integer that divides both n and a is 1.

Proof.

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ be relatively prime.^a Then there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{n}$, and therefore, $[a]_n[b]_n = [1]_n$.

^aThis means that the greatest common divisor of n and a, denoted by $\gcd(n,a)$, is 1. In other words, the only positive integer that divides both n and a is 1.

Proof. WTS no two of $0, a, 2a, \ldots, (n-1)a$ are congruent modulo n. (Note that this implies that $[a]_n, [2a]_n, \ldots, [(n-1)a]_n$ are pairwise distinct.)

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ be relatively prime.^a Then there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{n}$, and therefore, $[a]_n[b]_n = [1]_n$.

^aThis means that the greatest common divisor of n and a, denoted by $\gcd(n,a)$, is 1. In other words, the only positive integer that divides both n and a is 1.

Proof. WTS no two of $0, a, 2a, \ldots, (n-1)a$ are congruent modulo n. (Note that this implies that $[a]_n, [2a]_n, \ldots, [(n-1)a]_n$ are pairwise distinct.)

Suppose otherwise, and fix distinct $i, j \in \{0, ..., n-1\}$ s.t. $ia \equiv ja \pmod{n}$.

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ be relatively prime.^a Then there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{n}$, and therefore, $[a]_n[b]_n = [1]_n$.

^aThis means that the greatest common divisor of n and a, denoted by $\gcd(n,a)$, is 1. In other words, the only positive integer that divides both n and a is 1.

Proof. WTS no two of $0, a, 2a, \ldots, (n-1)a$ are congruent modulo n. (Note that this implies that $[a]_n, [2a]_n, \ldots, [(n-1)a]_n$ are pairwise distinct.)

Suppose otherwise, and fix distinct $i, j \in \{0, ..., n-1\}$ s.t. $ia \equiv ja \pmod{n}$. Then $(i-j)a \equiv 0 \pmod{n}$, that is, $n \mid (i-j)a$.

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ be relatively prime.^a Then there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{n}$, and therefore, $[a]_n[b]_n = [1]_n$.

^aThis means that the greatest common divisor of n and a, denoted by $\gcd(n,a)$, is 1. In other words, the only positive integer that divides both n and a is 1.

Proof. WTS no two of $0, a, 2a, \ldots, (n-1)a$ are congruent modulo n. (Note that this implies that $[a]_n, [2a]_n, \ldots, [(n-1)a]_n$ are pairwise distinct.)

Suppose otherwise, and fix distinct $i, j \in \{0, ..., n-1\}$ s.t. $ia \equiv ja \pmod{n}$. Then $(i-j)a \equiv 0 \pmod{n}$, that is, $n \mid (i-j)a$.

Since n and a are relatively prime, it follows that n|(i-j).

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ be relatively prime.^a Then there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{n}$, and therefore, $[a]_n[b]_n = [1]_n$.

^aThis means that the greatest common divisor of n and a, denoted by gcd(n,a), is 1. In other words, the only positive integer that divides both n and a is 1.

Proof. WTS no two of $0, a, 2a, \ldots, (n-1)a$ are congruent modulo n. (Note that this implies that $[a]_n, [2a]_n, \ldots, [(n-1)a]_n$ are pairwise distinct.)

Suppose otherwise, and fix distinct $i, j \in \{0, ..., n-1\}$ s.t. $ia \equiv ja \pmod{n}$. Then $(i - j)a \equiv 0 \pmod{n}$, that is, $n \mid (i - j)a$.

Since n and a are relatively prime, it follows that n|(i-j).

But this is impossible because $i,j\in\{0,\ldots,n-1\}$ and $i\neq j$, and so 0<|i-j|< n.

Thus, no two of $0, a, 2a, \ldots, (n-1)a$ are congruent modulo n.

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ be relatively prime.^a Then there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{n}$, and therefore, $[a]_n[b]_n = [1]_n$.

^aThis means that the greatest common divisor of n and a, denoted by gcd(n, a), is 1. In other words, the only positive integer that divides both n and a is 1.

Proof (continued). **Reminder:** No two of 0, a, 2a, ..., (n-1)a are congruent modulo n.

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ be relatively prime.^a Then there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{n}$, and therefore, $[a]_n[b]_n = [1]_n$.

^aThis means that the greatest common divisor of n and a, denoted by $\gcd(n,a)$, is 1. In other words, the only positive integer that divides both n and a is 1.

Proof (continued). **Reminder:** No two of 0, a, 2a, ..., (n-1)a are congruent modulo n.

We know that every integer is congruent modulo n to one of the following n integers: $0, 1, 2, \ldots, n-1$.

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ be relatively prime.^a Then there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{n}$, and therefore, $[a]_n[b]_n = [1]_n$.

^aThis means that the greatest common divisor of n and a, denoted by gcd(n, a), is 1. In other words, the only positive integer that divides both n and a is 1.

Proof (continued). **Reminder:** No two of 0, a, 2a, ..., (n-1)a are congruent modulo n.

We know that every integer is congruent modulo n to one of the following n integers: $0, 1, 2, \ldots, n-1$. We showed above that no two of the following n integers are congruent to each other modulo n: $0, a, 2a, \ldots, (n-1)a$.

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ be relatively prime.^a Then there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{n}$, and therefore, $[a]_n[b]_n = [1]_n$.

^aThis means that the greatest common divisor of n and a, denoted by $\gcd(n,a)$, is 1. In other words, the only positive integer that divides both n and a is 1.

Proof (continued). **Reminder:** No two of 0, a, 2a, ..., (n-1)a are congruent modulo n.

We know that every integer is congruent modulo n to one of the following n integers: $0, 1, 2, \ldots, n-1$. We showed above that no two of the following n integers are congruent to each other modulo n: $0, a, 2a, \ldots, (n-1)a$. It follows that (exactly) one of $0, a, 2a, \ldots, (n-1)a$ is congruent to 1 modulo n.

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ be relatively prime.^a Then there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{n}$, and therefore, $[a]_n[b]_n = [1]_n$.

^aThis means that the greatest common divisor of n and a, denoted by $\gcd(n,a)$, is 1. In other words, the only positive integer that divides both n and a is 1.

Proof (continued). **Reminder:** No two of 0, a, 2a, ..., (n-1)a are congruent modulo n.

We know that every integer is congruent modulo n to one of the following n integers: $0, 1, 2, \ldots, n-1$. We showed above that no two of the following n integers are congruent to each other modulo n: $0, a, 2a, \ldots, (n-1)a$. It follows that (exactly) one of $0, a, 2a, \ldots, (n-1)a$ is congruent to 1 modulo n.

In other words, for exactly one value of $b \in \{0, 1, 2, \dots, n-1\}$, we have that $ba \equiv 1 \pmod{n}$.

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ be relatively prime.^a Then there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{n}$, and therefore, $[a]_n[b]_n = [1]_n$.

^aThis means that the greatest common divisor of n and a, denoted by gcd(n, a), is 1. In other words, the only positive integer that divides both n and a is 1.

Proof (continued). **Reminder:** No two of 0, a, 2a, ..., (n-1)a are congruent modulo n.

We know that every integer is congruent modulo n to one of the following n integers: $0, 1, 2, \ldots, n-1$. We showed above that no two of the following n integers are congruent to each other modulo n: $0, a, 2a, \ldots, (n-1)a$. It follows that (exactly) one of $0, a, 2a, \ldots, (n-1)a$ is congruent to 1 modulo n.

In other words, for exactly one value of $b \in \{0, 1, 2, ..., n-1\}$, we have that $ba \equiv 1 \pmod{n}$. For this b, we have that $ab \equiv 1 \pmod{n}$, and therefore, $[a]_n[b]_n = [1]_n$. \square

Theorem 0.2.16

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ be relatively prime.^a Then there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{n}$, and therefore, $[a]_n[b]_n = [1]_n$.

a This means that the greatest common divisor of n and a, denoted by gcd(n, a), is 1. In other words, the only positive integer that divides both n and a is 1.

Theorem 0.2.16

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ be relatively prime.^a Then there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{n}$, and therefore, $[a]_n[b]_n = [1]_n$.

^aThis means that the greatest common divisor of n and a, denoted by gcd(n, a), is 1. In other words, the only positive integer that divides both n and a is 1.

Corollary 0.2.17

- of for all $a \in \mathbb{Z}$ s.t. a is not a multiple of p, there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{p}$, and consequently, $[a]_p[b]_p = [1]_p$;
- o for all $a \in \mathbb{Z}_p \setminus \{0\}$, there exists some $b \in \mathbb{Z}_p \setminus \{0\}$ s.t. ab = 1.

^aHere, $0 = [0]_p$ and $1 = [1]_p$.

Let $p \in \mathbb{N}$ be a prime number. Then:

- of for all $a \in \mathbb{Z}$ s.t. a is not a multiple of p, there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{p}$, and consequently, $[a]_p[b]_p = [1]_p$;
- of for all $a \in \mathbb{Z}_p \setminus \{0\}$, there exists some $b \in \mathbb{Z}_p \setminus \{0\}$ s.t. ab = 1.

^aHere, $0 = [0]_p$ and $1 = [1]_p$.

Proof.

Let $p \in \mathbb{N}$ be a prime number. Then:

- for all $a \in \mathbb{Z}$ s.t. a is not a multiple of p, there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{p}$, and consequently, $[a]_p[b]_p = [1]_p$;
- of for all $a \in \mathbb{Z}_p \setminus \{0\}$, there exists some $b \in \mathbb{Z}_p \setminus \{0\}$ s.t. ab = 1.

^aHere,
$$0 = [0]_p$$
 and $1 = [1]_p$.

Proof. We first prove (a).

Let $p \in \mathbb{N}$ be a prime number. Then:

- of for all $a \in \mathbb{Z}$ s.t. a is not a multiple of p, there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{p}$, and consequently, $[a]_p[b]_p = [1]_p$;
- of or all $a \in \mathbb{Z}_p \setminus \{0\}$, there exists some $b \in \mathbb{Z}_p \setminus \{0\}$ s.t. ab = 1

Proof. We first prove (a). Since p is a prime number, every integer that is not a multiple of p is relatively prime to p; (a) now follows from Theorem 0.2.17.

^aHere, $0 = [0]_p$ and $1 = [1]_p$.

Let $p \in \mathbb{N}$ be a prime number. Then:

- for all $a \in \mathbb{Z}$ s.t. a is not a multiple of p, there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{p}$, and consequently, $[a]_p[b]_p = [1]_p$;
- of for all $a \in \mathbb{Z}_p \setminus \{0\}$, there exists some $b \in \mathbb{Z}_p \setminus \{0\}$ s.t. $ab = 1.^{a}$
 - ^aHere, $0 = [0]_p$ and $1 = [1]_p$.

Proof (continued). Statement (b) immediately follows from (a).

Let $p \in \mathbb{N}$ be a prime number. Then:

- of for all $a \in \mathbb{Z}$ s.t. a is not a multiple of p, there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{p}$, and consequently, $[a]_p[b]_p = [1]_p$;
- of for all $a \in \mathbb{Z}_p \setminus \{0\}$, there exists some $b \in \mathbb{Z}_p \setminus \{0\}$ s.t. ab = 1.
 - ^aHere, $0 = [0]_p$ and $1 = [1]_p$.

Proof (continued). Statement (b) immediately follows from (a). Indeed, fix $a \in \mathbb{Z}_p \setminus \{0\}$.

Let $p \in \mathbb{N}$ be a prime number. Then:

- of or all $a \in \mathbb{Z}$ s.t. a is not a multiple of p, there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{p}$, and consequently, $[a]_p[b]_p = [1]_p$;
- o for all $a \in \mathbb{Z}_p \setminus \{0\}$, there exists some $b \in \mathbb{Z}_p \setminus \{0\}$ s.t. ab = 1.

^aHere,
$$0 = [0]_p$$
 and $1 = [1]_p$.

Proof (continued). Statement (b) immediately follows from (a). Indeed, fix $a \in \mathbb{Z}_p \setminus \{0\}$. Then there exists an integer $a' \in \{1, \ldots, p-1\}$ s.t. $a = [a']_p$.

Let $p \in \mathbb{N}$ be a prime number. Then:

- of for all $a \in \mathbb{Z}$ s.t. a is not a multiple of p, there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{p}$, and consequently, $[a]_p[b]_p = [1]_p$;
- of for all $a \in \mathbb{Z}_p \setminus \{0\}$, there exists some $b \in \mathbb{Z}_p \setminus \{0\}$ s.t. ab = 1.
 - ^aHere, $0 = [0]_p$ and $1 = [1]_p$.

Proof (continued). Statement (b) immediately follows from (a). Indeed, fix $a \in \mathbb{Z}_p \setminus \{0\}$. Then there exists an integer $a' \in \{1, \ldots, p-1\}$ s.t. $a = [a']_p$. By (a), there exists an integer b' s.t. $a'b' \equiv 1 \pmod{p}$.

Let $p \in \mathbb{N}$ be a prime number. Then:

- of for all $a \in \mathbb{Z}$ s.t. a is not a multiple of p, there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{p}$, and consequently, $[a]_p[b]_p = [1]_p$;
- of for all $a \in \mathbb{Z}_p \setminus \{0\}$, there exists some $b \in \mathbb{Z}_p \setminus \{0\}$ s.t. $ab = 1^a$

^aHere, $0 = [0]_p$ and $1 = [1]_p$.

Proof (continued). Statement (b) immediately follows from (a). Indeed, fix $a \in \mathbb{Z}_p \setminus \{0\}$. Then there exists an integer $a' \in \{1, \dots, p-1\}$ s.t. $a = [a']_p$. By (a), there exists an integer b' s.t. $a'b' \equiv 1 \pmod{p}$. We now set $b := [b']_p$, and we see that $ab = [a']_p[b']_p = [a'b']_p = [1]_p$.

Let $p \in \mathbb{N}$ be a prime number. Then:

- of for all $a \in \mathbb{Z}$ s.t. a is not a multiple of p, there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{p}$, and consequently, $[a]_p[b]_p = [1]_p$;
- of for all $a \in \mathbb{Z}_p \setminus \{0\}$, there exists some $b \in \mathbb{Z}_p \setminus \{0\}$ s.t. $ab = 1^a$
 - ^aHere, $0 = [0]_p$ and $1 = [1]_p$.

Proof (continued). Statement (b) immediately follows from (a). Indeed, fix $a \in \mathbb{Z}_p \setminus \{0\}$. Then there exists an integer $a' \in \{1, \ldots, p-1\}$ s.t. $a = [a']_p$. By (a), there exists an integer b' s.t. $a'b' \equiv 1 \pmod{p}$. We now set $b := [b']_p$, and we see that $ab = [a']_p[b']_p = [a'b']_p = [1]_p$. Moreover, $b \neq 0$, since (in \mathbb{Z}_p) we have that $a \cdot 0 = 0 \neq 1 = ab$. This proves (b). \square

- for all $a \in \mathbb{Z}$ s.t. a is not a multiple of p, there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{p}$, and consequently, $[a]_p[b]_p = [1]_p$;
- of for all $a \in \mathbb{Z}_p \setminus \{0\}$, there exists some $b \in \mathbb{Z}_p \setminus \{0\}$ s.t. $ab = 1.^{a}$
- ^aHere, $0 = [0]_p$ and $1 = [1]_p$.

- of for all $a \in \mathbb{Z}$ s.t. a is not a multiple of p, there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{p}$, and consequently, $[a]_p[b]_p = [1]_p$;
- of for all $a \in \mathbb{Z}_p \setminus \{0\}$, there exists some $b \in \mathbb{Z}_p \setminus \{0\}$ s.t. ab = 1.
 - ^aHere, $0 = [0]_p$ and $1 = [1]_p$.
 - Corollary 0.2.17(b) states that, for a prime number p, every number in $\mathbb{Z}_p \setminus \{0\}$ has a multiplicative inverse.

- of for all $a \in \mathbb{Z}$ s.t. a is not a multiple of p, there exists some $b \in \mathbb{Z}$ s.t. $ab \equiv 1 \pmod{p}$, and consequently, $[a]_p[b]_p = [1]_p$;
- of for all $a \in \mathbb{Z}_p \setminus \{0\}$, there exists some $b \in \mathbb{Z}_p \setminus \{0\}$ s.t. ab = 1.
 - ^aHere, $0 = [0]_p$ and $1 = [1]_p$.
 - Corollary 0.2.17(b) states that, for a prime number p, every number in $\mathbb{Z}_p \setminus \{0\}$ has a multiplicative inverse.
 - Fermat's Little Theorem (below) is a strengthening of Corollary 0.2.17 in that it gives an actual formula for this multiplicative inverse.

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

 We will prove Fermat's Little Theorem in a bit, but first: how does this give a formula for multiplicative inverses?

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

- We will prove Fermat's Little Theorem in a bit, but first: how does this give a formula for multiplicative inverses?
- For a positive integer n and for $a \in \mathbb{Z}_n$, we define powers of a recursively, as follows:
 - $a^0 = 1$ (where $1 := [1]_n$);
 - $a^{m+1} = a^m a$ for all non-negative integers m.

So, for a positive integer m, we have the familiar formula

$$a^m = \underbrace{a \cdot \cdots \cdot a}_{m}$$

where it is understood that the multiplication on the right-hand-side is in \mathbb{Z}_n .

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

- We will prove Fermat's Little Theorem in a bit, but first: how does this give a formula for multiplicative inverses?
- For a positive integer n and for $a \in \mathbb{Z}_n$, we define powers of a recursively, as follows:
 - $a^0 = 1$ (where $1 := [1]_n$);
 - $a^{m+1} = a^m a$ for all non-negative integers m.

So, for a positive integer m, we have the familiar formula

$$a^m = \underbrace{a \cdot \cdots \cdot a}_{m}$$

where it is understood that the multiplication on the right-hand-side is in \mathbb{Z}_n .

• With this set-up, we can restate Fermat's Little Theorem in two ways, as follows.

Fermat's Little Theorem

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Fermat's Little Theorem

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Restatements:

Fermat's Little Theorem

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Restatements:

Fermat's Little Theorem

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $([a]_p)^{p-1} = [1]_p$.

Fermat's Little Theorem

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Restatements:

Fermat's Little Theorem

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $([a]_p)^{p-1} = [1]_p$.

Fermat's Little Theorem

If $p \in \mathbb{N}$ is a prime number and $a \in \mathbb{Z}_p \setminus \{0\}$, then $a^{p-1} = 1$.

If $p \in \mathbb{N}$ is a prime number and $a \in \mathbb{Z}_p \setminus \{0\}$, then $a^{p-1} = 1$.

If $p \in \mathbb{N}$ is a prime number and $a \in \mathbb{Z}_p \setminus \{0\}$, then $a^{p-1} = 1$.

• Suppose that p is a **prime** number and that $a \in \mathbb{Z}_p \setminus \{0\}$.

If $p \in \mathbb{N}$ is a prime number and $a \in \mathbb{Z}_p \setminus \{0\}$, then $a^{p-1} = 1$.

- Suppose that p is a **prime** number and that $a \in \mathbb{Z}_p \setminus \{0\}$.
- By Fermat's Little Theorem, a^{p-2} is a "multiplicative inverse" of a, i.e. if we multiply a by a^{p-2} (on either side), we obtain 1.
 - That is: $a \cdot a^{p-2} = a^{p-2} \cdot a = 1$.

If $p \in \mathbb{N}$ is a prime number and $a \in \mathbb{Z}_p \setminus \{0\}$, then $a^{p-1} = 1$.

- Suppose that p is a **prime** number and that $a \in \mathbb{Z}_p \setminus \{0\}$.
- By Fermat's Little Theorem, a^{p-2} is a "multiplicative inverse" of a, i.e. if we multiply a by a^{p-2} (on either side), we obtain 1.
 - That is: $a \cdot a^{p-2} = a^{p-2} \cdot a = 1$.
- Moreover, it is easy to see that a^{p-2} is the **only** multiplicative inverse of a in \mathbb{Z}_p .

If $p \in \mathbb{N}$ is a prime number and $a \in \mathbb{Z}_p \setminus \{0\}$, then $a^{p-1} = 1$.

- Suppose that p is a **prime** number and that $a \in \mathbb{Z}_p \setminus \{0\}$.
- By Fermat's Little Theorem, a^{p-2} is a "multiplicative inverse" of a, i.e. if we multiply a by a^{p-2} (on either side), we obtain 1.
 - That is: $a \cdot a^{p-2} = a^{p-2} \cdot a = 1$.
- Moreover, it is easy to see that a^{p-2} is the **only** multiplicative inverse of a in \mathbb{Z}_p .
- Indeed, if $b \in \mathbb{Z}_p$ satisfies ab = 1, then by multiplying both sides by a^{p-2} , we obtain

$$\underbrace{a^{p-2} \cdot a}_{=a^{p-1}=1} b = a^{p-2} \cdot 1,$$

and consequently, $b = a^{p-2}$.

If $p \in \mathbb{N}$ is a prime number and $a \in \mathbb{Z}_p \setminus \{0\}$, then $a^{p-1} = 1$.

• So, we can say that a^{p-2} is **the** multiplicative inverse of a (denoted by a^{-1}), and we write

$$\underbrace{a^{-1}}_{\text{multiplicative inverse of } a} = a^{p-2}$$

If $p \in \mathbb{N}$ is a prime number and $a \in \mathbb{Z}_p \setminus \{0\}$, then $a^{p-1} = 1$.

• So, we can say that a^{p-2} is **the** multiplicative inverse of a (denoted by a^{-1}), and we write

$$\underbrace{a^{-1}}_{\text{multiplicative inverse of } a} = a^{p-2}$$

• Note, however, that for small values of the prime number p, it is easier to read off the multiplicative inverses of non-zero numbers in \mathbb{Z}_p from the multiplication table for \mathbb{Z}_p than it is to compute the (p-2)-th powers of those numbers.

If $p \in \mathbb{N}$ is a prime number and $a \in \mathbb{Z}_p \setminus \{0\}$, then $a^{p-1} = 1$.

• So, we can say that a^{p-2} is **the** multiplicative inverse of a (denoted by a^{-1}), and we write

$$\underbrace{a^{-1}}_{\text{multiplicative inverse of } a} = a^{p-2}$$

- Note, however, that for small values of the prime number p, it is easier to read off the multiplicative inverses of non-zero numbers in \mathbb{Z}_p from the multiplication table for \mathbb{Z}_p than it is to compute the (p-2)-th powers of those numbers.
- By taking a quick look at the multiplication tables for \mathbb{Z}_2 , \mathbb{Z}_3 , and \mathbb{Z}_5 , we get the following (next slide):

 ·
 0
 1
 2

 0
 0
 0
 0

 1
 0
 1
 2

 2
 0
 2
 1

0

 $\begin{array}{c|cccc} & + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$

 \mathbb{Z}_2 :

 \mathbb{Z}_3 :

Fermat's Little Theorem

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Fermat's Little Theorem

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

• First, we need some notation.

Fermat's Little Theorem

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

- First, we need some notation.
- For non-negative integers n, we define n! (read "n factorial") recursively, as follows:
 - 0! := 1:
 - $(n+1)! := n! \cdot (n+1)$ for all non-negative integers n.

Fermat's Little Theorem

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

- First, we need some notation.
- For non-negative integers n, we define n! (read "n factorial") recursively, as follows:
 - 0! := 1:
 - $(n+1)! := n! \cdot (n+1)$ for all non-negative integers n.
- So, for a positive integer n, we have $n! = 1 \cdot 2 \cdot \cdots \cdot n$.

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof.

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. Fix a prime number $p \in \mathbb{N}$. Let $a \in \mathbb{Z}$, and assume that a is not a multiple of p.

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. Fix a prime number $p \in \mathbb{N}$. Let $a \in \mathbb{Z}$, and assume that a is not a multiple of p.

As in the proof of Theorem 0.2.16, no two of $0, a, 2a, \ldots, (p-1)a$ are congruent modulo p. For the sake of completeness, here is a full proof.

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. Fix a prime number $p \in \mathbb{N}$. Let $a \in \mathbb{Z}$, and assume that a is not a multiple of p.

As in the proof of Theorem 0.2.16, no two of $0, a, 2a, \ldots, (p-1)a$ are congruent modulo p. For the sake of completeness, here is a full proof.

Suppose that some two of 0, a, ..., (p-1)a are congruent modulo p.

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. Fix a prime number $p \in \mathbb{N}$. Let $a \in \mathbb{Z}$, and assume that a is not a multiple of p.

As in the proof of Theorem 0.2.16, no two of $0, a, 2a, \ldots, (p-1)a$ are congruent modulo p. For the sake of completeness, here is a full proof.

Suppose that some two of 0, a, ..., (p-1)a are congruent modulo p. Fix distinct $i, j \in \{0, 1, ..., p-1\}$ s.t. $ia \equiv ja \pmod{p}$.

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. Fix a prime number $p \in \mathbb{N}$. Let $a \in \mathbb{Z}$, and assume that a is not a multiple of p.

As in the proof of Theorem 0.2.16, no two of $0, a, 2a, \ldots, (p-1)a$ are congruent modulo p. For the sake of completeness, here is a full proof.

Suppose that some two of $0, a, \ldots, (p-1)a$ are congruent modulo p. Fix distinct $i, j \in \{0, 1, \ldots, p-1\}$ s.t. $ia \equiv ja \pmod p$. Then $(i-j)a \equiv 0 \pmod p$, that is, p|(i-j)a.

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. Fix a prime number $p \in \mathbb{N}$. Let $a \in \mathbb{Z}$, and assume that a is not a multiple of p.

As in the proof of Theorem 0.2.16, no two of $0, a, 2a, \ldots, (p-1)a$ are congruent modulo p. For the sake of completeness, here is a full proof.

Suppose that some two of $0, a, \ldots, (p-1)a$ are congruent modulo p. Fix distinct $i, j \in \{0, 1, \ldots, p-1\}$ s.t. $ia \equiv ja \pmod p$. Then $(i-j)a \equiv 0 \pmod p$, that is, p|(i-j)a. Since p is prime and does not divide a, we see that p|(i-j).

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. Fix a prime number $p \in \mathbb{N}$. Let $a \in \mathbb{Z}$, and assume that a is not a multiple of p.

As in the proof of Theorem 0.2.16, no two of $0, a, 2a, \ldots, (p-1)a$ are congruent modulo p. For the sake of completeness, here is a full proof.

Suppose that some two of $0, a, \ldots, (p-1)a$ are congruent modulo p. Fix distinct $i, j \in \{0, 1, \ldots, p-1\}$ s.t. $ia \equiv ja \pmod p$. Then $(i-j)a \equiv 0 \pmod p$, that is, p|(i-j)a. Since p is prime and does not divide a, we see that p|(i-j). But this is impossible because $i, j \in \{0, \ldots, p-1\}$ and $i \neq j$, and so 0 < |i-j| < p.

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. Fix a prime number $p \in \mathbb{N}$. Let $a \in \mathbb{Z}$, and assume that a is not a multiple of p.

As in the proof of Theorem 0.2.16, no two of $0, a, 2a, \ldots, (p-1)a$ are congruent modulo p. For the sake of completeness, here is a full proof.

Suppose that some two of $0,a,\ldots,(p-1)a$ are congruent modulo p. Fix distinct $i,j\in\{0,1,\ldots,p-1\}$ s.t. $ia\equiv ja\pmod{p}$. Then $(i-j)a\equiv 0\pmod{p}$, that is, p|(i-j)a. Since p is prime and does not divide a, we see that p|(i-j). But this is impossible because $i,j\in\{0,\ldots,p-1\}$ and $i\neq j$, and so 0<|i-j|< p. Thus, no two of $0,a,2a,\ldots,(p-1)a$ are congruent modulo p.

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof (continued). **Reminder:** No two of 0, a, 2a, ..., (p-1)a are congruent modulo p.

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof (continued). **Reminder:** No two of 0, a, 2a, ..., (p-1)a are congruent modulo p.

Since every integer is congruent to exactly one of $0, 1, \ldots, p-1$ modulo p, it follows that there exists some rearrangement (i.e. permutation) r_1, \ldots, r_{p-1} of the sequence $1, \ldots, p-1$ s.t.

- $a \equiv r_1 \pmod{p}$;
- $2a \equiv r_2 \pmod{p}$;
 - :
- $\bullet (p-1)a \equiv r_{p-1} \pmod{p}.$

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof (continued). **Reminder:** No two of 0, a, 2a, ..., (p-1)a are congruent modulo p.

Since every integer is congruent to exactly one of $0, 1, \ldots, p-1$ modulo p, it follows that there exists some rearrangement (i.e. permutation) r_1, \ldots, r_{p-1} of the sequence $1, \ldots, p-1$ s.t.

- $a \equiv r_1 \pmod{p}$;
- $2a \equiv r_2 \pmod{p}$;

:

 $\bullet (p-1)a \equiv r_{p-1} \pmod{p}.$

It now follows that

$$\underbrace{a \cdot 2a \cdot \cdots \cdot (p-1)a}_{=(p-1)! a^{p-1}} \equiv \underbrace{r_1 r_2 \dots r_{p-1}}_{=(p-1)!} \pmod{p},$$

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof (continued). **Reminder:** No two of 0, a, 2a, ..., (p-1)a are congruent modulo p.

Since every integer is congruent to exactly one of $0, 1, \ldots, p-1$ modulo p, it follows that there exists some rearrangement (i.e. permutation) r_1, \ldots, r_{p-1} of the sequence $1, \ldots, p-1$ s.t.

- $a \equiv r_1 \pmod{p}$;
- $2a \equiv r_2 \pmod{p}$;
 - :
- $(p-1)a \equiv r_{p-1} \pmod{p}$.

It now follows that

$$\underbrace{a \cdot 2a \cdot \cdots \cdot (p-1)a}_{=(p-1)!a^{p-1}} \equiv \underbrace{r_1 r_2 \dots r_{p-1}}_{=(p-1)!} \pmod{p},$$

and so $(p-1)!a^{p-1} \equiv (p-1)! \pmod{p}$.

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. **Reminder:** $(p-1)! a^{p-1} \equiv (p-1)! \pmod{p}$.

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. **Reminder:** $(p-1)!a^{p-1} \equiv (p-1)! \pmod{p}$.

But now

$$(a^{p-1}-1)(p-1)! \equiv 0 \pmod{p},$$

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. **Reminder:**
$$(p-1)!a^{p-1} \equiv (p-1)! \pmod{p}$$
.

But now

$$(a^{p-1}-1)(p-1)! \equiv 0 \pmod{p},$$

that is, $p \mid ((a^{p-1}-1)(p-1)!)$.

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. **Reminder:**
$$(p-1)!a^{p-1} \equiv (p-1)! \pmod{p}$$
.

But now

$$(a^{p-1}-1)(p-1)! \equiv 0 \pmod{p},$$

that is,
$$p \mid ((a^{p-1}-1)(p-1)!)$$
.

Since p is prime, we see that p and (p-1)! are relatively prime.

If $p \in \mathbb{N}$ is a prime number, and $a \in \mathbb{Z}$ is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. **Reminder:** $(p-1)!a^{p-1} \equiv (p-1)! \pmod{p}$.

But now

$$(a^{p-1}-1)(p-1)! \equiv 0 \pmod{p},$$

that is,
$$p \mid ((a^{p-1}-1)(p-1)!)$$
.

Since p is prime, we see that p and (p-1)! are relatively prime. It follows that $p \mid (a^{p-1}-1)$, and consequently, $a^{p-1} \equiv 1 \pmod{p}$, which is what we needed to show. \square