Linear Algebra 1: HW#6

Irena Penev Winter 2024

due Friday, November 29, 2024, at noon (Prague time)

Submit your HW through the **Postal Owl** as a **PDF attachment**. Make sure your submission is **printable**: it should be A4 or letter size, and it should be either typed or written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do **not** send your HW by e-mail. Please write your **name** on top of the first page of your HW.

Unless explicitly stated otherwise, make sure you **show your work** (including any row reduction that you may need to perform in order to solve the exercise/problem). If you do not show your work, you will receive **no credit** for the exercise/problem in question, even if your final answer is correct.

Remark: Feel free to use a calculator such as the one from

https://www.dcode.fr/matrix-row-echelon

for any row reduction that you need to perform. However, keep in mind that on the exam, you might be asked to solve problems like this **without** a calculator, and so you should in principle be able to perform row reduction of this sort by hand.^{*a*} Moreover, make sure you correctly tell the calculator what kinds of numbers you are working with,^{*b*} because otherwise, the calculator may give you a wrong answer.

 $[^]a{\rm If}$ you do not yet feel confident in your ability to row reduce, then row reduce by hand first, and then check your answer with a calculator.

^bFor real numbers, you should use their "Echelon Form Matrix Reduction Calculator." For \mathbb{Z}_2 , use "RREF with Modulo Calculator" with Base/Modulus = 2. For \mathbb{Z}_3 , use "RREF with Modulo Calculator" with Base/Modulus = 3.

Exercise 1 (20 points). Consider the following permutation in S_8 :

 $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 1 & 6 & 7 & 5 & 4 & 8 \end{pmatrix}.$

- (a) [4 points] Compute the disjoint cycle decomposition of π . Include oneelement cycles (if there are any).
- (b) [3 points] Express π as a composition of transpositions.
- (c) [3 points] List all inversions of π . How many inversions does π have?
- (d) [6 points] Compute $sgn(\pi)$ in three different ways:
 - (d.1) using the disjoint cycle decomposition of π , i.e. using your answer from part (a);
 - (d.2) using transpositions, i.e. using your answer from part (b);
 - (d.2) using inversions, i.e. using your answer from part (c).
- (e) [4 points] Compute π^{-1} . Give both the table form of π^{-1} and the disjoint cycle decompositions of π^{-1} .

Exercise 2 (10 points). Let $\sigma = (143)(658)$ and $\pi = (254)(3768)$ be permutations in S_8 . Compute the disjoint cycle decomposition of $\sigma \circ \pi$ and $\pi \circ \sigma$ (*omit* cycles of length one, if any).

Problem 1 (40 points). Let (G, \cdot) be a finite group, with identity element 1. For any element $g \in G$, we denote the inverse of g by g^{-1} , we set $g^0 = 1$, and for all non-negative integers m, we set $g^{m+1} = g^m g$. So, for any $g \in G$ and any positive integer m, we have that $g^m = \underbrace{g \cdots g}$. Now, let $a \in G$.

(a) [15 points] Prove that there exists a positive integer n such that $a^n = 1$.

Hint: Consider the sequence $a^0, a^1, a^2, a^3, a^4, \ldots$, and explain why some two terms of this sequence are equal. Now what?

From now on, let n be the **smallest** positive integer such that $a^n = 1$. (Part (a) guarantees that such an n exists.) Set $H := \{a^1, a^2, \dots, a^n\}$.

- (b) [15 points] Prove that H is a subgroup of G.
- (c) [10 points] Prove that |H| = n, that is, prove that a^1, a^2, \ldots, a^n are pairwise distinct.

Remark: Together with Exercise 1 from Tutorial 7, parts (b) and (c) guarantee that $n \mid |G|$ (i.e. n divides |G|).

Problem 2 (30 points). Let $n \ge 2$ be an integer. Prove that for any permutation $\pi \in S_n$, we have that

$$sgn(\pi) = (-1)^{k_{even}},$$

where k_{even} is the number of even cycles in the disjoint cycle decomposition of π .¹

¹An even cycle is a cycle that contains an even number of elements, and an odd cycle is a cycle that contain an odd number of elements. For example, the permutation (1)(27)(39)(4568) in S_9 has three even cycles (and one odd cycle).