Linear Algebra 1: HW#3

Irena Penev Winter 2024

due Friday, November 1, 2024, at noon (Prague time)

Submit your HW through the **Postal Owl** as a **PDF attachment**. Make sure your submission is **printable**: it should be A4 or letter size, and it should be either typed or written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do **not** send your HW by e-mail. Please write your **name** on top of the first page of your HW.

Unless explicitly stated otherwise, make sure you **show your work** (including any row reduction that you may need to perform in order to solve the exercise/problem). If you do not show your work, you will receive **no credit** for the exercise/problem in question, even if your final answer is correct.

Remark: Feel free to use a calculator such as the one from

https://www.dcode.fr/matrix-row-echelon

for any row reduction that you need to perform. However, keep in mind that on the exam, you might be asked to solve problems like this **without** a calculator, and so you should in principle be able to perform row reduction of this sort by hand.^{*a*} Moreover, make sure you correctly tell the calculator what kinds of numbers you are working with,^{*b*} because otherwise, the calculator may give you a wrong answer.

 $[^]a{\rm If}$ you do not yet feel confident in your ability to row reduce, then row reduce by hand first, and then check your answer with a calculator.

^bFor real numbers, you should use their "Echelon Form Matrix Reduction Calculator." For \mathbb{Z}_2 , use "RREF with Modulo Calculator" with Base/Modulus = 2. For \mathbb{Z}_3 , use "RREF with Modulo Calculator" with Base/Modulus = 3.

Exercise 1 (10 points). Consider the following matrices, with entries understood to be in \mathbb{Z}_2 :

	- 1	1	1		1		Γ0	1	0 -	1
	1	1	1	1		D	0	1	1	
A =	1	0	0	1	,	B =	1	1	1	•
	_ 1	1	1	1 -		B =	1	0	1	

Compute the matrices AB and BA (and make sure you indicate which is which).¹ (Just write the final answer. You do not need to "show your work" in this problem.)

Exercise 2 (15 points). Consider the following matrix and vector, with entries understood to be in \mathbb{Z}_3 :

	2	1	2	1	0	1			1	
A =	0	0	1	1	2	1		b =	2	
	1	2	1	2	1	1	,		1	•
	1	2	0	1	1	1			2	

Solve the matrix-vector equation $A\mathbf{x} = \mathbf{b}$, and state how many solutions it has.

Exercise 3 (15 points). Consider the following matrix and vector, with entries understood to be in \mathbb{Z}_2 :

	1	1	0	1	1]			[0]	
	0	1	1	0	1			1	
A =	1	0	1	1	1	,	b =	1	
	0	1	1	0	1			0	
A =	1	0	1	1	1				

Solve the matrix-vector equation $A\mathbf{x} = \mathbf{b}$, and state how many solutions it has.

Problem 1 (30 points). Let a and b be real constants. For what values of the real constant c is the vector $\begin{bmatrix} 1\\c\\c^2 \end{bmatrix}$ a linear combination of the vectors $\begin{bmatrix} 1\\a\\a^2 \end{bmatrix}$ and $\begin{bmatrix} 1\\b\\b^2 \end{bmatrix}$? Make sure you prove that your answer is correct.

¹Since you are working in \mathbb{Z}_2 , all entries in your matrices AB and BA should be 0 or 1.

Problem 2 (30 points). Consider the following vectors in \mathbb{Z}_3^4 :

$\mathbf{a}_1 = \begin{bmatrix} 2\\0\\2\\2\end{bmatrix},$	$\mathbf{a}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix},$	$\mathbf{a}_3 = \begin{bmatrix} 1\\1\\2\\1 \end{bmatrix},$	$\mathbf{a}_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix},$
$\mathbf{b} = \begin{bmatrix} 2\\1\\0\\2 \end{bmatrix},$	$\mathbf{c} = \begin{bmatrix} 1\\2\\1\\0 \end{bmatrix},$	$\mathbf{d} = \begin{bmatrix} 2\\2\\1\\1 \end{bmatrix},$	$\mathbf{e} = \begin{bmatrix} 1\\2\\2\\1 \end{bmatrix}.$

For each of the vectors $\mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}$, determine if it can be expressed as a linear combination of the vectors $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4$ (that is, if it belongs to $Span(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4)$), and if so, express it as such a linear combination, and explain whether your answer is unique.