Linear Algebra 1: HW#2

Irena Penev Winter 2024

due Friday, October 18, 2024, at noon (Prague time)

Submit your HW through the **Postal Owl** as a **PDF attachment**. Make sure your submission is **printable**: it should be A4 or letter size, and it should be either typed or written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do **not** send your HW by e-mail. Please write your **name** on top of the first page of your HW.

Unless explicitly stated otherwise, make sure you **show your work** (including any row reduction that you may need to perform in order to solve the exercise/problem). If you do not show your work, you will receive **no credit** for the exercise/problem in question, even if your final answer is correct.

Exercise 1 (30 points). Compute the reduced row echelon (RREF) form of each of the following matrices.

 $(a) \ A = \begin{bmatrix} 2 & -4 & -1 & 5 \\ 3 & -6 & 1 & 0 \\ -1 & 2 & 0 & -1 \end{bmatrix}, \text{ with entries understood to be in } \mathbb{R};$ $(b) \ B = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}, \text{ with entries understood to be in } \mathbb{Z}_2;$ $(c) \ C = \begin{bmatrix} 2 & 2 & 2 \\ 1 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \text{ with entries understood to be in } \mathbb{Z}_3.$

Exercise 2 (20 points). Solve the following system of linear equations, with coefficients understood to be in \mathbb{Z}_3 . How many solutions does the system have?

$2x_1$	+	x_2	+	$2x_3$	+	$2x_4$	+	x_5	=	0
x_1	+	$2x_2$	+	$2x_3$	+	$2x_4$	+	x_5	=	2
$2x_1$	+	x_2					+	$2x_5$	=	2

Problem 1 (30 points). Solve the linear system below (with coefficients understood to be in \mathbb{R}), and specify how many solutions it has.

Here, k is a parameter (which should be treated as a fixed real constant), and x_1, x_2, x_3 are the variables.

Remark: Your solutions will depend on k. In fact, the **number** of solutions will also depend on k. You will need to figure out for which (if any) k the system has no solutions, for which (if any) it has a unique solution, and for which (if any) it has infinitely many solutions. If the system is consistent, make sure you specify the solutions!

Hint: This is similar to Example 1.3.18 of the Lecture Notes.

Problem 2 (20 points). For which (if any) values of the real parameter k are the real matrices

	1	2	3	4			k	1	1	1]	
A =	2	3	4	5	and	B =	2	4	6	8	
	0	1	2	3		B =	2	3	4	5	

row equivalent? Make sure you prove that your answer is correct.

Hint: There is a result in the Lecture Notes that tells you when two matrices are row equivalent. Which result (proposition/lemma/theorem/corollary) is that?