Linear Algebra 1: HW#1

Irena Penev Winter 2024

due Friday, October 11, 2024, at noon (Prague time)

Submit your HW through the **Postal Owl** as a **PDF attachment**. Make sure your submission is **printable**: it should be A4 or letter size, and it should be either typed or written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do **not** send your HW by e-mail. Please write your **name** on top of the first page of your HW.

Exercise 1 (10 points). Compute the following:

- (a) 1 1 + 1 1 1 in \mathbb{Z}_2 ;
- (b) 2^5 in \mathbb{Z}_3 ;
- (c) $(-1)^5$ in \mathbb{Z}_3 ;
- (d) $2 \cdot 2 + 3 \cdot 3 2 \cdot 3$ in \mathbb{Z}_5 ;
- (e) $1^2 + 2^2 + 3^2 + 4^2$ in \mathbb{Z}_5 .

In this exercise, you should just write the final answer (there is no need to show your work). If you are asked to compute in \mathbb{Z}_n , then your answer should be one of the following: $0, 1, \ldots, n-1$. (In particular, your final answer should contain **no minuses**.)

Problem 1 (15 points). Compute 57^{102} in \mathbb{Z}_{101} . Make sure you justify your answer. Your final answer should be one of the following: $0, 1, 2, \ldots, 100$.

Hint: Start by using Fermat's Little Theorem.

Remark: All the problems below should be solved using **induction**. Solutions that do not use induction will receive no credit.

Problem 2 (25 points). Compute the last **two digits** of the number 12345^{12345} (and prove that your answer is correct).

Hint: This is similar to Example 0.2.5 from the Lecture Notes.

Problem 3 (25 points). The Fibonacci numbers are defined as follows:

- F(1) = F(2) = 1;
- F(n+2) = F(n) + F(n+1) for all positive intgers n.

Prove that for all positive integers n, there are exactly F(n+1) many ways to cut up a rectangle of size $2 \times n$ into rectangles of size 1×2 .

Problem 4 (25 points). Show that any collection of at least 5 cities can be connected via one-way flights¹ in such a way that any city is reachable from any other city with at most one layover.

¹So, for any two cities, A and B, at most one of the following (direct) flights is possible:

[•] from A to B;

[•] from B to A.