Linear Algebra 1: Tutorial 9

Irena Penev \& Denys Bulavka

Winter 2023/2024

Exercise 1. Let \mathbb{F} be a field. Find the dimension of each of the following vector spaces (over \mathbb{F}):
(a) $\mathbb{P}_{\mathbb{F}}^{n}$, where n is a non-negative integer;
(b) $\left\{p(x) \in \mathbb{P}_{\mathbb{F}}^{n} \mid p(0)=0\right\}$, where n is a non-negative integer;
(c) $\mathbb{F}^{n \times m}$, where n and m are positive integers.

Hint: Experiment with small values of n and m first, and then generalize.

Exercise 2. For each of the following vector spaces V and (ordered) sets \mathcal{B}, explain why \mathcal{B} is not a basis of V. Try to compute as little as possible.
(a) $V=\mathbb{R}^{2 \times 2}, \mathcal{B}=\left\{\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right],\left[\begin{array}{cc}2 & 3 \\ 4 & 5\end{array}\right],\left[\begin{array}{cc}3 & 4 \\ 5 & 6\end{array}\right],\left[\begin{array}{cc}4 & 5 \\ 6 & 7\end{array}\right],\left[\begin{array}{cc}6 & 7 \\ 8 & 9\end{array}\right]\right\}$;
(b) $V=\mathbb{R}^{2 \times 2}, \mathcal{B}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]\right\}$;
(c) $V=\mathbb{R}^{2 \times 2}, \mathcal{B}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]\right\}$;
(d) $V=\mathbb{P}_{\mathbb{Z}_{2}}^{3}, \mathcal{B}=\left\{x+1, x^{2}+x, 0, x^{3}\right\}$;
(e) $V=\mathbb{P}_{\mathbb{Z}_{3}}^{2}, \mathcal{B}=\{2 x+1, x+2,1\}$.

Exercise 3. Find bases of the column, row, and null space of each of the matrices below. Moreover, compute the rank and the nullity of those matrices.
(a) $A=\left[\begin{array}{llllll}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$, with entries understood to be in \mathbb{Z}_{2};
(b) $B=\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 2 & 0 & 0 & 0\end{array}\right]$, with entries understood to be in \mathbb{Z}_{3};
(c) $C=\left[\begin{array}{rrr}1 & 2 & 3 \\ -1 & 2 & -3 \\ 0 & 7 & 0\end{array}\right]$, with entries understood to be in \mathbb{R}.

