Linear Algebra 1: Tutorial 8

Irena Penev & Denys Bulavka

Winter 2023/2024

Exercise 3 from Tutorial 7. Compute the group of symmetries for each of the polygons below.

Exercise 4 from Tutorial 7. Let n and k be positive integers such that $k \leq n$. What is the probability that in a random permutation in S_n , the number 1 is in a cycle of length k?

Definition. A finite basis (or simply basis) of a vector space V over a field \mathbb{F} is a set $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ of vectors in V that satisfies the following two conditions:

- 1. $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is linearly independent in V;
- 2. $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is a spanning set of V, i.e. $Span(\mathbf{v}_1, \ldots, \mathbf{v}_k) = V$.

Proposition 3.2.6 from the Lecture Notes. Let \mathbb{F} be a field, and let $\mathbf{a}_1, \ldots, \mathbf{a}_m \ (m \ge 1)$ be vectors in \mathbb{F}^n . Set $A := \begin{bmatrix} \mathbf{a}_1 & \ldots & \mathbf{a}_m \end{bmatrix}$. Then $\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$ is a basis of \mathbb{F}^n if and only if rank(A) = n = m (i.e. A is a square matrix of full rank). In particular, every basis of \mathbb{F}^n contains exactly n vectors.

Proof. By Proposition 3.2.1, vectors $\mathbf{a}_1, \ldots, \mathbf{a}_m$ are linearly independent if and only if rank(A) = m, and by Proposition 3.1.10, vectors $\mathbf{a}_1, \ldots, \mathbf{a}_m$ span \mathbb{F}^n if and only if rank(A) = n. So, $\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$ is a basis of \mathbb{F}^n if and only if rank(A) = m = n.

Exercise 1. For each of the given vector spaces V and sets of vectors \mathcal{B} , determine whether \mathcal{B} is (1) a linearly independent set in V, (2) a spanning set of V, and (3) a basis of V.