Linear Algebra 1: Tutorial 8

Irena Penev \& Denys Bulavka

Winter 2023/2024

Exercise 3 from Tutorial 7. Compute the group of symmetries for each of the polygons below.

(a)

(c)

(b)

(d)

Exercise 4 from Tutorial 7. Let n and k be positive integers such that $k \leq n$. What is the probability that in a random permutation in S_{n}, the number 1 is in a cycle of length k ?

Definition. A finite basis (or simply basis) of a vector space V over a field \mathbb{F} is a set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ of vectors in V that satisfies the following two conditions:

1. $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent in V;
2. $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a spanning set of V, i.e. $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)=V$.

Proposition 3.2.6 from the Lecture Notes. Let \mathbb{F} be a field, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}(m \geq 1)$ be vectors in \mathbb{F}^{n}. Set $A:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$. Then $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right\}$ is a basis of \mathbb{F}^{n} if and only if $\operatorname{rank}(A)=n=m$ (i.e. A is a square matrix of full rank). In particular, every basis of \mathbb{F}^{n} contains exactly n vectors.

Proof. By Proposition 3.2.1, vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ are linearly independent if and only if $\operatorname{rank}(A)=m$, and by Proposition 3.1.10, vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ span \mathbb{F}^{n} if and only if $\operatorname{rank}(A)=n$. So, $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right\}$ is a basis of \mathbb{F}^{n} if and only if $\operatorname{rank}(A)=m=n$.

Exercise 1. For each of the given vector spaces V and sets of vectors \mathcal{B}, determine whether \mathcal{B} is (1) a linearly independent set in V, (2) a spanning set of V, and (3) a basis of V.
(a) $V=\mathbb{Z}_{2}^{5}, \mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right]\right\} ;$
(b) $V=\mathbb{Z}_{3}^{2}, \mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$;
(c) $V=\mathbb{R}^{3}, \mathcal{B}=\left\{\left[\begin{array}{c}1 \\ \pi \\ \pi^{2}\end{array}\right],\left[\begin{array}{c}1 \\ 7 \\ 29\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$;
(d) $V=\mathbb{R}^{2 \times 2}, \mathcal{B}=\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\right\}$
(e) $V=\mathbb{P}_{\mathbb{R}}^{3}, \mathcal{B}=\left\{1,1+x, 1+x+x^{2}, 1+x+x^{2}+x^{3}\right\}$.

