Linear Algebra 1: Tutorial 7

Irena Penev & Denys Bulavka

Winter 2023/2024

Exercise 1. Consider the following permutation in S_5 :

π	=	(1	2	3	4	5	
		$\int 5$	3	4	1	2)	•

- (a) Find the disjoint cycle decomposition of π .
- (b) Express π as a composition of transpositions.
- (c) Find all the inversions of π .
- (d) Compute the sign of π in three different ways:
 - using the definition (i.e. using the disjoint cycle decomposition of π),
 - using transpositions,
 - using inversions.

Exercise 2. Consider the following permutation in S_7 :

 $\pi = \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 4 & 2 & 3 & 7 & 5 & 6 \end{array}\right).$

- (a) Find the disjoint cycle decomposition of π .
- (b) Express π as a composition of transpositions.
- (c) Find all the inversions of π .
- (d) Compute the sign of π in three different ways:
 - using the definition (i.e. using the disjoint cycle decomposition of π),
 - using transpositions,
 - using inversions.

Exercise 3. Compute the group of symmetries for each of the polygons below.

Exercise 4. Let n and k be positive integers such that $k \leq n$. What is the probability that in a random permutation in S_n , the number 1 is in a cycle of length k?