Linear Algebra 1: Tutorial 7

Irena Penev \& Denys Bulavka

Winter 2023/2024

Exercise 1. Consider the following permutation in S_{5} :

$$
\pi=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 4 & 1 & 2
\end{array}\right) .
$$

(a) Find the disjoint cycle decomposition of π.
(b) Express π as a composition of transpositions.
(c) Find all the inversions of π.
(d) Compute the sign of π in three different ways:

- using the definition (i.e. using the disjoint cycle decomposition of π),
- using transpositions,
- using inversions.

Exercise 2. Consider the following permutation in S_{7} :

$$
\pi=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 4 & 2 & 3 & 7 & 5 & 6
\end{array}\right) .
$$

(a) Find the disjoint cycle decomposition of π.
(b) Express π as a composition of transpositions.
(c) Find all the inversions of π.
(d) Compute the sign of π in three different ways:

- using the definition (i.e. using the disjoint cycle decomposition of π),
- using transpositions,
- using inversions.

Exercise 3. Compute the group of symmetries for each of the polygons below.

(a)

(c)

(b)

(d)

Exercise 4. Let n and k be positive integers such that $k \leq n$. What is the probability that in a random permutation in S_{n}, the number 1 is in a cycle of length k ?

