Linear Algebra 1: Tutorial 5

Irena Penev \& Denys Bulavka

Winter 2023/2024

Exercise 1. Find the standard matrices of the following linear functions (you may assume they are linear).
(a) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that rotates each vector about the x_{3}-axis by 90° counterclockwise.

(b) $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that projects each vector onto the $x_{1} x_{3}$-plane.
(c) $h_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that first rotates each vector about the x_{3}-axis by 90° counterclockwise, and then projects each vector onto the $x_{1} x_{3}$-plane.
(d) $h_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that first projects each vector onto the $x_{1} x_{3}$-plane, and then rotates each vector about the x_{3}-axis by 90° counterclockwise.

Exercise 2. Find the standard matrix of the linear function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that projects each vector onto the line given by the equation $x_{1}-x_{2}=0$ (you may assume the function is linear).

Exercise 3. Construct two non-zero matrices (i.e. matrices that have at least one non-zero entry), A and B, such that $A B$ is a zero matrix (i.e. matrix with all zero entries). Can you choose A and B so that all entries of A and B are non-zero?

Exercise 4. Construct a matrix $A \in \mathbb{R}^{2 \times 4}$ and a matrix $B \in \mathbb{R}^{4 \times 2}$ such that $A B=I_{2}$. Now for your matrices A and B, compute the product $B A$. Note that you do not get I_{4}.

Exercise 5. Construct two invertible matrices $A, B \in \mathbb{R}^{2 \times 2}$ such that $A+B$ is not invertible.

Exercise 6. Consider the following elementary matrices (with entries understood to be in \mathbb{R}.

$$
E_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad E_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 4 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad E_{3}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

For each of the matrices above, determine which elementary row operation it corresponds to, and find the inverse of the matrix. (You should be able to find the inverse at a glance, without any row reducing.)

Exercise 7. Consider the matrix below, with entries understood to be in \mathbb{R}.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 4 \\
0 & 0 & 1
\end{array}\right]
$$

Either express A as a product of elementary matrices, or prove that this is not possible.

