## Linear Algebra 1: Tutorial 5

Irena Penev & Denys Bulavka

Winter 2023/2024

**Exercise 1.** Find the standard matrices of the following linear functions (you may assume they are linear).

(a)  $f : \mathbb{R}^3 \to \mathbb{R}^3$  that rotates each vector about the  $x_3$ -axis by 90° counterclockwise.



- (b)  $g: \mathbb{R}^3 \to \mathbb{R}^3$  that projects each vector onto the  $x_1x_3$ -plane.
- (c)  $h_1 : \mathbb{R}^3 \to \mathbb{R}^3$  that first rotates each vector about the  $x_3$ -axis by 90° counterclockwise, and then projects each vector onto the  $x_1x_3$ -plane.
- (d)  $h_2 : \mathbb{R}^3 \to \mathbb{R}^3$  that first projects each vector onto the  $x_1x_3$ -plane, and then rotates each vector about the  $x_3$ -axis by 90° counterclockwise.

**Exercise 2.** Find the standard matrix of the linear function  $f : \mathbb{R}^2 \to \mathbb{R}^2$  that projects each vector onto the line given by the equation  $x_1 - x_2 = 0$  (you may assume the function is linear).



**Exercise 3.** Construct two non-zero matrices (i.e. matrices that have at least one non-zero entry), A and B, such that AB is a zero matrix (i.e. matrix with all zero entries). Can you choose A and B so that all entries of A and B are non-zero?

**Exercise 4.** Construct a matrix  $A \in \mathbb{R}^{2\times 4}$  and a matrix  $B \in \mathbb{R}^{4\times 2}$  such that  $AB = I_2$ . Now for your matrices A and B, compute the product BA. Note that you do **not** get  $I_4$ .

**Exercise 5.** Construct two invertible matrices  $A, B \in \mathbb{R}^{2 \times 2}$  such that A + B is **not** invertible.

**Exercise 6.** Consider the following elementary matrices (with entries understood to be in  $\mathbb{R}$ .

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

For each of the matrices above, determine which elementary row operation it corresponds to, and find the inverse of the matrix. (You should be able to find the inverse at a glance, without any row reducing.)

**Exercise 7.** Consider the matrix below, with entries understood to be in  $\mathbb{R}$ .

|   |   | [1]                                               | 2 | 3 |
|---|---|---------------------------------------------------|---|---|
| A | = | 0                                                 | 1 | 4 |
|   |   | $\left[\begin{array}{c}1\\0\\0\end{array}\right]$ | 0 | 1 |

Either express A as a product of elementary matrices, or prove that this is not possible.