Linear Algebra 1: Tutorial 3

Irena Penev & Denys Bulavka

Winter 2023/2024

Exercise 1. Solve the linear system below, where k is some fixed constant. (The coefficients are assumed to be in \mathbb{R} .)

Remark: Your solutions will depend on k. In fact, the **number** of solutions will also depend on k. You will need to figure out for which (if any) k the system has no solutions, for which it has a unique solution, and for which it has infinitely many solutions.

Exercise 2. Consider the matrix and vector below, with entries understood to be in \mathbb{Z}_3 .

A	=	[1]	2	0	0	b =	0
		2	1	1	1		1
		0	2	2	0		2
		0	1	1	0		1

Solve the matrix-vector equation $A\mathbf{x} = \mathbf{b}$. How many solutions does this equation have?

Exercise 3. Consider the matrix and vector below, with entries understood to be in \mathbb{R} .

$$A = \begin{bmatrix} 1 & -3 & 0 \\ -1 & 3 & 2 \\ -2 & 6 & -2 \\ 3 & -9 & 0 \\ 1 & -3 & 1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \\ 0 \end{bmatrix}$$

Solve the matrix-vector equation $A\mathbf{x} = \mathbf{b}$. How many solutions does this equation have?

Exercise 4. Consider the matrix and vector below, with entries understood to be in \mathbb{Z}_2 .

		Γ	0	0	1	1]		[1]	
A	=		1	1	1	1	\mathbf{b} =	0	
		L	1	1	0	0		[1]	

Solve the matrix-vector equation $A\mathbf{x} = \mathbf{b}$. How many solutions does this equation have?

Exercise 5. Consider the following vectors in \mathbb{Z}_2^4 :

$\mathbf{a}_1 = \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix},$	$\mathbf{a}_2 = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix},$	$\mathbf{a}_3 = \begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix},$	$\mathbf{a}_4 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix},$
$\mathbf{b} = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix},$	$\mathbf{c} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix},$	$\mathbf{d} = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}.$	

For each of the vectors $\mathbf{b}, \mathbf{c}, \mathbf{d}$, determine if it can be expressed as a linear combination of the vectors $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4$ (that is, if it belongs to $Span(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4)$), and if so, express it as such a linear combination, and explain whether your answer is unique.