Linear Algebra 1: Tutorial 3

Irena Penev \& Denys Bulavka

Winter 2023/2024

Exercise 1. Solve the linear system below, where k is some fixed constant. (The coefficients are assumed to be in \mathbb{R}.)

$$
\begin{array}{r}
x_{1}+2 x_{2}+r \\
3 x_{1}+4 x_{2}+r \\
5 x_{1}+8 x_{2}+(k-3)^{2} x_{3}=3
\end{array}
$$

Remark: Your solutions will depend on k. In fact, the number of solutions will also depend on k. You will need to figure out for which (if any) k the system has no solutions, for which it has a unique solution, and for which it has infinitely many solutions.

Exercise 2. Consider the matrix and vector below, with entries understood to be in \mathbb{Z}_{3}.

$$
A=\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
2 & 1 & 1 & 1 \\
0 & 2 & 2 & 0 \\
0 & 1 & 1 & 0
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
1 \\
2 \\
1
\end{array}\right]
$$

Solve the matrix-vector equation $A \mathbf{x}=\mathbf{b}$. How many solutions does this equation have?

Exercise 3. Consider the matrix and vector below, with entries understood to be in \mathbb{R}.

$$
A=\left[\begin{array}{rrr}
1 & -3 & 0 \\
-1 & 3 & 2 \\
-2 & 6 & -2 \\
3 & -9 & 0 \\
1 & -3 & 1
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
0 \\
2 \\
0 \\
0
\end{array}\right]
$$

Solve the matrix-vector equation $A \mathbf{x}=\mathbf{b}$. How many solutions does this equation have?

Exercise 4. Consider the matrix and vector below, with entries understood to be in \mathbb{Z}_{2}.

$$
A=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Solve the matrix-vector equation $A \mathbf{x}=\mathbf{b}$. How many solutions does this equation have?

Exercise 5. Consider the following vectors in \mathbb{Z}_{2}^{4} :

$$
\begin{aligned}
& \mathbf{a}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{a}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], \quad \mathbf{a}_{3}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{a}_{4}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \\
& \mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{d}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] .
\end{aligned}
$$

For each of the vectors $\mathbf{b}, \mathbf{c}, \mathbf{d}$, determine if it can be expressed as a linear combination of the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}$ (that is, if it belongs to $\operatorname{Span}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right)$), and if so, express it as such a linear combination, and explain whether your answer is unique.

