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Terminology:

So far, we have typically referred to vector/linear subspaces of
a vector space simply as “subspaces.”
In this lecture, we will study a generalization of linear
subspaces, called “affine subspaces.”
To avoid any confusion, in this chapter, we will not use the
term “subspace” and will instead always write either “linear
subspace” or “affine subspace.”
However, in subsequent lectures (next semester), we will again
use the term “subspace” to mean “linear subspace.”



Terminology:
So far, we have typically referred to vector/linear subspaces of
a vector space simply as “subspaces.”

In this lecture, we will study a generalization of linear
subspaces, called “affine subspaces.”
To avoid any confusion, in this chapter, we will not use the
term “subspace” and will instead always write either “linear
subspace” or “affine subspace.”
However, in subsequent lectures (next semester), we will again
use the term “subspace” to mean “linear subspace.”



Terminology:
So far, we have typically referred to vector/linear subspaces of
a vector space simply as “subspaces.”
In this lecture, we will study a generalization of linear
subspaces, called “affine subspaces.”

To avoid any confusion, in this chapter, we will not use the
term “subspace” and will instead always write either “linear
subspace” or “affine subspace.”
However, in subsequent lectures (next semester), we will again
use the term “subspace” to mean “linear subspace.”



Terminology:
So far, we have typically referred to vector/linear subspaces of
a vector space simply as “subspaces.”
In this lecture, we will study a generalization of linear
subspaces, called “affine subspaces.”
To avoid any confusion, in this chapter, we will not use the
term “subspace” and will instead always write either “linear
subspace” or “affine subspace.”

However, in subsequent lectures (next semester), we will again
use the term “subspace” to mean “linear subspace.”



Terminology:
So far, we have typically referred to vector/linear subspaces of
a vector space simply as “subspaces.”
In this lecture, we will study a generalization of linear
subspaces, called “affine subspaces.”
To avoid any confusion, in this chapter, we will not use the
term “subspace” and will instead always write either “linear
subspace” or “affine subspace.”
However, in subsequent lectures (next semester), we will again
use the term “subspace” to mean “linear subspace.”



This lecture has four parts:

1 Affine subspaces;
2 Affine functions;
3 Affine combinations and affine hulls;
4 Affine frames and affine bases.
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1 Affine subspaces

Definition
An affine subspace of a vector space V over a field F is any set of
the form

a + U := {a + u | u ∈ U},

where a is a vector in V and U is a linear subspace of V .

a U

a + U

Thus, an affine subspace of V is obtained by shifting a linear
subspace U of V by some vector a.
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Remark: For a vector space V over a field F:

Every linear subspace U of V is also an affine subspace of V ,
since U = 0 + U.

Moreover, as we shall see, linear subspaces of V are precisely
those affine subspaces of V that contain 0 (see
Corollary 5.1.2).

V is an affine subspace of itself (because V is a linear
subspace of itself).
For every vector a ∈ V , {a} is an affine subspace of V , since
{a} = a + {0} and {0} is a linear subspace of V .
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Geometric considerations:

As we know, linear subspaces of Rn are {0}, lines through the
origin, planes through the origin, and higher dimensional
generalizations.
So, affine subspaces of Rn are {a} (for any vector a ∈ Rn),
lines, planes, and higher dimensional generalizations (these
lines, planes, and higher dimensional generalizations may, but
need not, pass through the origin).
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As Theorem 5.1.1 (next slide) shows, for an affine subspace
M = a + U of a vector space V over a field F (where a is a
vector and U a linear subspace of V ), the vector a need not
be unique (indeed, it can be any vector in M), but the linear
subspace U is unique (it depends only on M, and not on the
vector a).

a U

a + U = a′ + U

a′



Theorem 5.1.1
Let V be a vector space over a field F, and let M = a + U be an
affine subspace of V , where a is a vector and U a linear subspace
of V . Then all the following hold:

(a) a ∈ M (and in particular, M ̸= ∅);
(b) for all a′ ∈ M, we have that M = a′ + U;
(c) for all vectors a′ and linear subspaces U ′ of V s.t.

M = a′ + U ′, we have that U ′ = U;
(d) for all b ∈ V \ M, we have that M ∩ (b + U) = ∅.
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Proof of (a).

Since U is a linear subspace of V , Theorem 3.1.7
guarantees that 0 ∈ U, and consequently, a = a + 0 ∈ a + U = M.
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Proof of (b).

Fix a′ ∈ M. Since a′ ∈ M = a + U, there exists some
u′ ∈ U s.t. a′ = a + u′. WTS M = a′ + U.
Let us first show that M ⊆ a′ + U. Fix x ∈ M. Since M = a + U,
there exists some u ∈ U s.t. x = a + u. Then
x = a + u = (a′ − u′) + u = a′ + (u − u′). Since u, u′ ∈ U, and U
is a linear subspace of V , we have that u − u′ ∈ U; so,
x = a′ + (u − u′) ∈ a′ + U. This proves that M ⊆ a′ + U.
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Proof of (d).

Fix b ∈ V \ M. WTS M ∩ (b + U) = ∅. Suppose
otherwise, and fix x ∈ M ∩ (b + U). Since x ∈ M = a + U, there
exists some u1 ∈ U s.t. x = a + u1; on the other hand, since
x ∈ b + U, there exists some u2 ∈ U s.t. x = b + u2. So,
a + u1 = b + u2, and it follows that b = a + (u1 − u2).
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Proof of (d) (continued). Reminder: b = a + (u1 − u2).

Since u1, u2 ∈ U, and since U is a linear subspace of V , we have
that u1 − u2 ∈ U; consequently, b = a + (u1 − u2) ∈ a + U = M,
contrary to the fact that b ∈ V \ M. □
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Given a vector space V over a field F, we define the
dimension of an affine subspace M = a + U of V (where a is
a vector and U a linear subspace of V ) to be

dim(M) := dim(U).

By Theorem 5.1.1(c), this is well defined.
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Corollary 5.1.2
Let V be a vector space over a field F. Then linear subspaces of V
are precisely those affine spaces of V that contain 0. In other
words, for all U ⊆ V , the following are equivalent:

(i) U is a linear subspace of V ;
(ii) U is an affine subspace of V and 0 ∈ U.



Theorem 5.1.1
Let V be a vector space over a field F, and let M = a + U be an
affine subspace of V , where a is a vector and U a linear subspace
of V . Then all the following hold:

(a) a ∈ M (and in particular, M ̸= ∅);
(b) for all a′ ∈ M, we have that M = a′ + U;
(c) for all vectors a′ and linear subspaces U ′ of V s.t.

M = a′ + U ′, we have that U ′ = U;
(d) for all b ∈ V \ M, we have that M ∩ (b + U) = ∅.

Corollary 5.1.2
Let V be a vector space over a field F. Then linear subspaces of V
are precisely those affine spaces of V that contain 0. In other
words, for all U ⊆ V , the following are equivalent:

(i) U is a linear subspace of V ;
(ii) U is an affine subspace of V and 0 ∈ U.



Corollary 5.1.2
Let V be a vector space over a field F. Then linear subspaces of V
are precisely those affine spaces of V that contain 0. In other
words, for all U ⊆ V , the following are equivalent:

(i) U is a linear subspace of V ;
(ii) U is an affine subspace of V and 0 ∈ U.

Proof.

Fix U ⊆ V . Suppose first that (i) holds. Then 0 ∈ U (by
Theorem 3.1.7), and moreover, U = 0 + U. So, (ii) holds.

Suppose now that (ii) holds. Since U is an affine subspace of V ,
we know that there exists a vector a ∈ V and a linear subspace U ′

of V s.t. U = a + U ′. Moreover, by (ii), we have that 0 ∈ U, and
so by Theorem 5.1.1(b), we have that U = 0 + U ′. So, U = U ′.
Since U ′ is a linear subspace of V , we see that (i) holds. □
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Recall that the intersection of two linear subspaces is a linear
subspace.

In the case of affine subspaces, we have the following corollary.

Corollary 5.1.3
Let V be a vector space over a field F, and let M1 and M2 be
affine subspaces of V . Then either M1 ∩ M2 = ∅, or M1 ∩ M2 is an
affine subspace of V .
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Proof.

WMA M1 ∩ M2 ̸= ∅, for otherwise we are done.

Fix any a ∈ M1 ∩ M2. By Theorem 5.1.1, M1 and M2 can be
written as M1 = a + U1 and M2 = a + U2, for some linear
subspaces U1 and U2 of V . Then U := U1 ∩ U2 is a linear
subspace of V . Moreover, it is clear that M1 ∩ M2 = a + U, and so
M1 ∩ M2 is an affine subspace. □
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subspace of V . Moreover, it is clear that M1 ∩ M2 = a + U, and so
M1 ∩ M2 is an affine subspace. □
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2 Affine functions

Definition
Suppose that V1 and V2 are vector spaces over a field F. A
function f : V1 → V2 is called an affine function if there exists a
linear function g : V1 → V2 and a vector b ∈ V2 s.t. for all x ∈ V1,
we have that f (x) = g(x) + b.

Obviously, every linear function f is affine (we simply take
g := f and b := 0).
Moreover, we have the following proposition (next slide).
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Proposition 5.2.1
Let V1 and V2 be vector spaces over a field F, and let f : V1 → V2
be an affine function. Then f is linear iff f (0) = 0.

Proof.

If f is linear, then Proposition 4.1.6 guarantees that
f (0) = 0. For the reverse implication, we assume that f (0) = 0,
and we show that f is linear. Since f is an affine function, we
know that there exists a linear function g : V1 → V2 and a vector
b ∈ V2 s.t. for all x ∈ V1, we have that f (x) = g(x) + b. But now

0 = f (0) = g(0) + b (∗)= 0 + b = b

where (*) follows from the fact that g is linear, and so g(0) = 0
(by Proposition 4.1.6). So, f (x) = g(x) for all x ∈ V1, that is,
f = g . Since g is linear, so is f . □
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We now state a number of results about affine functions.

These results (and their proofs) are similar to various results
that we proved for linear functions.
We omit the proofs here. However, all the proofs are in the
Lecture Notes.
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Reminder:

Theorem 4.1.7
Let U, V , and W be vector spaces over a field F. Then all the
following hold:

(a) for all linear functions f , g : U → V , the function f + g is
linear;

(b) for all linear functions f : U → V and scalars α ∈ F, the
function αf : U → V is linear;

(c) for all linear functions f : U → V and g : V → W , the
function g ◦ f is liner.

U V W

f g

g ◦ f

For affine functions, we have the following analog of
Theorem 4.1.7 (next slide).
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Theorem 5.2.2
Let V1, V2, V3 be vector spaces over a field F. Then all the
following hold:

(a) for all affine functions f1, f2 : V1 → V2, we have that f1 + f2 is
an affine function;

(b) for all affine functions f : V1 → V2 and scalars α, we have
that αf is an affine function;

(c) for all affine functions f1 : V1 → V2 and f2 : V2 → V3, we
have that f2 ◦ f1 is an affine function.

V1 V2 V3

f1 f2

f2 ◦ f1

Proof: Lecture Notes.



Reminder:

Theorem 4.2.3
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then all the following hold:

(a) for all subspaces U ′ of U, we have that f [U ′] is a subspace of
V ;

(b) Im(f ) is a subspace of V ;
(c) for all subspaces V ′ of V , we have that f −1[V ′] is a subspace

of U;
(d) Ker(f ) is a subspace of U.

An analog of Theorem 4.2.3 for affine functions is split up
over several theorems/corollaries, as follows.



Theorem 5.2.3
Let V1 and V2 be vector spaces over a field F, let f : V1 → V2 be
an affine function given by

f (x) = g(x) + b for all x ∈ V1,

where g : V1 → V2 is a linear function and b is a fixed vector in
V2, and let let M1 = a1 + U1 be an affine subspace of V1 (where
a1 is a vector and U1 a linear subspace of V1). Then

f [M1] =
(
g(a1) + b

)
+ g [U1],

and consequently, f [M1] is an affine subspace of V2. Moreover,

dim
(
f [M1]

)
≤ min

{
dim(M1), dim(V )

}
.

Proof: Lecture Notes.



Corollary 5.2.4
Let V1 and V2 be vector spaces over a field F, and let f : V1 → V2
be an affine function given by

f (x) = g(x) + b for all x ∈ V1,

where g : V1 → V2 is a linear function and b is a fixed vector in
V2. Then

Im(f ) =
(
g(a1) + b

)
+ Im(g),

and consequently, Im(f ) is an affine subspace of V2. Moreover,

dim
(
Im(f )

)
= rank(g) ≤ min

{
dim(V1), dim(V2)

}
.

Proof: Lecture Notes.



Geometric considerations:

Suppose that f : Rm → Rn is an affine (possibly linear)
function.
As we know, affine subspaces of Rm are points (technically,
sets that contain exactly one point), lines, planes, and higher
dimensional generalizations.
Theorem 5.2.3 guarantees that f maps every affine subspace
M of Rm onto an affine subspace of Rn, and moreover,
dim

(
f [M]

)
≤ dim(M).

So, f maps lines onto lines or points, and it maps planes onto
planes, lines, or points.

Obvious higher-dimensional generalizations apply.
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Theorem 5.2.5
Let V1 and V2 be vector spaces over a field F, and let f : V1 → V2
be an affine function given by

f (x) = g(x) + b for all x ∈ V1,

where g : V1 → V2 is a linear function and b is a fixed vector in
V2. Further, let M2 = a2 + U2 be an affine subspace of V2 (where
a2 is a vector and U2 a linear subspace of V2). Then both the
following hold:

(a) for all a1 ∈ f −1[M2], we have that f −1[M2] = a1 + g−1[U2];
(b) f −1[M2] is either empty or an affine subspace of V1.

Proof: Lecture Notes.



Corollary 5.2.6
Let V1 and V2 be vector spaces over a field F, and let f : V1 → V2
be an affine function given by

f (x) = g(x) + b for all x ∈ V1,

where g : V1 → V2 is a linear function and b is a fixed vector in V2.
Further, let c be any vector in V2. Then both the following hold:

(a) if a ∈ V1 is any solution of the equation f (x) = c,a then the
solution set of the equation f (x) = c is a + Ker(g);

(b) the solution set of the equation f (x) = c is either empty or an
affine subspace of V1.

aThis simply means that f (a) = c.

Proof: Lecture Notes.



Corollary 5.2.7
Let F be a field, and let A ∈ Fn×m and b ∈ Fn. Then both the
following hold:

(a) if a is any solution of the matrix-vector equation Ax = b, then
the solution set of Ax = b is a + Nul(A);

(b) if the matrix-vector equation Ax = b is consistent, then its
solution set is an affine subspace of Fm.

Proof: Lecture Notes.

Let’s take a look at an example illustrating Corollary 5.2.7.
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Let’s take a look at an example illustrating Corollary 5.2.7.



Consider the the following matrix and vector, with entries
understood to be in Z3:

A :=


1 2 2 2 1
2 2 0 0 1
0 2 0 2 0
1 1 2 1 1

 , b :=


2
2
1
0

 .

Let us solve the matrix-vector equation Ax = b.
We form the augmented matrix

[
A b

]
=


1 2 2 2 1 2
2 2 0 0 1 2
0 2 0 2 0 1
1 1 2 1 1 0

 .
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By row reducing, we obtain

RREF
( [

A b
] )

=


1 0 0 2 2 2
0 1 0 1 0 2
0 0 1 2 1 1
0 0 0 0 0 0

 .

We see that the matrix-vector equation Ax = b is consistent,
and that the general solution of this equation is

x =


s + t + 2

2s + 2
s + 2t + 1

s
t

 , where s, t ∈ Z3.
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Reminder:
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By separating parameters, we obtain
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x =
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So, the solution set of the equation Ax = b is

{


2
2
1
0
0

 + s


1
2
1
1
0

 + t


1
0
2
0
1

 | s, t ∈ Z3
}

=


2
2
1
0
0

 + Span
(


1
2
1
1
0

 ,


1
0
2
0
1


)
.



Reminder: the solution set of Ax = b is
2
2
1
0
0

 + Span
(


1
2
1
1
0

 ,


1
0
2
0
1


)
.

It is easy to check that a :=
[

2 2 1 0 0
]T

is one
solution of the matrix-vector equation Ax = b, and that the
null space of A is precisely

Nul(A) = Span
(


1
2
1
1
0

 ,


1
0
2
0
1


)
.

So, the solution set of Ax = b is precisely a + Nul(A), which
is consistent with Corollary 5.2.7.
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Corollary 5.2.7
Let F be a field, and let A ∈ Fn×m and b ∈ Fn. Then both the
following hold:

(a) if a is any solution of the matrix-vector equation Ax = b, then
the solution set of Ax = b is a + Nul(A);

(b) if the matrix-vector equation Ax = b is consistent, then its
solution set is an affine subspace of Fm.

Geometric considerations:
Suppose that we are given a matrix A ∈ Rn×m and a vector
b ∈ Rn.
By Corollary 5.2.7(b), the solution set of the matrix-vector
equation Ax = b is either empty or an affine subspace of Rm,
i.e. a point (technically, a set that contains exactly one point),
a line, a plane, or a higher-dimensional generalization in Rm.



3 Affine combinations and affine hulls

Recall from analytic geometry that if x and y are distinct
points (vectors) in R2, then the line in R2 that passes through
x and y is {tx + (1 − t)y | t ∈ R}.

{tx + (1− t)y | t ∈ R}

y

x

This in fact holds for all distinct points x and y in Rn (not
just R2).
Affine combinations are a generalization of this concept.
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Definition
Suppose that x1, . . . , xn (n ≥ 1) are vectors in a vector space V
over a field F. An affine combination of x1, . . . , xn is any sum of
the form α1x1 + · · · + αnxn, where α1, . . . , αn ∈ F satisfy
α1 + · · · + αn = 1. The set of all affine combinations of x1, . . . , xn,
denoted Aff(x1, . . . , xn), is called the affine hull (or affine span) of
x1, . . . , xn. So, we have that

Aff(x1, . . . , xn) :=
{ n∑

i=1
αixi | α1, . . . , αn ∈ F,

n∑
i=1

αi = 1
}

.

Since

xi = 0x1 + · · · + 0xi−1 + 1xi + 0xi+1 + · · · + 0xn

for all i ∈ {1, . . . , n}, we see that x1, . . . , xn ∈ Aff(x1, . . . , xn).
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Reminder:

Theorem 3.1.7
Let V be a vector space over a field F, and let U ⊆ V . Then U is
a subspace of V iff the following three conditions are satisfied:

(i) 0 ∈ U;
(ii) U is closed under vector addition, that is, for all u, v ∈ U, we

have that u + v ∈ U;
(iii) U is closed under scalar multiplication, that is, for all u ∈ U

and α ∈ F, we have that αu ∈ U.

Theorem 3.1.11
Let V be a vector space over a field F, and let u1, . . . , uk ∈ V
(k ≥ 0). Then all the following hold:

(b) Span(u1, . . . , uk) is a subspace of V ;



Theorem 5.3.1
Let V be a vector space over a field F, and let M ⊆ V . Then the
following are equivalent:

(i) M is an affine subspace of V ;
(ii) M is non-empty and closed under affine combinations, that

is, for all vectors x1, . . . , xn ∈ M and α1, . . . , αn ∈ F s.t.
α1 + · · · + αn = 1, we have that α1x1 + · · · + αnxn ∈ M.

Corollary 5.3.2
Let x1, . . . , xn (n ≥ 1) be vectors in a vector space V over a field
F. Then M := Aff(x1, . . . , xn) is an affine subspace of V .

Proof: Lecture Notes.



4 Affine frames and affine bases

Definition
Let n be a non-negative integer, and let M be an n-dimensional
affine subspace of a vector space V over a field F. An affine frame
of M is an ordered (n + 1)-tuple (a, u1, . . . , un) of vectors of V s.t.
M can be written in the form M = a + U, where U is a linear
subspace of V , and {u1, . . . , un} is a basis of U.

a U

M = a + U
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By Theorem 3.2.7, if {v1, . . . , vn} is a basis of a vector space
V over a field F, then every vector in V can be written as a
linear combination of the vectors v1, . . . , vn in a unique way.

Our next theorem is an analogue of this result for affine
subspaces and affine frames.

Theorem 5.4.1
Let M be an affine subspace of a vector space V over a field F,
and let (a, u1, . . . , un) be an affine frame of M. Then for all
x ∈ M, there exist unique scalars α1, . . . , αn ∈ F s.t.
x = a + α1u1 + · · · + αnun.

Proof: Lecture Notes.
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Our next theorem is an analogue of this result for affine
subspaces and affine frames.
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Let M be an affine subspace of a vector space V over a field F,
and let (a, u1, . . . , un) be an affine frame of M. Then for all
x ∈ M, there exist unique scalars α1, . . . , αn ∈ F s.t.
x = a + α1u1 + · · · + αnun.

Proof: Lecture Notes.
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Definition
Given vectors x1, . . . , xn in a vector space V over a field F, we say
that vectors x1, . . . , xn ∈ V are affinely independent, or that the set
{x1, . . . , xn} is affinely independent, if for all α1, . . . , αn ∈ F s.t.

α1x1 + · · · + αnxn = 0 and α1 + · · · + αn = 0,

we have that α1 = · · · = αn = 0.



Proposition 5.4.2
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x0 − xi , . . . , xi−1 − xi , xi+1 − xi , . . . , xn − xi

are linearly independent.

Proof.

Obviously, (iii) implies (ii). We will show that (ii)
implies (i), and that (i) implies (iii).
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Proof (continued). Suppose that (ii) holds. Let us prove (i).

By (ii) and by symmetry, WMA that x1 − x0, . . . , xn − x0 are
linearly independent.

Fix scalars α0, α1, . . . , αn ∈ F s.t. α0x0 + α1x1 + · · · + αnxn = 0
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that α0 = 0. This proves (i).
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α0 = α1 = · · · = αn = 0, and we deduce that (iii) holds. □
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Definition
Let M be an affine subspace of a vector space V over a field F. An
affine basis (also called a barycentric frame) of M is a non-empty
ordered set {x0, x1, . . . , xn} of vectors in M s.t.

vectors x0, x1, . . . , xn are affinely independent;
M = Aff(x0, x1, . . . , xn).

Theorem 5.4.3
Let M be an affine subspace of a vector space V over a field F,
and let {x0, x1, . . . , xn} be an affine basis of M. Then for all
x ∈ M, there exist unique scalars α0, α1, . . . , αn ∈ F, called the
barycentric coordinates of x with respect to the affine basis
{x0, x1, . . . , xn}, s.t. x =

∑n
i=0 αixi and

∑n
i=0 αi = 1.

Proof: Lecture Notes.
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Theorem 5.4.4
Let V be a vector space over a field F, let M be an affine subspace
of V , and let x0, x1, . . . , xn ∈ V . Then the following are
equivalent:

(i) {x0, x1, . . . , xn} is an affine basis of M;
(ii) (x0, x1 − x0, . . . , xn − x0) is an affine frame of M.

Remark: Since every affine frame of an n-dimensional affine
subspace contains n + 1 vectors, Theorem 5.4.4 implies that
every affine basis of an n-dimensional affine subspace contains
exactly n + 1 vectors.

a U

M = a + U
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Theorem 5.4.4
Let V be a vector space over a field F, let M be an affine subspace
of V , and let x0, x1, . . . , xn ∈ V . Then the following are
equivalent:

(i) {x0, x1, . . . , xn} is an affine basis of M;
(ii) (x0, x1 − x0, . . . , xn − x0) is an affine frame of M.

Proof.

First, we know that (i) and (ii) are, respectively, equivalent
to (1) and (2) below:

(1) vectors x0, x1, . . . , xn are affinely independent and
M = Aff(x0, x1, . . . , xn);

(2) vectors x1 − x0, . . . , xn − x0 are linearly independent and
M = x0 + Span(x1 − x0, . . . , xn − x0).

So, it suffices to show that (1) and (2) are equivalent.
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Theorem 5.4.4
Let V be a vector space over a field F, let M be an affine subspace
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(i) {x0, x1, . . . , xn} is an affine basis of M;
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Proof (continued). WTS the following are equivalent:
(1) vectors x0, x1, . . . , xn are affinely independent and
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(2) vectors x1 − x0, . . . , xn − x0 are linearly independent and

M = x0 + Span(x1 − x0, . . . , xn − x0).

By Proposition 5.4.2, vectors x0, x1, . . . , xn are affinely independent
iff vectors x1 − x0, . . . , xn − x0 are linearly independent.
It now remains to show that
Aff(x0, x1, . . . , xn) = x0 + Span(x1 − x0, . . . , xn − x0).
For this, we compute (next slide):
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Theorem 5.4.4
Let V be a vector space over a field F, let M be an affine subspace
of V , and let x0, x1, . . . , xn ∈ V . Then the following are
equivalent:

(i) {x0, x1, . . . , xn} is an affine basis of M;
(ii) (x0, x1 − x0, . . . , xn − x0) is an affine frame of M.

Proof (continued).

Aff(x0, x1, . . . , xn)

=
{

α0x0 + α1x1 + · · · + αnxn | α0, α1, . . . , αn ∈ F, α0 + α1 + · · · + αn = 1
}

=
{

(1 − α1 − · · · − αn)x0 + α1x1 + · · · + αnxn | α1, . . . , αn ∈ F
}

=
{

x0 + α1(x1 − x0) + · · · + αn(xn − x0) | α1, . . . , αn ∈ F
}

= x0 + Span(x1 − x0, . . . , xn − x0).

This completes the argument. □
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(ii) (x0, x1 − x0, . . . , xn − x0) is an affine frame of M.

Remark: If M = {a} is a one-element affine subspace of a
vector space V over a field F, then (a) is the (unique) affine
frame and {a} the (unique) affine basis of M.
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Remark: Suppose we are given a matrix A ∈ Fn×m and a
vector b ∈ Fn (where F is a field). By Corollary 5.2.7, the
solution set of the matrix-vector equation Ax = b is either
empty or an affine subspace of Fm. Moreover, we have the
following:

if the matrix-vector equation Ax = b is inconsistent, then its
solution set is empty, and consequently, it is not and affine
subspace of Fm and therefore does not have an affine frame or
an affine basis;
if the matrix-vector equation Ax = b has a unique solution, say
x0, then {x0} is the solution set of Ax = b, and we see that
(x0) is the (unique) affine frame and {x0} the (unique) affine
basis of the solution set of Ax = b;
if the matrix-vector equation Ax = b has more than one
solution, then an affine frame and an affine basis of the
solution set of Ax = b can be computed by following the
procedure from the solution of Example 5.4.5 (next slide).
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procedure from the solution of Example 5.4.5 (next slide).



Example 5.4.5
Consider the following matrix and vector, both with entries in Z2:

A =


1 0 0 1 1 1
1 1 1 0 0 1
0 1 1 1 1 0
1 0 1 0 1 0

 , b =


1
1
0
0

 .

Show that the matrix-vector equation Ax = b is consistent, and
consequently (by Corollary 5.2.7(b)), an affine subspace of Z6

2.
Find an affine frame and an affine basis of the solution set of
Ax = b.
Solution.

We form the augmented matrix

[
A b

]
=


1 0 0 1 1 1 1
1 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 1 0 1 0 0

 ,

and by row reducing, we obtain (next slide):
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and by row reducing, we obtain (next slide):



Solution (continued).

RREF
( [

A b
] )

=


1 0 0 1 1 1 1
0 1 0 0 1 1 1
0 0 1 1 0 1 1
0 0 0 0 0 0 0

 .

So, the general solution of the matrix-vector equation Ax = b is

x =


r + s + t + 1

s + t + 1
r + t + 1

r
s
t

 where r , s, t ∈ Z2.

In particular, the matrix-vector equation Ax = b is consistent, and
so by Corollary 5.2.7(b), the solution set of this equation is an
affine subspace of Z6

2.



Solution (continued).

RREF
( [

A b
] )

=


1 0 0 1 1 1 1
0 1 0 0 1 1 1
0 0 1 1 0 1 1
0 0 0 0 0 0 0

 .

So, the general solution of the matrix-vector equation Ax = b is

x =


r + s + t + 1

s + t + 1
r + t + 1

r
s
t

 where r , s, t ∈ Z2.

In particular, the matrix-vector equation Ax = b is consistent, and
so by Corollary 5.2.7(b), the solution set of this equation is an
affine subspace of Z6

2.



Solution (continued).

RREF
( [

A b
] )

=


1 0 0 1 1 1 1
0 1 0 0 1 1 1
0 0 1 1 0 1 1
0 0 0 0 0 0 0

 .

So, the general solution of the matrix-vector equation Ax = b is

x =


r + s + t + 1

s + t + 1
r + t + 1

r
s
t

 where r , s, t ∈ Z2.

In particular, the matrix-vector equation Ax = b is consistent, and
so by Corollary 5.2.7(b), the solution set of this equation is an
affine subspace of Z6

2.



Solution (continued). So, the solution set of Ax = b is:

S :=
{


r + s + t + 1

s + t + 1
r + t + 1

r
s
t

 | r , s, t ∈ Z2

}

=
{


1
1
1
0
0
0

 + r


1
0
1
1
0
0

 + s


1
1
0
0
1
0

 + t


1
1
1
0
0
1

 | r , s, t ∈ Z2

}

=


1
1
1
0
0
0

 + Span
(


1
0
1
1
0
0

,


1
1
0
0
1
0

,


1
1
1
0
0
1


)

.



Solution (continued). Reminder: The solution set of Ax = b is:

S =


1
1
1
0
0
0

 + Span
(


1
0
1
1
0
0

,


1
1
0
0
1
0

,


1
1
1
0
0
1


)

.

We now see that

(


1
1
1
0
0
0

,


1
0
1
1
0
0

,


1
1
0
0
1
0

,


1
1
1
0
0
1


)

is an affine frame of the solution set S of Ax = b, whereas (by
Theorem 5.4.4):
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1
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1
1
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.

We now see that

(


1
1
1
0
0
0

,


1
0
1
1
0
0

,


1
1
0
0
1
0

,


1
1
1
0
0
1


)

is an affine frame of the solution set S of Ax = b, whereas (by
Theorem 5.4.4):



Solution (continued).

{


1
1
1
0
0
0

,


1
0
1
1
0
0

 +


1
1
1
0
0
0

,


1
1
0
0
1
0

 +


1
1
1
0
0
0

,


1
1
1
0
0
1

 +


1
1
1
0
0
0


}

=
{


1
1
1
0
0
0

 ,


0
1
0
1
0
0

 ,


0
0
1
0
1
0

 ,


0
0
0
0
0
1


}

is an affine basis of S. □


