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@ The effect of a linear function on linearly independent and
spanning sets

Theorem 4.2.11

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Let uy,...,ux € U, and set

U’ := Span(uy, ..., uk). Then all the following hold:

@ U’ is a subspace of U, and f[U] is a subspace of V;

@ f[U'] = f[Span(uy,...,ux)] =Span(f(u1),...,f(uk)), ie.
vectors f(uy), ..., f(ux) span f[U'] = f[Span(uy,...,ux)];

@ dim(f[U']) <dim(U’) < k.
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Theorem 4.2.11

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Let ug,...,ux € U, and set
U’ :=Span(uy, ..., uk). Then all the following hold:

@ U’ is a subspace of U, and f[U] is a subspace of V;

Proof of (a).



Theorem 4.2.11

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Let ug,...,ux € U, and set
U’ :=Span(uy, ..., uk). Then all the following hold:

@ U’ is a subspace of U, and f[U] is a subspace of V;

Proof of (a). The fact that U’ is a subspace of U follows
immediately from Theorem 3.1.11, and the fact that f[U'] is a
subspace of V follows from 4.2.3(a). This proves (a).
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Theorem 4.2.11

Let U and V be vector spaces over a field F, and let f : U — V be

a linear function. Let uy,...,ux € U, and set

U’ :=Span(uy, ..., uk). Then all the following hold:

@ f[U'] = f[Span(uy,...,ux)] =Span(f(u1),...,f(uk)), ie.
vectors f(u1), ..., f(ug) span f[U'] = f[Span(uy, ..., uk)];

Proof of (b).

Span(f(ul), ceey f(uk)) = {alf(ul) —+ - +akf(uk) ‘ a1,...,0K € IF}
= {f(a1u1+~~~+akuk)|a1,...,ozk€IF}

= {f(u) |ue Span(u1,---7uk)}

= f[Span(ul,...7uk)] = f[U],

where (*) follows from the linearity of the f (and more precisely,
from Prop. 4.1.5), and (**) follows from the definition of span.
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So, by Theorem 3.2.14, some subset of that spanning set, say
{uj,...,u;, } (with1 < i <--- <ip<k)is a basis of U'.
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dim(U’) = m < k.
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Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Let ug,...,ux € U, and set
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Let U and V be vector spaces over a field F, and let f : U — V be

a linear function. Let ug,...,ux € U, and set
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{f(uy),...,f(u;,)} is a basis of f[U'],




Theorem 4.2.11

Let U and V be vector spaces over a field F, and let f : U — V be

a linear function. Let ug,...,ux € U, and set

U’ := Span(uy,...,ux). Then all the following hold:

@ U’ is a subspace of U, and f[U] is a subspace of V;

@ f[U'] = f[Span(uy,...,ux)] =Span(f(u1),...,f(uk)), ie.
vectors f(uy),. .., f(ux) span f[U'] = f[Span(uy,...,uk)];

@ dim(f[U']) <dim(U’) < k.

Proof of (c). By hypothesis, {uy,...,ux} is a spanning set of U’
So, by Theorem 3.2.14, some subset of that spanning set, say
{uj,...,u; } (with1 < i <--- <ipn<k)is a basis of U'. So,
dim(U’) = m < k. But now {uj,...,u;,} is a spanning set of U’
So, by part (b) applied to the set {uj,...,u; }, we get that
{f(uy),...,f(uj,)} is a spanning set of f[U']. We now apply
Theorem 3.2.14 again, and we deduce that some subset of
{f(uy),...,f(u;,)} is a basis of f[U'], and so dim(f[U']) < m. [




Theorem 4.2.11

Let U and V be vector spaces over a field F, and let f : U — V be

a linear function. Let uy,...,ux € U, and set

U’ :=Span(uy, ..., uk). Then all the following hold:

@ U’ is a subspace of U, and f[U] is a subspace of V;

@ f[U'] = f[Span(uy,...,uk)] =Span(f(u1),...,f(uk)), ie.
vectors f(u1), ..., f(ug) span f[U'] = f[Span(uy, ..., uk)];

@ dim(f[U]) <dim(U) < k.




Corollary 4.2.12

Let U and V be vector spaces over a field F, let f : U — V be a

linear function, and let {uy,...,ux} be a spanning set of U. Then
Im(f) = Span(f(u1),...,f(ux)) and

rank(f) = dim(Span (f(u1), ..., f(ux)) ) < k.

Proof.
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Let U and V be vector spaces over a field F, let f : U — V be a
linear function, and let {uy,...,ux} be a spanning set of U. Then

Im(f) = Span(f(u1),...,f(ux)) and
rank(f) = dim(Span (f(u1), ..., f(ux)) ) < k.

Proof. By hypothesis, U = Span(uy, ..., uk).



Corollary 4.2.12

Let U and V be vector spaces over a field F, let f : U — V be a

linear function, and let {uy,...,ux} be a spanning set of U. Then
Im(f) = Span(f(u1),...,f(ux)) and

rank(f) = dim(Span (f(u1), ..., f(ux)) ) < k.

Proof. By hypothesis, U = Span(uy, ..., uk). So, by
Theorem 4.2.11(b), we have that
Im(f) = f[U] = Span(f(u1), ..., f(uk)),



Corollary 4.2.12

Let U and V be vector spaces over a field F, let f : U — V be a

linear function, and let {uy,...,ux} be a spanning set of U. Then
Im(f) = Span(f(u1),...,f(ux)) and

rank(f) = dim(Span (f(u1), ..., f(ux)) ) < k.

Proof. By hypothesis, U = Span(uy, ..., uk). So, by
Theorem 4.2.11(b), we have that

Im(f) = f[U] = Span(f(u1),...,f(ux)), and by
Theorem 4.2.11(c), we have that

rank(f) = dim(Im(f)) = dim(f[U]) < k. O



Theorem 4.2.13
Let U and V be vector spaces over a field F, let f : U — V be a

linear function, and let uy,...,u, € U. Then all the following

hold:

@ if f is one-to-one and vectors ug, ..., uy are linearly
independent in U, then vectors f(u1),...,f(uk) are linearly
independent in V/;

@ if vectors f(uy),...,f(uk) are linearly independent in V/, then
vectors ug, ..., U, are linearly independent in U;

@ if f is onto and vectors uy,...,u, span U, then vectors
f(u1), ..., f(uk) span V;

@ if f is one-to-one and vectors f(uy), ..., f(ux) span V, then
vectors ug, ..., U, span U.

@ Proof: Lecture Notes.

@ Informal summary: next slide.




@ Theorem 4.2.13 (schematically and informally):

Uy

if f is 1-1 .
(a)-(b) uy,...,uy are - f(ay),..., f(ug) are
linearly independent l<: linearly independent
always
if f is onto
> . .
(c)-(d) up,...,u span U f(ur),..., f(ug) span V

—
if fis 1-1



@ Dimension considerations:

A B
e As we know, for any function f : A — B, where A and B are
finite sets, the following hold:
o if f is one-to-one, then |A| < |B
e if f is onto, then |A| > |B|;
e if f is a bijection, then |A| = |B|.
(Actually, the above is true even if we allow A and B to be
infinite, but to make sense of the statement, we would need
infinite cardinals. We omit the details.)
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@ Dimension considerations:

A B
e As we know, for any function f : A — B, where A and B are
finite sets, the following hold:
o if f is one-to-one, then |A| < |B
e if f is onto, then |A| > |B|;
o if f is a bijection, then |A| = |B].
(Actually, the above is true even if we allow A and B to be
infinite, but to make sense of the statement, we would need
infinite cardinals. We omit the details.)
o In the case of linear functions, Theorem 4.2.14 (next slide)
gives us a very similar statement, only involving dimension
(rather than cardinality) of the domain and codomain.
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Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);
@ if f is onto, then dim(U) > dim(V);
@ if f is an isomorphism, then dim(U) = dim(V).

Proof.
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a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);
@ if f is onto, then dim(U) > dim(V);
@ if f is an isomorphism, then dim(U) = dim(V).

Proof. Obviously, (a) and (b) together imply (c).




Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);
@ if f is onto, then dim(U) > dim(V);
@ if f is an isomorphism, then dim(U) = dim(V).

Proof. Obviously, (a) and (b) together imply (c). So, it is enough
to prove (a) and (b).




Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);

Proof (continued). (a) We prove the contrapositive: we assume
that dim(U) > dim(V) (and in particular, dim(V) is finite), and
we prove that f is not one-to-one.



Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);

Proof (continued). (a) We prove the contrapositive: we assume
that dim(U) > dim(V) (and in particular, dim(V) is finite), and
we prove that f is not one-to-one.

Set n:=dim(V).
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Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);

Proof (continued). (a) We prove the contrapositive: we assume

that dim(U) > dim(V) (and in particular, dim(V) is finite), and

we prove that f is not one-to-one.

Set n :=dim(V). Since dim(U) > dim(V'), we know that U has a

linearly independent set of size greater than n.

@ Indeed, if U is finite-dimensional, then any one of its bases is

a linearly independent set of size dim(U) > n, and if U is
infinite-dimensional, then Proposition 3.2.18 guarantees that
U has linearly independent sets of any finite size.

So, fix a linearly independent set {uy,...,ux} of U, with k > n.



Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);

Proof (continued). (a) We prove the contrapositive: we assume
that dim(U) > dim(V) (and in particular, dim(V) is finite), and
we prove that f is not one-to-one.

Set n :=dim(V). Since dim(U) > dim(V'), we know that U has a
linearly independent set of size greater than n.
@ Indeed, if U is finite-dimensional, then any one of its bases is

a linearly independent set of size dim(U) > n, and if U is
infinite-dimensional, then Proposition 3.2.18 guarantees that
U has linearly independent sets of any finite size.

So, fix a linearly independent set {uy,...,ux} of U, with k > n.

Since dim(V) = n, Theorem 3.2.17(a) guarantees that the set

{f(u1),...,f(uk)} is linearly dependent. But now

Theorem 4.2.13(a) guarantees that f is not one-to-one.



Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is onto, then dim(U) > dim(V);

Proof (continued). (b) Assume that f is onto; we must show that
dim(U) > dim(V).
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Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is onto, then dim(U) > dim(V);

Proof (continued). (b) Assume that f is onto; we must show that
dim(U) > dim(V). We may assume that n := dim(U) is finite, for
otherwise, we are done.
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Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is onto, then dim(U) > dim(V);

Proof (continued). (b) Assume that f is onto; we must show that
dim(U) > dim(V). We may assume that n := dim(U) is finite, for
otherwise, we are done. We must show that dim(V) < n.



Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is onto, then dim(U) > dim(V);

Proof (continued). (b) Assume that f is onto; we must show that
dim(U) > dim(V). We may assume that n := dim(U) is finite, for
otherwise, we are done. We must show that dim(V) < n.

Fix any basis {us,...,u,} of U.
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Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is onto, then dim(U) > dim(V);

Proof (continued). (b) Assume that f is onto; we must show that
dim(U) > dim(V). We may assume that n := dim(U) is finite, for
otherwise, we are done. We must show that dim(V) < n.

Fix any basis {us,...,u,} of U. In particular, vectos uy,...,u,
span U, and so since f is onto, Theorem 4.2.13(c) guarantees that
vectors f(uy),..., f(u,) span V.



Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is onto, then dim(U) > dim(V);

Proof (continued). (b) Assume that f is onto; we must show that
dim(U) > dim(V). We may assume that n := dim(U) is finite, for
otherwise, we are done. We must show that dim(V) < n.

Fix any basis {us,...,u,} of U. In particular, vectos uy,...,u,
span U, and so since f is onto, Theorem 4.2.13(c) guarantees that
vectors f(uy),...,f(u,) span V. But then by Theorem 3.2.14,
some subset of {f(u1),...,f(u,)} is a basis of V, and it follows
that dim(V) < n. O



Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);
@ if f is onto, then dim(U) > dim(V);
@ if f is an isomorphism, then dim(U) = dim(V).




@ Computing bases of the images and preimages of subspaces
under linear functions

Proposition 4.2.15

Let F be a field, let f : F™ — F" be a linear function, let
A € F"™™ be the standard matrix of f, let uy,...,u, € F”
(k > 1), and set U := Span(uy,...,ux). Then

flu] = Col(Alu .. w]).

and moreover, the pivot columns of the matrix A [ up ... Uk
form a basis of f[U].

@ First an example, then a proof.



Example 4.2.16

Let f : Z3 — Z3 be the linear function whose standard matrix is

1 1 0 0 1
01 1 0 1
A= 1 01 0 0]’
11 01 1
and consider the vectors

1 1 0 1
1 0 1 0
u; = 1 ) u; = 1 ) uz = 0 ) us = 0
1 0 1 0
1 1 0 1

in Z3. Set U := Span(uy,uy, u3,uy). Find a basis for f[U].



Solution.



Solution. Our goal is to find the pivot columns of the matrix
A [ u; U U3z Uy } since by Proposition 4.2.15, those columns
form a basis of f[U]. First, by multiplying matrices, we obtain

[1 1 0 0 1 110l
1 010
01 101

A[U1U2U3U4]: 10100 1 1 0 0
1 1 011 1010
- 1 1 01

[1 0 1 0

1011

|00 01

|0 000




Solution (continued). By row reducing, we obtain

RREF(A[U1 w us m}) _

O O O
O O O o
oo o
[N el o]



Solution (continued). By row reducing, we obtain

RREF(A[U1 w us m}) _

O O O
O O O o
oo o
[N el o]

As we can see, the pivot columns of A { up Us uz ug | areits
first and fourth column.



Solution (continued). By row reducing, we obtain

RREF(A[U1 w us m}) _

O O O
O O O o
oo o
[N el o]

As we can see, the pivot columns of A { up Us uz ug | areits
first and fourth column. Therefore,

—
cC o Rk
O~ = O

——

is a basis of f[U]. O



Proposition 4.2.15

Let F be a field, let f : F — " be a linear function, let
A € F"™™ be the standard matrix of f, let uy,...,u, € F7
(k> 1), and set U := Span(uy, ..., uk). Then

flu] = Col(A{ul uk}),

and moreover, the pivot columns of the matrix A [ up ... U
form a basis of f[U].

Proof.



Proposition 4.2.15

Let F be a field, let f : F — " be a linear function, let
A € F"™™ be the standard matrix of f, let uy,...,u, € F7

(k> 1), and set U := Span(uy, ..., uk). Then
flu] = Col(A{ul uk}),

and moreover, the pivot columns of the matrix A [
form a basis of f[U].

u; ... Uk

Proof. First, we compute (next slide):



Proof (continued).

flU] = f[Span(uy, ..., uk)]
© Span(F(uy),..., F(uy))
(+5) Co|([ flu)) ... f(ug) ])
2 col([ A Au])
(e COI(A[U1 T ]),
where (*) follows from Theorem 4.2.11(b), (**) follows from the

definition of the column space, and (***) follows from the fact
that A is the standard matrix of f, and (****) follows from the

definition of matrix multiplication.



Proof (continued).
flU] = f[Span(uy,...,uk)]
(%)
= Span(f(uy), ..., f(uk))
(x) Col( [ F(u) ... F(u) ] )
(*;*) Col([ Au; ... Aug })
CE col(Alw o w]),
where (*) follows from Theorem 4.2.11(b), (**) follows from the
definition of the column space, and (***) follows from the fact
that A is the standard matrix of f, and (****) follows from the
definition of matrix multiplication. By Theorem 3.3.4, the pivot

columns of a matrix form a basis of the column space of that
matrix, and the result follows. (J



Proposition 4.2.18

Let IF be a field, let f : F™ — F” be a linear function, let
A € F"™™ be the standard matrix of f, let vi,...,v, € F"
(k> 1), and set V := Span(vy,...,vk) Then

f~v] = {XEIF”’|EIy6st.t.[A:v1 vk][

= {xE]F'"|EIyEIst_t. [;] ENuI([A:vl

@ First an example, then a proof.



Example 4.2.19

Consider the linear function f : R* — R® whose standard matrix is

1 0
0 -2
A = -2 -3
4 0
2 -1

0
—4
—6

0
—2

and consider the following vectors in R>:
VvV = [ —1

Set V

[
[
[
[
[ -
Spa

wooom

6 9 —4 1]
2 2 8 5]
o 0o -1 0]
-2 -3 -1 -1]%;
-1 2 1 o]%

-1 2 -1 6]
n(vi,...,ve). Find a basis of F~1[V].

0

0
1
0
0



Solution. We apply Proposition 4.2.18.



Solution. We apply Proposition 4.2.18. We first form the matrix

Cc = [A:vl Vo V3 Vg Vg v6]
1 o 00,-1 2 0 0 0 -3
0 2 40 6 2 0 -2 -1 -1
= |2 -3 61, 9 -2 0 -3 -2 2|,
4 0 00, -4 8 -1 -1 1 -11
2 -1 -2 0'1 5 0 -1 0 -6

and we find the general solution of the matrix-vector equation

[ A : Vi Vo V3 V4 V5 Vg } |:)y(:| = 0,

=C

where the vector x has four entries (because A has four columns)
and the vector y has six entries (because we have six vectors

V1,...,V6).



-3
0
-1 0 0 0 -2 ].
0
1

-1 010

Solution (continued). By row reducing, we obtain



Solution (continued). By row reducing, we obtain

1000,-1 2000 -3
0120 -3 1010 0
RREF(C) = |0 0 0 1,2 -1 0 0 0 -2
0000 0 0110 0
0000'0 000O0T1 1

So, the general solution of our matrix-vector equation is

qg—2r+3t
—2p+3q+r—s

[ X ] = , where p,q,r,s, t € R.




Solution (continued). By row reducing, we obtain

1000,-1 2000 -3
0120 -3 1010 0
RREF(C) = |0 0 0 1,2 -1 0 0 0 -2
0000 0 0110 0
0000'0 000O0T1 1

So, the general solution of our matrix-vector equation is

qg—2r+3t
—2p+3q+r—s

[ X ] = , where p,q,r,s, t € R.

But as per Proposition 4.2.18, we only need x!



Solution. So, we simply ignore the part below the horizontal dotted
line, and we obtain:

q—2r+3t
—2p+3qP+r_5 , where p,q,r,s,t € R.

29+ r+2t



Solution. So, we simply ignore the part below the horizontal dotted
line, and we obtain:

q—2r+3t
—2p+3qP+r_5 , where p,q,r,s,t € R.
2g+r+2t

By separating parameters, we obtain

0 1 -2 0 3
X = p -2 +q SUar| Ylas| E|4e|?

1 0 0 0 0|’

0 2 1 0 2

where p,q,r,s,t € R.



Solution. So, we simply ignore the part below the horizontal dotted
line, and we obtain:

q—2r+3t
—2p+3qP+r_5 , where p,q,r,s,t € R.
2g+r+2t

By separating parameters, we obtain

0 1 2 0 3
2 3 1 -1 0

X =Pl o T9 o | T o | TS o T o |
0 2 1 0 2

where p,q,r,s,t € R.

In view of Proposition 4.2.18, we now have that (next slide):



Solution.

AN — O

0
1
0
0

-2
1
0
1




Solution (continued). Reminder:

01 -2 0 3
23 1 -1 0

-1 _

f[V]_C°'(10000)
02 1 0 2




Solution (continued). Reminder:

01 -2 0 3
23 1 -1 0
—1 —
f[V]_C"'( 10 0 00)
02 1 0 2
=:B

We note that the five vectors that we obtained in the
second-to-last line above are not necessarily linearly independent,
and so to find an actual basis of f~1[V], we row reduce the matrix
B and use Theorem 3.3.4. Indeed, Theorem 3.3.4 guarantees that
the pivot columns of B form a basis of Col(B) = f~1[V].

@ In fact, we can immediately see that they are not linearly
independent: no five vectors in R* are linearly independent
(by Theorem 3.2.17(a)).

@ More generally, though, the reason our computation does not
necessarily yield linearly independent vectors is because we
“cut off” the entries below the vertical dotted line.



Solution (continued). Reminder:

01 -2 0 3
. B 23 1 -1 0
f[V]_CO'(loooo)

02 1 0 2




Solution (continued). Reminder:

FV] = CO|(

N O W
= O~ N
ok
N OO W
~——~

By row reducing, we obtain

RREF(B) = a3

17/5

o= OO

0
0 7/5
0
1

o O o
O O+~ O

Thus, the pivot columns of B are its leftmost four columns, and
those four columns form a basis of f~1[V].



Solution (continued). So, our final answer is that

ol | 1] | -2 0
(o] of] of)
0] | 2 1 0

is a basis of f71[V]. O



Proposition 4.2.18

Let IF be a field, let f : ™ — [F” be a linear function, let
A € F"™™ be the standard matrix of f, let v1,...,v, € F"
(k> 1), and set V := Span(vy,...,vk) Then

Fv] = {xewm|3yews.t.[Ajvl vk][x}—o}

= {xEIF’"|EIy€IE‘ks.t. [?]eNul([Avl V]

Proof.



Proposition 4.2.18

Let IF be a field, let f : ™ — [F” be a linear function, let
A € F"™™ be the standard matrix of f, let v1,...,v, € F"
(k> 1), and set V := Span(vy,...,vk) Then

Fv] = {xewm|3yews.t.[Ajvl vk][x}—o}

= {xEIF’"|EIy€IE‘ks.t. [?]eNul([Avl V]

Proof. SetA:[al am].



Proposition 4.2.18

Let IF be a field, let f : ™ — [F” be a linear function, let
A € F"™™ be the standard matrix of f, let v1,...,v, € F"
(k> 1), and set V := Span(vy,...,vk) Then

-1 _ m k ‘ I
Fv] = {erE" |FyeFrst [A v ... vk][y} 0}
= {xEIF’"|EIy€IE‘ks.t. [?]eNul([Avl V]
Proof. SetA:[al am].Then for all vectors
X = { X1 ... Xm } in ™, we have the following sequence of

equivalent statements (next slide):



Proof (continued).
x € f1[V]

= f(x) € Span(vy, ..., v)

| S S —

=V

()
= Ax € Span(vy,...,Vk)
— x1a1 + -+ + Xmam € Span(vy, ..., V)

=Ax
s,k
é:L Jag,...,ax €EF st xja; + -+ Xmam = @1V + - - + Vg
— dag,...,ax €EFst. xqa; + -+ xmam — a1vy — -+ — apVi = 0,

where (*) follows from the fact that A is the standard matrix of f,
and (**) follows from the definition of span.



Proof (continued).
x € f1[V]
previous
glide, Jdag,...,ax € Fst. xja;+ -+ Xpam —ayvy — - — Ve =0
(%)

Iy, €EF st xqar + -+ Xpam + Y1V + -+ v = 0

X1
| Xm
<~ Elyl,...,ykeIFs.t.[al S @m V1oL Vk] f};f =0
1
L Yk |
= JyeFist. [A v ... vk][;]zq

where (***) follows via substitution y; := —a; Vi € {1,..., k}.



Proof (continued).
x € f1[V]
preyious ‘ X
slide, HyEst.t.[A‘vl vk][y]:ﬂ
(k) X 7x7 ‘
Jy € F¥ sit. [y ] eNu([Alvi 0w ]),

where (*¥****) follows from the definition of the null space. The
result is now immediate. [



@ Linear functions and bases



@ Linear functions and bases

@ Reminder:

Theorem 1.10.5

Let IF be a field, and let a3, ...,a,, be any vectors in F”. Then
there exists a unique linear function f : F™ — " that satisfies
f(e;) =ay,....f(ey) = an,, where eyq,..., e, are the standard

basis vectors of F"”. Moreover, this linear function f is given by
f(x) = Ax for all x € F™, where A = [ ap ... apny ]




@ Linear functions and bases

@ Reminder:

Theorem 1.10.5

Let IF be a field, and let a3, ...,a,, be any vectors in F”. Then
there exists a unique linear function f : F™ — " that satisfies
f(e;) =ay,....f(ey) = an,, where eyq,..., e, are the standard
basis vectors of F"”. Moreover, this linear function f is given by
f(x) = Ax for all x € F™, where A = [ ap ... apg ]

@ Our next goal is to generalize Theorem 1.10.5 to linear
functions f : U — V/, where U and V are vector spaces over a
field IF, and U is finite-dimensional.

o Instead of using the standard basis £, = {e1,...,en}, we will
use an arbitrary basis of U.




@ Suppose that V is a non-trivial, finite-dimensional vector
space over a field F, and that B = {v1,...,v,} is a basis of V.



@ Suppose that V is a non-trivial, finite-dimensional vector
space over a field F, and that B = {v1,...,v,} is a basis of V.

@ By Theorem 3.2.7, every vector of V can be written as linear
combination of the vectors vi,...,v, in a unique way, that is,
Yv eV dlag,...,a, € Fs.t.

V = 1V1+ -+ QpVp,

and the coordinate vector of v with respect to the basis B is

defined to be
aq



@ Suppose that V is a non-trivial, finite-dimensional vector
space over a field F, and that B = {v1,...,v,} is a basis of V.

@ By Theorem 3.2.7, every vector of V can be written as linear
combination of the vectors vi,...,v, in a unique way, that is,
Yv eV dlag,...,a, € Fs.t.

V = 1V1+ -+ QpVp,

and the coordinate vector of v with respect to the basis B is

defined to be
aq

[v] =

Qn

@ As our next proposition shows, { . }B :V = F"is an
isomorphism.

o It essentially allows us to “translate” vectors of an
n-dimensional vector space (n # 0) into vectors in F".



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {v1,...,v,} is a basis of V. Then { : ]B V= F"
is an isomorphism.

Proof.



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {v1,...,v,} is a basis of V. Then { : ]B V= F"
is an isomorphism.

Proof. We start by proving that [ . }B is linear.

1. Fixx,y € V. WTs[x+y]B:[x}B+[y}B.



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {v1,...,v,} is a basis of V. Then { : ]B V= F"
is an isomorphism.

Proof. We start by proving that [ . }B is linear.
L Fixx,ye V. WTS | x+y }B: [ x }B+ K }B. Set

[x],=[er - anrand[y} =[5 ... 5,,]T

B



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {v1,...,v,} is a basis of V. Then { : ]B V= F"
is an isomorphism.

Proof. We start by proving that [ . }B is linear.
L Fixx,ye V. WTS | x+y }B: [ x }B+ K }B. Set

[X}B:{al an]Tand[y}B:[ﬁl 5,,}7-.
Then x =aivi + -+ apv, and y = S1vi + - - - + Bpvp;



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {v1,...,v,} is a basis of V. Then { : ]B V= F"
is an isomorphism.

Proof. We start by proving that [ . }B is linear.
L Fixx,ye V. WTS | x+y }B: [ x }B+ K }B. Set

[X}B:{al an]Tand[y}B:[ﬁl 5,,}7-.
Then x = vy + -+ apv, and y = S1vy + - - + Bpvi;
consequently,

xX+y = (a1+ﬁl)vl+"'+(an+/6n)vm



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {v1,...,v,} is a basis of V. Then { : ]B V= F"
is an isomorphism.

Proof. We start by proving that [ . }B is linear.
L Fixx,ye V. WTS | x+y }B: [ x }B+ K }B. Set

[X}B:{al an]Tand[y}B:[ﬁl 5,,}7-.
Then x = vy + -+ apv, and y = S1vy + - - + Bpvi;
consequently,

xX+y = (a1+ﬁl)vl+"'+(an+/6n)vm

and SO{X—FY}B:[OJl‘f‘Bl oo ap+ By }T



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {v1,...,v,} is a basis of V. Then { : ]B V= F"
is an isomorphism.

Proof. We start by proving that [ . }B is linear.
L Fixx,ye V. WTS | x+y }B: [ x }B+ K }B. Set

[X}B:{al an]Tand[y}B:[ﬁl 5,,}7-.
Then x = vy + -+ apv, and y = S1vy + - - + Bpvi;
consequently,

xX+y = (a1+ﬁl)vl+"'+(an+/6n)vm

T
and so [ x+y }B: [ a1 +pP1 ... ap+Bn } . We now have
that (next slide):



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { . ]B V="
is an isomorphism.

Proof (continued).
[ a1+ B
[ x+y ]B =
| an+ Bn
[ B1
L &n Bn




Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { . ]B V="

is an isomorphism.

Proof (continued). Similarly (details: Lecture Notes):

2. V¥xeV,acl: [ax}B:a{x]B



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { . ]B V="
is an isomorphism.

Proof (continued). Similarly (details: Lecture Notes):

2. V¥xeV,acl: [ax}B:a{x]B

So, [ . }B: V — F"is linear.



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { : ]B V"
is an isomorphism.

Proof (continued). It remains to show that [ . }B is a bijection,
i.e. that it is one-to-one and onto F".



Proposition 4.3.1
Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { : ]B V"

is an isomorphism.

Proof (continued). It remains to show that [ . }B is a bijection,

i.e. that it is one-to-one and onto [F".

Since V and F” are both n dimensional, Corollary 4.2.10
guarantees that f is one-to-one iff f is onto F”".



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { : ]B V"
is an isomorphism.

Proof (continued). It remains to show that [ . }B is a bijection,
i.e. that it is one-to-one and onto F".
Since V and F” are both n dimensional, Corollary 4.2.10

guarantees that f is one-to-one iff f is onto F”. So, it is enough to
show that f is onto F”".



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { : ]B V"
is an isomorphism.

Proof (continued). It remains to show that [ . }B is a bijection,

i.e. that it is one-to-one and onto [F".

Since V and F” are both n dimensional, Corollary 4.2.10
guarantees that f is one-to-one iff f is onto F”. So, it is enough to
show that f is onto F”".

Fix[al an]TEF”.



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { : ]B V"
is an isomorphism.

Proof (continued). It remains to show that [ . }B is a bijection,

i.e. that it is one-to-one and onto [F".

Since V and F” are both n dimensional, Corollary 4.2.10
guarantees that f is one-to-one iff f is onto F”. So, it is enough to
show that f is onto F”".

T
Fix[al an] € F". Set v:= qyvi + -+ + a,v,.



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { : ]B V"
is an isomorphism.

Proof (continued). It remains to show that [ . }B is a bijection,

i.e. that it is one-to-one and onto [F".

Since V and F” are both n dimensional, Corollary 4.2.10
guarantees that f is one-to-one iff f is onto F”. So, it is enough to
show that f is onto F”".

T
Fix[al an] e F". Set v:=aivi +---+ a,v,. Then

(v],=[ar o an]”



Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {vi,...,v,} is a basis of V. Then { : ]B V"
is an isomorphism.

Proof (continued). It remains to show that [ . }B is a bijection,
i.e. that it is one-to-one and onto F".

Since V and F” are both n dimensional, Corollary 4.2.10
guarantees that f is one-to-one iff f is onto F”. So, it is enough to
show that f is onto F”".

T
Fix[al an] e F". Set v:=aivi +---+ a,v,. Then

[ v }B: { a1 ... Qp }T. So, { . }B is onto F". This
completes the argument. [J



@ Reminder:

Theorem 1.10.5

Let IF be a field, and let ay,...,a, be any vectors in F". Then
there exists a unique linear function f : F™ — F” that satisfies
f(e1) =ai,...,f(em) = am, where ey, ..., ey are the standard

basis vectors of F. Moreover, this linear function f is given by
f(x) = Ax for all x € F™, where A = [ a; ... apy ]




@ Reminder:

Theorem 1.10.5

Let IF be a field, and let ay,...,a, be any vectors in F". Then
there exists a unique linear function f : F™ — F” that satisfies
f(e1) =ai,...,f(em) = am, where ey, ..., ey are the standard
basis vectors of F. Moreover, this linear function f is given by
f(x) = Ax for all x € F™, where A = [ a; ... apy ]

o Let's generalize this!




Theorem 4.3.2

Let U and V be vector spaces over a field IF, and assume that U is
finite-dimensional. Let B = {uy,...,u,} be a basis of U, and let
Vi,...,V, € V.7 Then there exists a unique linear function
f:U— Vst f(uy) =vy,...,f(u,) = v, Moreover, if the vector

space U is non-trivial (i.e. n # 0), then this unique linear function
f : U — V satisfies the following: for all u € U, we have that

flu) = agvi+ -+ apvp,

-
where [ u L’s = [ a1 ... Qp } . On the other hand, if U is
trivial (i.e. U = {0}),® then f : U — V is given by f(0) = 0.

“Here, v1, ..., v, are arbitrary vectors in V. They are not necessarily
pairwise distinct.
PNote that in this case, we have that n =0 and B = .




Proof.



Proof. Suppose first that the vector space U is trivial, i.e. n =0
and U = {0}.



Proof. Suppose first that the vector space U is trivial, i.e. n =0
and U = {0}. Then the function f : U — V given by f(0) =0 is
obviously linear,



Proof. Suppose first that the vector space U is trivial, i.e. n =0
and U = {0}. Then the function f : U — V given by f(0) =0 is
obviously linear, and moreover, it vacuously satisfies

f(uy) =vi,...,f(u,) = v, (because n =0, and so both
ui,...,u, and vq,...,v, are empty lists of vectors).



Proof. Suppose first that the vector space U is trivial, i.e. n =0
and U = {0}. Then the function f : U — V given by f(0) =0 is
obviously linear, and moreover, it vacuously satisfies

f(uy) =vi,...,f(u,) = v, (because n =0, and so both
ui,...,u, and vq,...,v, are empty lists of vectors). The
uniqueness of f follows from Proposition 4.1.6.



Proof. Suppose first that the vector space U is trivial, i.e. n =0
and U = {0}. Then the function f : U — V given by f(0) =0 is
obviously linear, and moreover, it vacuously satisfies

f(uy) =vi,...,f(u,) = v, (because n =0, and so both
ui,...,u, and vq,...,v, are empty lists of vectors). The
uniqueness of f follows from Proposition 4.1.6.

From now on, we assume that the vector space U is non-trivial, i.e.
that n # 0.



Proof. Suppose first that the vector space U is trivial, i.e. n =0
and U = {0}. Then the function f : U — V given by f(0) =0 is
obviously linear, and moreover, it vacuously satisfies

f(uy) =vi,...,f(u,) = v, (because n =0, and so both
ui,...,u, and vq,...,v, are empty lists of vectors). The
uniqueness of f follows from Proposition 4.1.6.

From now on, we assume that the vector space U is non-trivial, i.e.
that n # 0. We must prove the existence and the uniqueness of
the linear function f satisfying the required properties.



Proof (continued). Existence. Let f : U — V be defined as in the
statement of the theorem, i.e. for all u € U, we set

flu) = avi+--+ apvy,

Where[u}B:{al ... Qp }T.



Proof (continued). Existence. Let f : U — V be defined as in the
statement of the theorem, i.e. for all u € U, we set

flu) = avi+--+ apvy,
T -
where [ u }B = [ a1 ... Qp } . Note that this means that for
all a,...,a, € F, we have that

flajug + - +apuy) = avi+ -+ apv,.



Proof (continued). Existence. Let f : U — V be defined as in the
statement of the theorem, i.e. for all u € U, we set

flu) = avi+--+ apvy,
T
where [ u }B = [ a1 ... Qp } . Note that this means that for
all a,...,a, € F, we have that
flajug + - +apuy) = avi+ -+ apv,.

Let us show that f is linear and satisfies
f(u) =vi,...,f(uy) = v,.



Proof (continued). Existence. Let f : U — V be defined as in the
statement of the theorem, i.e. for all u € U, we set

f(u) = aivi+--+ apvp,
T
where [ u }B = [ a1 ... Qp } . Note that this means that for
all a,...,a, € F, we have that
flajug + - +apuy) = avi+ -+ apv,.

Let us show that f is linear and satisfies
f(u) = vi,...,f(u,) = v,. For the latter, we note that for all
i€{l,...,n}, we have that

f(uj)) = f(Ouy+---+0uj—1 + 1u; + Ouj1 + - - - + Ouy,)
= 0Ovi+---+0vi1+1vi+0vip1 + -+ 0vp

= Vj.

This proves that f(uy) =vy,...,f(u,) = v,.



Proof (continued). Let us now show that f is linear. We verify that
f satisfies the two axioms from the definition of a linear function.



Proof (continued). Let us now show that f is linear. We verify that
f satisfies the two axioms from the definition of a linear function.

1. Fixx,y € U. WTS f(x +y) = f(x) + f(y).



Proof (continued). Let us now show that f is linear. We verify that
f satisfies the two axioms from the definition of a linear function.

1. Fix x,y € U. WTS f(x+y) = f(x) + f(y). Set
[X}B:{al an}Tandy:[ﬁl B,,}T



Proof (continued). Let us now show that f is linear. We verify that
f satisfies the two axioms from the definition of a linear function.

1. Fix x,y € U. WTS f(x+y) = f(x) + f(y). Set
[X}B:{al an}Tandy:[ﬁl B,,}T.Wethen

havethat[x%—y}B: [ a1+ P1 ... an+ B }T,



Proof (continued). Let us now show that f is linear. We verify that
f satisfies the two axioms from the definition of a linear function.

1. Fix x,y € U. WTS f(x+y) = f(x) + f(y). Set

[X}B:{al an}Tandy:[ﬁl B,,}T.Wethen
havethat[x+y}8:{a1+ﬁl an—l—ﬁn}T,andwesee
that

f(x+y) © (a1 + B1)vi+ -+ (an + Bn)Vn

= (alvl +--+ anvn) + (ﬁlvl + -+ ﬁnvn)
(%)

where both (*) and (**) follow from the construction of f.



Proof (continued). 2. Fixu € U and o € F. WTS f(au) = af(u).



Proof (continued). 2. Fixu € U and o € F. WTS f(au) = af(u).
T
Set[u}B:[al oz,,} .



Proof (continued). 2. Fixu € U and o € F. WTS f(au) = af(u).
T
Set[u}B:[al oz,,} . Then

[ou] =[oar ... aay ],



Proof (continued). 2. Fixu € U and o € F. WTS f(au) = af(u).
T
Set[u}B:[al oz,,} . Then

[au}gz{aal aan}T, and we see that
f(au) “ (op)vy + - + (n)vp
= afoqvi+ -+ apvp)
= af(u),

where both (*) and (**) follow from the construction of f.



Proof (continued). 2. Fixu € U and o € F. WTS f(au) = af(u).
T
Set[u}B:[al oz,,} . Then

T
[au}gz{aal aan} , and we see that
f(au) © (aag)vy + -+ + (can)vy
= afavi+ -+ apvp)

= af(u)

where both (*) and (**) follow from the construction of f.

By 1. and 2., we see that f is linear. This completes the proof of
existence.



Proof (continued). Uniqueness. Let fi,f, : U — V be linear
functions that satisfy f1(uy) = vi,...,fi(u,) = v, and

fg(ul) = Vi,..., f2(u,,) = Vj. WTS fl = f2



Proof (continued). Uniqueness. Let fi,f, : U — V be linear
functions that satisfy f1(uy) = vi,...,fi(u,) = v, and

f(uy) =vi,...,H(u,) =v,. WTS fi = . Fixue U. WTS
fl(u) = fz(u).



Proof (continued). Uniqueness. Let fi,f, : U — V be linear
functions that satisfy f1(uy) = vi,...,fi(u,) = v, and

f(uy) =vi,...,H(u,) =v,. WTS fi = . Fixue U. WTS
T
fi(u) = fr(u). Set { u ]B: { a1 ... Qp } .



Proof (continued). Uniqueness. Let fi,f, : U — V be linear

functions that satisfy f1(uy) = vi,...,fi(u,) = v, and
f(uy) =vi,...,H(u,) =v,. WTS fi = . Fixue U. WTS
T
fi(u) = fr(u). Set { u ]B: { a1 ... Qp } . Then
filu) = Alaur + -+ asup)
by the linearity of f
= aifi(ur) + -+ a,fi(u,) (and more precisely,
_by Proposition 4.1.5)
Vit ay because
- r Au) = v, Aup) = v
because
T BBl ) = ) v
by the linearity of £,
= fHaug + -+ ayuy) (and more precisely,

by Proposition 4.1.5)
= f(u).

Thus, f; = f,. This proves uniqueness. [



Theorem 4.3.2

Let U and V be vector spaces over a field IF, and assume that U is
finite-dimensional. Let B = {uy,...,u,} be a basis of U, and let
Vi,...,V, € V.7 Then there exists a unique linear function
f:U— Vst f(uy) =vy,...,f(u,) = v, Moreover, if the vector

space U is non-trivial (i.e. n # 0), then this unique linear function
f : U — V satisfies the following: for all u € U, we have that

flu) = agvi+ -+ apvp,

-
where [ u L’s = [ a1 ... Qp } . On the other hand, if U is
trivial (i.e. U = {0}),® then f : U — V is given by f(0) = 0.

“Here, v1, ..., v, are arbitrary vectors in V. They are not necessarily
pairwise distinct.
PNote that in this case, we have that n =0 and B = .




Corollary 4.3.3

Let U and V be vector spaces over a field F, and assume that U is

finite-dimensional. Let {uj,...,ux} be a linearly independent set
of vectors in U, and let vi,...,vix € V.7 Then there exists a linear
function f : U — V s.t. f(u1) = v, ..., f(ux) = vk. Moreover, if
V is non-trivial, then this linear function f is unique iff
{u1,...,ux} is a basis of U.

“Here, v, ..., vk are arbitrary vectors in V. They are not necessarily

pairwise distinct.

e Remark: If V is trivial (i.e. V = {0}, and consequently
vi = --- = v, = 0), then there exists exactly one function
from U to V, this function maps all elements of U to 0, and
obviously, it is linear.



Corollary 4.3.3

Let U and V be vector spaces over a field F, and assume that U is

finite-dimensional. Let {uj,...,ux} be a linearly independent set
of vectors in U, and let vi,...,vx € V.? Then there exists a linear
function f : U — V s.t. f(ur) = vi,..., f(ux) = vk. Moreover, if
V is non-trivial, then this linear function f is unique iff
{uy,...,ux} is a basis of U.

“Here, v1, ..., vk are arbitrary vectors in V. They are not necessarily

pairwise distinct.

Proof (outline).



Corollary 4.3.3

Let U and V be vector spaces over a field F, and assume that U is

finite-dimensional. Let {uj,...,ux} be a linearly independent set
of vectors in U, and let vi,...,vx € V.? Then there exists a linear
function f : U — V s.t. f(ur) = vi,..., f(ux) = vk. Moreover, if
V is non-trivial, then this linear function f is unique iff
{uy,...,ux} is a basis of U.

“Here, v1, ..., vk are arbitrary vectors in V. They are not necessarily

pairwise distinct.

Proof (outline). Using Theorem 3.2.19, we extend {uy,...,ux} to
a basis of U, and then we apply Theorem 4.3.2. The details are
left as an exercise. [
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@ Recall that, for vector spaces U and V over a field F, a
function f : U — V is an isomorphism if it is linear and a
bijection.



© Isomorphisms

@ Recall that, for vector spaces U and V over a field F, a
function f : U — V is an isomorphism if it is linear and a
bijection.

@ Vector spaces U and V (over the same field F) are
isomorphic, and we write U = V/, if there exits an
isomorphism f : U — V.



Proposition 4.4.1

Let U and V be vector spaces over a field F, and let f : U — V be
an isomorphism. Then f~1: V — U is also an isomorphism.

Proof. The same as for isomorphisms f : F” — F” (details:
Lecture Notes). O



Proposition 4.4.2

Let U, V, and W be vector spaces over a field F, and let
f:U— Vand g: V — W be isomorphisms. Then
gof:U— W is an isomorphism.

gof
.
U 14 1%

Proof.



Proposition 4.4.2

Let U, V, and W be vector spaces over a field F, and let
f:U— Vand g: V — W be isomorphisms. Then
gof:U— W is an isomorphism.

gof
TN
U Vv W

Proof. Since f : U — V and g : V — W are linear functions
(because they are isomorphisms), Proposition 4.1.7 guarantees
that their composition go f : U — W is also linear.



Proposition 4.4.2

Let U, V, and W be vector spaces over a field F, and let
f:U— Vand g: V — W be isomorphisms. Then
gof:U— W is an isomorphism.

gof
TN
U Vv W

Proof. Since f : U — V and g : V — W are linear functions
(because they are isomorphisms), Proposition 4.1.7 guarantees
that their composition go f : U — W is also linear.

Since f : U — V and g : V — W are bijections,
Proposition 1.10.17 guarantees that go f : U — W is also a
bijection.



Proposition 4.4.2

Let U, V, and W be vector spaces over a field F, and let
f:U— Vand g: V — W be isomorphisms. Then
gof:U— W is an isomorphism.

gof
TN
U Vv W

Proof. Since f : U — V and g : V — W are linear functions
(because they are isomorphisms), Proposition 4.1.7 guarantees
that their composition go f : U — W is also linear.

Since f : U — V and g : V — W are bijections,
Proposition 1.10.17 guarantees that go f : U — W is also a
bijection.

So, gof: U — W is linear and a bijection, i.e. it is an
isomorphism. [



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof.



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof. (a) Clearly, Idy : U — U (the identity function on U) is an
isomorphism. So, U = U.



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof. (a) Clearly, Idy : U — U (the identity function on U) is an
isomorphism. So, U = U.

(b) Suppose that U = V.



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof. (a) Clearly, Idy : U — U (the identity function on U) is an
isomorphism. So, U = U.

(b) Suppose that U = V. Then there exists an isomorphism
f:Uu—V.



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof. (a) Clearly, Idy : U — U (the identity function on U) is an
isomorphism. So, U = U.

(b) Suppose that U = V. Then there exists an isomorphism
f: U — V. But then by Proposition 4.4.2, f~1:V — U is also an
isomorphism.



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof. (a) Clearly, Idy : U — U (the identity function on U) is an
isomorphism. So, U = U.

(b) Suppose that U = V. Then there exists an isomorphism
f: U — V. But then by Proposition 4.4.2, f~1:V — U is also an
isomorphism. So, V = U.



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof. (a) Clearly, Idy : U — U (the identity function on U) is an
isomorphism. So, U = U.

(b) Suppose that U = V. Then there exists an isomorphism
f: U — V. But then by Proposition 4.4.2, f~1:V — U is also an
isomorphism. So, V = U.

(c) Suppose that U= V and V = W.



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof. (a) Clearly, Idy : U — U (the identity function on U) is an
isomorphism. So, U = U.

(b) Suppose that U = V. Then there exists an isomorphism
f: U — V. But then by Proposition 4.4.2, f~1:V — U is also an
isomorphism. So, V = U.

(c) Suppose that U = V and V = W. Then there exist
isomorphisms f : U — Vand g: V — W.



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof. (a) Clearly, Idy : U — U (the identity function on U) is an
isomorphism. So, U = U.

(b) Suppose that U = V. Then there exists an isomorphism
f: U — V. But then by Proposition 4.4.2, f~1:V — U is also an
isomorphism. So, V = U.

(c) Suppose that U = V and V = W. Then there exist
isomorphisms f : U — V and g : V — W. But then by
Proposition 4.4.2, gof : U — W is an isomorphism.



Theorem 4.4.3

Let U, V, and W be vector spaces over a field F. Then all the
following hold:

Q@ u=y,
@ fU=V, then V= U;
@ fU=ZVand V=W, then U= W.

Proof. (a) Clearly, Idy : U — U (the identity function on U) is an
isomorphism. So, U = U.

(b) Suppose that U = V. Then there exists an isomorphism
f: U — V. But then by Proposition 4.4.2, f~1:V — U is also an
isomorphism. So, V = U.

(c) Suppose that U = V and V = W. Then there exist
isomorphisms f : U — V and g : V — W. But then by

Proposition 4.4.2, gof : U — W is an isomorphism. So,
u=zw.Od



@ Reminder: Theorem 4.2.13 (schematically and informally):

IR %
if f is 1-1
(a)-(b) uip,...,u; are = f(ay),..., f(ug) are
linearly independent |<: linearly independent
always

if f is onto
— X
(c)-(d) uy,...,uy span U flu), ..., f(ug) span V
if fis 1-1



@ Reminder: Theorem 4.2.13 (schematically and informally):

linear

U —V
if f is 1-1
(a)-(b) uip,...,u; are = f(ay),..., f(ug) are
linearly independent |<: linearly independent
alway
if f is onto
=
(c)-(d) uy,...,uy span U — flu), ..., f(ug) span V
if f s 1-1

Theorem 4.4.4

Let U and V be vector spaces over a field F, let f : U — V be an

isomorphism, and let uy,...,u, € U. Then all the following hold:

@ vectors ujy, ..., u, are linearly independent in U iff vectors
f(u1),...,f(ug) are linearly independent in V;

@ vectors uy,...,u, span U iff vectors f(uy),..., f(uk) span V;

@ {u1,...,ux}is a basis of U iff {f(u1),...,f(ux)} is a basis of
V.

Proof. This follows from Theorem 4.2.13 (details: Lecture Notes).




Theorem 4.4.4

Let U and V be vector spaces over a field IF, let f : U — V be an
isomorphism, and let uy,...,ux € U. Then all the following hold:

@ vectors ujy, ..., u, are linearly independent in U iff vectors
f(u1),..., f(ug) are linearly independent in V;

@ vectors uy, ..., u, span U iff vectors f(uy),..., f(uk) span V;
@ {uy,...,ux}is a basis of U iff {f(u1),...,f(ux)} is a basis of
V.

@ Proposition 4.4.5 (next slide) is a converse of sorts of
Theorem 4.4.4(c).

o It essentially states that any linear function that (injectively)
maps a basis onto a basis is an isomorphism.




Proposition 4.4.5

Let U and V be finite-dimensional vector spaces over a field FF.
Assume that dim(U) = dim(V) =: n. Let {uy,...,u,} be a basis

for U, and let {v1,...,vp} be a basis for V. Then there exists a
unique linear function f : U — V s.t. f(u1) =vi1,...,f(u,) = v,.
Moreover, this linear function f is an isomorphism.
f
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Proof.



Proposition 4.4.5

Let U and V be finite-dimensional vector spaces over a field FF.
Assume that dim(U) = dim(V) =: n. Let {uy,...,u,} be a basis

for U, and let {v1,...,vp} be a basis for V. Then there exists a
unique linear function f : U — V s.t. f(u1) =vi1,...,f(u,) = v,.
Moreover, this linear function f is an isomorphism.
f

w, A NV

LU S N

LN N N

WA W

U 1%

Proof. The existence and uniqueness of the linear function f
follows from Theorem 4.3.2.



Proposition 4.4.5

Let U and V be finite-dimensional vector spaces over a field FF.
Assume that dim(U) = dim(V) =: n. Let {uy,...,u,} be a basis

for U, and let {v1,...,vp} be a basis for V. Then there exists a
unique linear function f : U — V s.t. f(u1) =vi1,...,f(u,) = v,.
Moreover, this linear function f is an isomorphism.
f

LU S

LU S N

L RIS

WA W

U 1%

Proof. The existence and uniqueness of the linear function f
follows from Theorem 4.3.2. But by hypothesis, U and V are
finite-dimensional vector spaces satisfying dim(U) = dim(V/), and
so by Corollary 4.2.10, it is enough to show that f is onto.




Proof (continued). Fix v € V.

J
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Proof (continued). Fix v € V. Since {vi,..

we know that there exist scalars agq, ..

V=oQiV]+ -+ apVp.

*

.,Vpn} is a basis for V,
ap € F st



&
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Proof (continued). Fix v € V. Since {vi,...,v,} is a basis for V,
we know that there exist scalars a1,...,a, € F s.t.
V= ooiVy + -+ apv,. But now
flagup + -+ aptn) 2 arf(u) + -+ anf(un)
= QqVi+ -+ QpVp

= V’

where (*) follows from the linearity of f (and more precisely, from
Proposition 4.1.5). So, f is onto, and we are done. [J



Proposition 4.4.5

Let U and V be finite-dimensional vector spaces over a field F.
Assume that dim(U) = dim(V) =: n. Let {uy,...,u,} be a basis

for U, and let {v1,...,vp} be a basis for V. Then there exists a
unique linear function f : U — V s.t. f(u1) = v1,...,f(uy) = v,.
Moreover, this linear function f is an isomorphism.
!

w, A sV

woA NV
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@ Reminder:

Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);
@ if f is onto, then dim(U) > dim(V);
@ if f is an isomorphism, then dim(U) = dim(V).




@ Reminder:

Theorem 4.2.14

Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);
@ if f is onto, then dim(U) > dim(V);
@ if f is an isomorphism, then dim(U) = dim(V).

@ By Theorem 4.2.14(c), any two isomorphic vector spaces have
the same dimension.



@ Reminder:

Theorem 4.2.14
Let U and V be vector spaces over a field F, and let f : U — V be
a linear function. Then all the following hold:

@ if f is one-to-one, then dim(U) < dim(V);
@ if f is onto, then dim(U) > dim(V);
@ if f is an isomorphism, then dim(U) = dim(V).

@ By Theorem 4.2.14(c), any two isomorphic vector spaces have
the same dimension.

@ Theorem 4.4.6 (next slide) guarantees that, in the case of
finite-dimensional vector spaces, the converse is also true:
any two vector spaces (over the same field) that have the
same finite dimension are isomorphic.

o We give two proofs of Theorem 4.4.6!




Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

@ Warning: This theorem is only true for finite-dimensional
vector spaces, and it becomes false for infinite-dimensional
ones.



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#1.



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#1. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V).



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#1. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V).

Suppose, conversely, that dim(U) = dim(V) =: n.



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#1. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V).

Suppose, conversely, that dim(U) = dim(V) =: n. Fix any basis
B = {by,...,by} of U and any basis C = {ci1,...,c,} of V.



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#1. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V).

Suppose, conversely, that dim(U) = dim(V) =: n. Fix any basis

B = {by,...,by} of U and any basis C = {ci1,...,c,} of V. By
Proposition 4.3.1, [ . }B U — F" and { . ]C V. — F" are both
isomorphisms,



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#1. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V).

Suppose, conversely, that dim(U) = dim(V) =: n. Fix any basis

B = {by,...,by} of U and any basis C = {ci1,...,c,} of V. By
Proposition 4.3.1, [ . }B U — F" and { . ]C V. — F" are both
isomorphisms, and consequently, U = F" and V = F".



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#1. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V).

Suppose, conversely, that dim(U) = dim(V) =: n. Fix any basis
B = {by,...,by} of U and any basis C = {ci1,...,c,} of V. By
Proposition 4.3.1, [ . }B U — F" and { . ]C V. — F" are both

isomorphisms, and consequently, U = F" and V = F". But now
Theorem 4.4.3 guarantees that U = V. [



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#2.



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#2. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V).



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#2. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V). Suppose, conversely, that
dim(U) = dim(V) =: n.



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#2. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V). Suppose, conversely, that
dim(U) = dim(V) =: n. Fix a basis B = {by,...,b,} of U and a
basis C = {c1,...,¢cp} of V.



Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#2. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V). Suppose, conversely, that
dim(U) = dim(V) =: n. Fix a basis B = {by,...,b,} of U and a
basis C = {c1,...,¢cp} of V. Then by Proposition 4.4.5, there
exists a unique linear function f : U — V s.t.

f(b1) =c1,...,f(b,) = cp,, and moreover, this linear function f is
an isomorphism.
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Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V).

Proof#2. If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V). Suppose, conversely, that
dim(U) = dim(V) =: n. Fix a basis B = {by,...,b,} of U and a
basis C = {c1,...,¢cp} of V. Then by Proposition 4.4.5, there
exists a unique linear function f : U — V s.t.

f(b1) =c1,...,f(b,) = cp,, and moreover, this linear function f is
an isomorphism.

™ c3
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QU‘U‘U‘

So, U and V are isomorphic. [J



Proposition 4.4.7

Let U and V be a vector spaces over a field F, and let f : U — V

be an isomorphism, and let U’ C U. Then U’ is a subspace of U iff

V' := f[U'] is a subspace of V. Moreover, in this case, all the

following hold:

@ the function f': U’ — V'’ given by f'(u) = f(u) for all u € U’
is an isormophism;

@ U=V,

@ dim(U') = dim(V").

Proof. Lecture Notes. [J




