Linear Algebra 1

Lecture \#11

Linear functions (part II)

Irena Penev

December 20-21, 2023

- This lecture has four parts:
- This lecture has four parts:
(1) The effect of a linear function on linearly independent and spanning sets
- This lecture has four parts:
(1) The effect of a linear function on linearly independent and spanning sets
(2) Computing bases of the images and preimages of subspaces under linear functions
- This lecture has four parts:
(1) The effect of a linear function on linearly independent and spanning sets
(2) Computing bases of the images and preimages of subspaces under linear functions
(3) Linear functions and bases
- This lecture has four parts:
(1) The effect of a linear function on linearly independent and spanning sets
(2) Computing bases of the images and preimages of subspaces under linear functions
(3) Linear functions and bases
(9) Isomorphisms
(1) The effect of a linear function on linearly independent and spanning sets
(1) The effect of a linear function on linearly independent and spanning sets

Theorem 4.2.11

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$, and set $U^{\prime}:=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. Then all the following hold:
(0) U^{\prime} is a subspace of U, and $f\left[U^{\prime}\right]$ is a subspace of V;
(b) $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]=\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)$, i.e. vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ span $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]$;
(0) $\operatorname{dim}\left(f\left[U^{\prime}\right]\right) \leq \operatorname{dim}\left(U^{\prime}\right) \leq k$.

Theorem 4.2.11

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$, and set $U^{\prime}:=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. Then all the following hold:
(2) U^{\prime} is a subspace of U, and $f\left[U^{\prime}\right]$ is a subspace of V;

Proof of (a).

Theorem 4.2.11

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$, and set $U^{\prime}:=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. Then all the following hold:
(0) U^{\prime} is a subspace of U, and $f\left[U^{\prime}\right]$ is a subspace of V;

Proof of (a). The fact that U^{\prime} is a subspace of U follows immediately from Theorem 3.1.11, and the fact that $f\left[U^{\prime}\right]$ is a subspace of V follows from 4.2.3(a). This proves (a).

Theorem 4.2.11

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$, and set $U^{\prime}:=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. Then all the following hold:
(b) $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]=\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)$, i.e. vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ span $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]$;

Proof of (b).

Theorem 4.2.11

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$, and set $U^{\prime}:=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. Then all the following hold:
(b) $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]=\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)$, i.e. vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ span $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]$;

Proof of (b).

$$
\begin{aligned}
\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right) & =\left\{\alpha_{1} f\left(\mathbf{u}_{1}\right)+\cdots+\alpha_{k} f\left(\mathbf{u}_{k}\right) \mid \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{F}\right\} \\
& \stackrel{(*)}{=}\left\{f\left(\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}\right) \mid \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{F}\right\} \\
& \stackrel{(* *)}{=}\left\{f(\mathbf{u}) \mid \mathbf{u} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right\} \\
& =f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]=f\left[U^{\prime}\right],
\end{aligned}
$$

where $\left(^{*}\right)$ follows from the linearity of the f (and more precisely, from Prop. 4.1.5), and $\left({ }^{* *}\right)$ follows from the definition of span.

Theorem 4.2.11

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$, and set $U^{\prime}:=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. Then all the following hold:
(2) U^{\prime} is a subspace of U, and $f\left[U^{\prime}\right]$ is a subspace of V;
(D) $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]=\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)$, i.e. vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ span $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]$;
(c) $\operatorname{dim}\left(f\left[U^{\prime}\right]\right) \leq \operatorname{dim}\left(U^{\prime}\right) \leq k$.

Proof of (c).

Theorem 4.2.11

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$, and set $U^{\prime}:=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. Then all the following hold:
(0) U^{\prime} is a subspace of U, and $f\left[U^{\prime}\right]$ is a subspace of V;
(b) $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]=\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)$, i.e. vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ span $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]$;
(0) $\operatorname{dim}\left(f\left[U^{\prime}\right]\right) \leq \operatorname{dim}\left(U^{\prime}\right) \leq k$.

Proof of (c). By hypothesis, $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a spanning set of U^{\prime}.

Theorem 4.2.11

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$, and set $U^{\prime}:=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. Then all the following hold:
(0) U^{\prime} is a subspace of U, and $f\left[U^{\prime}\right]$ is a subspace of V;
(b) $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]=\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)$, i.e. vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ span $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]$;
(0) $\operatorname{dim}\left(f\left[U^{\prime}\right]\right) \leq \operatorname{dim}\left(U^{\prime}\right) \leq k$.

Proof of (c). By hypothesis, $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a spanning set of U^{\prime}. So, by Theorem 3.2.14, some subset of that spanning set, say $\left\{\mathbf{u}_{i_{1}}, \ldots, \mathbf{u}_{i_{m}}\right\}$ (with $1 \leq i_{1}<\cdots<i_{m} \leq k$) is a basis of U^{\prime}.

Theorem 4.2.11

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$, and set $U^{\prime}:=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. Then all the following hold:
(0) U^{\prime} is a subspace of U, and $f\left[U^{\prime}\right]$ is a subspace of V;
(b) $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]=\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)$, i.e. vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ span $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]$;
(c) $\operatorname{dim}\left(f\left[U^{\prime}\right]\right) \leq \operatorname{dim}\left(U^{\prime}\right) \leq k$.

Proof of (c). By hypothesis, $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a spanning set of U^{\prime}. So, by Theorem 3.2.14, some subset of that spanning set, say $\left\{\mathbf{u}_{i_{1}}, \ldots, \mathbf{u}_{i_{m}}\right\}$ (with $1 \leq i_{1}<\cdots<i_{m} \leq k$) is a basis of U^{\prime}. So, $\operatorname{dim}\left(U^{\prime}\right)=m \leq k$.

Theorem 4.2.11

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$, and set $U^{\prime}:=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. Then all the following hold:
(0) U^{\prime} is a subspace of U, and $f\left[U^{\prime}\right]$ is a subspace of V;
(D) $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]=\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)$, i.e. vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ span $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]$;
(c) $\operatorname{dim}\left(f\left[U^{\prime}\right]\right) \leq \operatorname{dim}\left(U^{\prime}\right) \leq k$.

Proof of (c). By hypothesis, $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a spanning set of U^{\prime}. So, by Theorem 3.2.14, some subset of that spanning set, say $\left\{\mathbf{u}_{i_{1}}, \ldots, \mathbf{u}_{i_{m}}\right\}$ (with $1 \leq i_{1}<\cdots<i_{m} \leq k$) is a basis of U^{\prime}. So, $\operatorname{dim}\left(U^{\prime}\right)=m \leq k$. But now $\left\{\mathbf{u}_{i_{1}}, \ldots, \mathbf{u}_{i_{m}}\right\}$ is a spanning set of U^{\prime}.

Theorem 4.2.11

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$, and set $U^{\prime}:=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. Then all the following hold:
(0) U^{\prime} is a subspace of U, and $f\left[U^{\prime}\right]$ is a subspace of V;
(D) $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]=\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)$, i.e. vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ span $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]$;
(c) $\operatorname{dim}\left(f\left[U^{\prime}\right]\right) \leq \operatorname{dim}\left(U^{\prime}\right) \leq k$.

Proof of (c). By hypothesis, $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a spanning set of U^{\prime}. So, by Theorem 3.2.14, some subset of that spanning set, say $\left\{\mathbf{u}_{i_{1}}, \ldots, \mathbf{u}_{i_{m}}\right\}$ (with $1 \leq i_{1}<\cdots<i_{m} \leq k$) is a basis of U^{\prime}. So, $\operatorname{dim}\left(U^{\prime}\right)=m \leq k$. But now $\left\{\mathbf{u}_{i_{1}}, \ldots, \mathbf{u}_{i_{m}}\right\}$ is a spanning set of U^{\prime}. So, by part (b) applied to the set $\left\{\mathbf{u}_{i_{1}}, \ldots, \mathbf{u}_{i_{m}}\right\}$, we get that $\left\{f\left(\mathbf{u}_{i_{1}}\right), \ldots, f\left(\mathbf{u}_{i_{m}}\right)\right\}$ is a spanning set of $f\left[U^{\prime}\right]$.

Theorem 4.2.11

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$, and set $U^{\prime}:=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. Then all the following hold:
(0) U^{\prime} is a subspace of U, and $f\left[U^{\prime}\right]$ is a subspace of V;
(D) $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]=\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)$, i.e. vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ span $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]$;
(c) $\operatorname{dim}\left(f\left[U^{\prime}\right]\right) \leq \operatorname{dim}\left(U^{\prime}\right) \leq k$.

Proof of (c). By hypothesis, $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a spanning set of U^{\prime}. So, by Theorem 3.2.14, some subset of that spanning set, say $\left\{\mathbf{u}_{i_{1}}, \ldots, \mathbf{u}_{i_{m}}\right\}$ (with $1 \leq i_{1}<\cdots<i_{m} \leq k$) is a basis of U^{\prime}. So, $\operatorname{dim}\left(U^{\prime}\right)=m \leq k$. But now $\left\{\mathbf{u}_{i_{1}}, \ldots, \mathbf{u}_{i_{m}}\right\}$ is a spanning set of U^{\prime}. So, by part (b) applied to the set $\left\{\mathbf{u}_{i_{1}}, \ldots, \mathbf{u}_{i_{m}}\right\}$, we get that $\left\{f\left(\mathbf{u}_{i_{1}}\right), \ldots, f\left(\mathbf{u}_{i_{m}}\right)\right\}$ is a spanning set of $f\left[U^{\prime}\right]$. We now apply Theorem 3.2.14 again, and we deduce that some subset of $\left\{f\left(\mathbf{u}_{i_{1}}\right), \ldots, f\left(\mathbf{u}_{i_{m}}\right)\right\}$ is a basis of $f\left[U^{\prime}\right]$,

Theorem 4.2.11

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$, and set $U^{\prime}:=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. Then all the following hold:
(0) U^{\prime} is a subspace of U, and $f\left[U^{\prime}\right]$ is a subspace of V;
(D) $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]=\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)$, i.e. vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ span $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]$;
(c) $\operatorname{dim}\left(f\left[U^{\prime}\right]\right) \leq \operatorname{dim}\left(U^{\prime}\right) \leq k$.

Proof of (c). By hypothesis, $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a spanning set of U^{\prime}. So, by Theorem 3.2.14, some subset of that spanning set, say $\left\{\mathbf{u}_{i_{1}}, \ldots, \mathbf{u}_{i_{m}}\right\}$ (with $1 \leq i_{1}<\cdots<i_{m} \leq k$) is a basis of U^{\prime}. So, $\operatorname{dim}\left(U^{\prime}\right)=m \leq k$. But now $\left\{\mathbf{u}_{i_{1}}, \ldots, \mathbf{u}_{i_{m}}\right\}$ is a spanning set of U^{\prime}. So, by part (b) applied to the set $\left\{\mathbf{u}_{i_{1}}, \ldots, \mathbf{u}_{i_{m}}\right\}$, we get that $\left\{f\left(\mathbf{u}_{i_{1}}\right), \ldots, f\left(\mathbf{u}_{i_{m}}\right)\right\}$ is a spanning set of $f\left[U^{\prime}\right]$. We now apply Theorem 3.2.14 again, and we deduce that some subset of $\left\{f\left(\mathbf{u}_{i_{1}}\right), \ldots, f\left(\mathbf{u}_{i_{m}}\right)\right\}$ is a basis of $f\left[U^{\prime}\right]$, and so $\operatorname{dim}\left(f\left[U^{\prime}\right]\right) \leq m$. \square

Theorem 4.2.11

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$, and set $U^{\prime}:=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. Then all the following hold:
(2) U^{\prime} is a subspace of U, and $f\left[U^{\prime}\right]$ is a subspace of V;
(b) $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]=\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)$, i.e. vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ span $f\left[U^{\prime}\right]=f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right]$;
(c) $\operatorname{dim}\left(f\left[U^{\prime}\right]\right) \leq \operatorname{dim}\left(U^{\prime}\right) \leq k$.

Corollary 4.2.12

Let U and V be vector spaces over a field \mathbb{F}, let $f: U \rightarrow V$ be a linear function, and let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be a spanning set of U. Then $\operatorname{Im}(f)=\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)$ and
$\operatorname{rank}(f)=\operatorname{dim}\left(\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)\right) \leq k$.
Proof.

Corollary 4.2.12

Let U and V be vector spaces over a field \mathbb{F}, let $f: U \rightarrow V$ be a linear function, and let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be a spanning set of U. Then $\operatorname{Im}(f)=\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)$ and
$\operatorname{rank}(f)=\operatorname{dim}\left(\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)\right) \leq k$.
Proof. By hypothesis, $U=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$.

Corollary 4.2.12

Let U and V be vector spaces over a field \mathbb{F}, let $f: U \rightarrow V$ be a linear function, and let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be a spanning set of U. Then $\operatorname{Im}(f)=\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)$ and
$\operatorname{rank}(f)=\operatorname{dim}\left(\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)\right) \leq k$.
Proof. By hypothesis, $U=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. So, by
Theorem 4.2.11(b), we have that $\operatorname{Im}(f)=f[U]=\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)$,

Corollary 4.2.12

Let U and V be vector spaces over a field \mathbb{F}, let $f: U \rightarrow V$ be a linear function, and let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be a spanning set of U. Then $\operatorname{Im}(f)=\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)$ and
$\operatorname{rank}(f)=\operatorname{dim}\left(\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)\right) \leq k$.
Proof. By hypothesis, $U=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. So, by
Theorem 4.2.11(b), we have that $\operatorname{Im}(f)=f[U]=\operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right)$, and by
Theorem 4.2.11(c), we have that $\operatorname{rank}(f)=\operatorname{dim}(\operatorname{lm}(f))=\operatorname{dim}(f[U]) \leq k . \square$

Theorem 4.2.13

Let U and V be vector spaces over a field \mathbb{F}, let $f: U \rightarrow V$ be a linear function, and let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$. Then all the following hold:
(a) if f is one-to-one and vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ are linearly independent in U, then vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ are linearly independent in V;
(0) if vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ are linearly independent in V, then vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ are linearly independent in U;
(c) if f is onto and vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ span U, then vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ span V;
(0) if f is one-to-one and vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ span V, then vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ span U.

- Proof: Lecture Notes.
- Informal summary: next slide.
- Theorem 4.2.13 (schematically and informally):

$$
\begin{aligned}
f: U & \stackrel{\text { linear }}{\longrightarrow} V \\
& \\
\begin{array}{ll}
\text { if } f \text { is } 1-1 & f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right) \text { are } \\
\text { always }
\end{array} & \begin{array}{l}
\text { linearly independent }
\end{array} \\
\text { if } f \text { is onto } & \\
& \\
\text { if } f\left(\mathbf{f}_{\text {is } 1-1}^{\Longrightarrow}\right. & f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right) \text { span } V
\end{aligned}
$$

- Dimension considerations:

- As we know, for any function $f: A \rightarrow B$, where A and B are finite sets, the following hold:
- if f is one-to-one, then $|A| \leq|B|$;
- if f is onto, then $|A| \geq|B|$;
- if f is a bijection, then $|A|=|B|$.
(Actually, the above is true even if we allow A and B to be infinite, but to make sense of the statement, we would need infinite cardinals. We omit the details.)
- Dimension considerations:

- As we know, for any function $f: A \rightarrow B$, where A and B are finite sets, the following hold:
- if f is one-to-one, then $|A| \leq|B|$;
- if f is onto, then $|A| \geq|B|$;
- if f is a bijection, then $|A|=|B|$.
(Actually, the above is true even if we allow A and B to be infinite, but to make sense of the statement, we would need infinite cardinals. We omit the details.)
- In the case of linear functions, Theorem 4.2.14 (next slide) gives us a very similar statement, only involving dimension (rather than cardinality) of the domain and codomain.

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Then all the following hold:
(2) if f is one-to-one, then $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(D) if f is onto, then $\operatorname{dim}(U) \geq \operatorname{dim}(V)$;
(0) if f is an isomorphism, then $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Proof.

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Then all the following hold:
(2) if f is one-to-one, then $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(D) if f is onto, then $\operatorname{dim}(U) \geq \operatorname{dim}(V)$;
(0) if f is an isomorphism, then $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Proof. Obviously, (a) and (b) together imply (c).

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Then all the following hold:
(2) if f is one-to-one, then $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(D) if f is onto, then $\operatorname{dim}(U) \geq \operatorname{dim}(V)$;
(c) if f is an isomorphism, then $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Proof. Obviously, (a) and (b) together imply (c). So, it is enough to prove (a) and (b).

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Then all the following hold:
(a) if f is one-to-one, then $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;

Proof (continued). (a) We prove the contrapositive: we assume that $\operatorname{dim}(U)>\operatorname{dim}(V)$ (and in particular, $\operatorname{dim}(V)$ is finite), and we prove that f is not one-to-one.

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Then all the following hold:
(a) if f is one-to-one, then $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;

Proof (continued). (a) We prove the contrapositive: we assume that $\operatorname{dim}(U)>\operatorname{dim}(V)$ (and in particular, $\operatorname{dim}(V)$ is finite), and we prove that f is not one-to-one.
Set $n:=\operatorname{dim}(V)$.

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Then all the following hold:
(2) if f is one-to-one, then $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;

Proof (continued). (a) We prove the contrapositive: we assume that $\operatorname{dim}(U)>\operatorname{dim}(V)$ (and in particular, $\operatorname{dim}(V)$ is finite), and we prove that f is not one-to-one.
Set $n:=\operatorname{dim}(V)$. Since $\operatorname{dim}(U)>\operatorname{dim}(V)$, we know that U has a linearly independent set of size greater than n.

- Indeed, if U is finite-dimensional, then any one of its bases is a linearly independent set of size $\operatorname{dim}(U)>n$, and if U is infinite-dimensional, then Proposition 3.2.18 guarantees that U has linearly independent sets of any finite size. So, fix a linearly independent set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U, with $k>n$.

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Then all the following hold:
(2) if f is one-to-one, then $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;

Proof (continued). (a) We prove the contrapositive: we assume that $\operatorname{dim}(U)>\operatorname{dim}(V)$ (and in particular, $\operatorname{dim}(V)$ is finite), and we prove that f is not one-to-one.
Set $n:=\operatorname{dim}(V)$. Since $\operatorname{dim}(U)>\operatorname{dim}(V)$, we know that U has a linearly independent set of size greater than n.

- Indeed, if U is finite-dimensional, then any one of its bases is a linearly independent set of size $\operatorname{dim}(U)>n$, and if U is infinite-dimensional, then Proposition 3.2.18 guarantees that U has linearly independent sets of any finite size.
So, fix a linearly independent set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of U, with $k>n$. Since $\operatorname{dim}(V)=n$, Theorem 3.2.17(a) guarantees that the set $\left\{f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right\}$ is linearly dependent. But now Theorem 4.2.13(a) guarantees that f is not one-to-one.

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Then all the following hold:
(D) if f is onto, then $\operatorname{dim}(U) \geq \operatorname{dim}(V)$;

Proof (continued). (b) Assume that f is onto; we must show that $\operatorname{dim}(U) \geq \operatorname{dim}(V)$.

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Then all the following hold:
(D) if f is onto, then $\operatorname{dim}(U) \geq \operatorname{dim}(V)$;

Proof (continued). (b) Assume that f is onto; we must show that $\operatorname{dim}(U) \geq \operatorname{dim}(V)$. We may assume that $n:=\operatorname{dim}(U)$ is finite, for otherwise, we are done.

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Then all the following hold:
(D) if f is onto, then $\operatorname{dim}(U) \geq \operatorname{dim}(V)$;

Proof (continued). (b) Assume that f is onto; we must show that $\operatorname{dim}(U) \geq \operatorname{dim}(V)$. We may assume that $n:=\operatorname{dim}(U)$ is finite, for otherwise, we are done. We must show that $\operatorname{dim}(V) \leq n$.

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Then all the following hold:
(D) if f is onto, then $\operatorname{dim}(U) \geq \operatorname{dim}(V)$;

Proof (continued). (b) Assume that f is onto; we must show that $\operatorname{dim}(U) \geq \operatorname{dim}(V)$. We may assume that $n:=\operatorname{dim}(U)$ is finite, for otherwise, we are done. We must show that $\operatorname{dim}(V) \leq n$.

Fix any basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ of U.

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Then all the following hold:
(D) if f is onto, then $\operatorname{dim}(U) \geq \operatorname{dim}(V)$;

Proof (continued). (b) Assume that f is onto; we must show that $\operatorname{dim}(U) \geq \operatorname{dim}(V)$. We may assume that $n:=\operatorname{dim}(U)$ is finite, for otherwise, we are done. We must show that $\operatorname{dim}(V) \leq n$.

Fix any basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ of U. In particular, vectos $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ span U, and so since f is onto, Theorem 4.2.13(c) guarantees that vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{n}\right)$ span V.

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Then all the following hold:
(D) if f is onto, then $\operatorname{dim}(U) \geq \operatorname{dim}(V)$;

Proof (continued). (b) Assume that f is onto; we must show that $\operatorname{dim}(U) \geq \operatorname{dim}(V)$. We may assume that $n:=\operatorname{dim}(U)$ is finite, for otherwise, we are done. We must show that $\operatorname{dim}(V) \leq n$.
Fix any basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ of U. In particular, vectos $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ span U, and so since f is onto, Theorem 4.2.13(c) guarantees that vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{n}\right)$ span V. But then by Theorem 3.2.14, some subset of $\left\{f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{n}\right)\right\}$ is a basis of V, and it follows that $\operatorname{dim}(V) \leq n . \square$

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Then all the following hold:
(0) if f is one-to-one, then $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(D) if f is onto, then $\operatorname{dim}(U) \geq \operatorname{dim}(V)$;
(0) if f is an isomorphism, then $\operatorname{dim}(U)=\operatorname{dim}(V)$.
(2) Computing bases of the images and preimages of subspaces under linear functions

Proposition 4.2.15

Let \mathbb{F} be a field, let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function, let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f, let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in \mathbb{F}^{m}$ $(k \geq 1)$, and set $U:=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. Then

$$
f[U]=\operatorname{Col}\left(A\left[\begin{array}{lll}
\mathbf{u}_{1} & \ldots & \mathbf{u}_{k}
\end{array}\right]\right)
$$

and moreover, the pivot columns of the matrix $A\left[\begin{array}{lll}\mathbf{u}_{1} & \ldots & \mathbf{u}_{k}\end{array}\right]$ form a basis of $f[U]$.

- First an example, then a proof.

Example 4.2.16

Let $f: \mathbb{Z}_{2}^{5} \rightarrow \mathbb{Z}_{2}^{4}$ be the linear function whose standard matrix is

$$
A=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1
\end{array}\right]
$$

and consider the vectors

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{u}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right], \quad \mathbf{u}_{4}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

in \mathbb{Z}_{2}^{5}. Set $U:=\operatorname{Span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right)$. Find a basis for $f[U]$.

Solution.

Solution. Our goal is to find the pivot columns of the matrix $A\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} & \mathbf{u}_{4}\end{array}\right]$, since by Proposition 4.2.15, those columns form a basis of $f[U]$. First, by multiplying matrices, we obtain

$$
\begin{aligned}
A\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} & \mathbf{u}_{4}
\end{array}\right] & =\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Solution (continued). By row reducing, we obtain

$$
\operatorname{RREF}\left(A\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} & \mathbf{u}_{4}
\end{array}\right]\right)=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Solution (continued). By row reducing, we obtain

$$
\operatorname{RREF}\left(A\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} & \mathbf{u}_{4}
\end{array}\right]\right)=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

As we can see, the pivot columns of $A\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} & \mathbf{u}_{4}\end{array}\right]$ are its first and fourth column.

Solution (continued). By row reducing, we obtain

$$
\operatorname{RREF}\left(A\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} & \mathbf{u}_{4}
\end{array}\right]\right)=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

As we can see, the pivot columns of $A\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} & \mathbf{u}_{4}\end{array}\right]$ are its first and fourth column. Therefore,

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]\right\}
$$

is a basis of $f[U] . \square$

Proposition 4.2.15

Let \mathbb{F} be a field, let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function, let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f, let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in \mathbb{F}^{m}$ $(k \geq 1)$, and set $U:=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. Then

$$
f[U]=\operatorname{Col}\left(A\left[\begin{array}{lll}
\mathbf{u}_{1} & \ldots & \mathbf{u}_{k}
\end{array}\right]\right)
$$

and moreover, the pivot columns of the matrix $A\left[\begin{array}{lll}\mathbf{u}_{1} & \ldots & \mathbf{u}_{k}\end{array}\right]$ form a basis of $f[U]$.

Proof.

Proposition 4.2.15

Let \mathbb{F} be a field, let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function, let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f, let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in \mathbb{F}^{m}$ $(k \geq 1)$, and set $U:=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$. Then

$$
f[U]=\operatorname{Col}\left(A\left[\begin{array}{lll}
\mathbf{u}_{1} & \ldots & \mathbf{u}_{k}
\end{array}\right]\right)
$$

and moreover, the pivot columns of the matrix $A\left[\begin{array}{lll}\mathbf{u}_{1} & \ldots & \mathbf{u}_{k}\end{array}\right]$ form a basis of $f[U]$.

Proof. First, we compute (next slide):

Proof (continued).

$$
\begin{aligned}
f[U] & =f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right] \\
& \stackrel{(*)}{=} \operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right) \\
& \stackrel{(* *)}{=} \operatorname{Col}\left(\left[\begin{array}{lll}
f\left(\mathbf{u}_{1}\right) & \ldots & \left.f\left(\mathbf{u}_{k}\right)\right]
\end{array}\right]\right) \\
& \stackrel{(* * *)}{=} \operatorname{Col}\left(\left[\begin{array}{lll}
A \mathbf{u}_{1} & \ldots & A \mathbf{u}_{k}
\end{array}\right]\right) \\
& \stackrel{(* * * *)}{=} \operatorname{Col}\left(A\left[\begin{array}{lll}
\mathbf{u}_{1} & \ldots & \mathbf{u}_{k}
\end{array}\right]\right)
\end{aligned}
$$

where (*) follows from Theorem 4.2.11(b), $\left(^{* *}\right)$ follows from the definition of the column space, and $\left({ }^{* * *}\right)$ follows from the fact that A is the standard matrix of f, and $(* * * *)$ follows from the definition of matrix multiplication.

Proof (continued).

$$
\begin{aligned}
f[U] & =f\left[\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)\right] \\
& \stackrel{(*)}{=} \operatorname{Span}\left(f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right) \\
& \stackrel{(* *)}{=} \operatorname{Col}\left(\left[\begin{array}{lll}
f\left(\mathbf{u}_{1}\right) & \ldots & \left.f\left(\mathbf{u}_{k}\right)\right]
\end{array}\right]\right) \\
& \stackrel{(* * *)}{=} \operatorname{Col}\left(\left[\begin{array}{lll}
A \mathbf{u}_{1} & \ldots & A \mathbf{u}_{k}
\end{array}\right]\right) \\
& \stackrel{(* * * *)}{=} \operatorname{Col}\left(A\left[\begin{array}{lll}
\mathbf{u}_{1} & \ldots & \mathbf{u}_{k}
\end{array}\right]\right)
\end{aligned}
$$

where (*) follows from Theorem 4.2.11(b), (${ }^{* *)}$ follows from the definition of the column space, and $\left({ }^{* * *}\right)$ follows from the fact that A is the standard matrix of f, and $\left({ }^{* * * *}\right)$ follows from the definition of matrix multiplication. By Theorem 3.3.4, the pivot columns of a matrix form a basis of the column space of that matrix, and the result follows.

Proposition 4.2.18

Let \mathbb{F} be a field, let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function, let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f, let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in \mathbb{F}^{n}$ $(k \geq 1)$, and set $V:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ Then

$$
\begin{aligned}
f^{-1}[V] & =\left\{\mathbf{x} \in \mathbb{F}^{m} \mid \exists \mathbf{y} \in \mathbb{F}^{k} \text { s.t. }\left[\begin{array}{llll}
A & \mathbf{v}_{1} & \ldots & \mathbf{v}_{k}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
-\mathbf{y}^{-}
\end{array}\right]=\mathbf{0}\right\} \\
& =\left\{\mathbf{x} \in \mathbb{F}^{m} \mid \exists \mathbf{y} \in \mathbb{F}^{k} \text { s.t. }\left[\begin{array}{c}
\mathbf{x} \\
-\mathbf{y}
\end{array}\right] \in \operatorname{Nul}\left(\left[\begin{array}{lll}
A & \mathbf{v}_{1} & \ldots \\
\mathbf{v}_{k}
\end{array}\right]\right)\right\} .
\end{aligned}
$$

- First an example, then a proof.

Example 4.2.19

Consider the linear function $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{5}$ whose standard matrix is

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -2 & -4 & 0 \\
-2 & -3 & -6 & 1 \\
4 & 0 & 0 & 0 \\
2 & -1 & -2 & 0
\end{array}\right]
$$

and consider the following vectors in \mathbb{R}^{5} :

- $\mathbf{v}_{1}=\left[\begin{array}{lllll}-1 & 6 & 9 & -4 & 1\end{array}\right]^{T}$;
- $\mathbf{v}_{2}=\left[\begin{array}{lllll}2 & 2 & -2 & 8 & 5\end{array}\right]$;
- $\mathbf{v}_{3}=\left[\begin{array}{lllll}0 & 0 & 0 & -1 & 0\end{array}\right]^{T}$;
- $\mathbf{v}_{4}=\left[\begin{array}{lllll}0 & -2 & -3 & -1 & -1\end{array}\right]^{T}$;
- $\mathbf{v}_{5}=\left[\begin{array}{lllll}0 & -1 & -2 & 1 & 0\end{array}\right]^{T}$;
- $\mathbf{v}_{6}=\left[\begin{array}{lllll}-3 & -1 & 2 & -11 & -6\end{array}\right]^{T}$.

Set $V:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{6}\right)$. Find a basis of $f^{-1}[V]$.

Solution. We apply Proposition 4.2.18.

Solution. We apply Proposition 4.2.18. We first form the matrix

$$
\begin{aligned}
& C:=\left[\begin{array}{lllllll}
A & \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} & \mathbf{v}_{4} & \mathbf{v}_{5} & \mathbf{v}_{6}
\end{array}\right] \\
& =\left[\begin{array}{rrrr:rrrrrr}
1 & 0 & 0 & 0 & -1 & 2 & 0 & 0 & 0 & -3 \\
0 & -2 & -4 & 0 & 6 & 2 & 0 & -2 & -1 & -1 \\
-2 & -3 & -6 & 1 & 9 & -2 & 0 & -3 & -2 & 2 \\
4 & 0 & 0 & 0 & -4 & 8 & -1 & -1 & 1 & -11 \\
2 & -1 & -2 & 0 & 1 & 5 & 0 & -1 & 0 & -6
\end{array}\right],
\end{aligned}
$$

and we find the general solution of the matrix-vector equation

$$
\underbrace{\left[\begin{array}{llllll}
A & \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} & \mathbf{v}_{4} & \mathbf{v}_{5} \\
\mathbf{v}_{6}
\end{array}\right]}_{=C}\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right]=\mathbf{0}
$$

where the vector \mathbf{x} has four entries (because A has four columns) and the vector \mathbf{y} has six entries (because we have six vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{6}$).

Solution (continued). By row reducing, we obtain

$$
\operatorname{RREF}(C)=\left[\begin{array}{rrrr:rrrrrr}
1 & 0 & 0 & 0 & -1 & 2 & 0 & 0 & 0 & -3 \\
0 & 1 & 2 & 0 & -3 & -1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & -1 & 0 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] .
$$

Solution (continued). By row reducing, we obtain

$$
\operatorname{RREF}(C)=\left[\begin{array}{rrrr:rrrrrr}
1 & 0 & 0 & 0 & -1 & 2 & 0 & 0 & 0 & -3 \\
0 & 1 & 2 & 0 & -3 & -1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & -1 & 0 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] .
$$

So, the general solution of our matrix-vector equation is

$$
\left[\begin{array}{c}
\mathbf{x} \\
-\mathbf{y}
\end{array}\right]=\left[\begin{array}{c}
q-2 r+3 t \\
-2 p+3 q+r-s \\
p \\
2 q+r+2 t \\
q \\
r \\
-s \\
s \\
-t \\
t
\end{array}\right], \quad \text { where } p, q, r, s, t \in \mathbb{R}
$$

Solution (continued). By row reducing, we obtain

$$
\operatorname{RREF}(C)=\left[\begin{array}{rrrr:rrrrrr}
1 & 0 & 0 & 0 & -1 & 2 & 0 & 0 & 0 & -3 \\
0 & 1 & 2 & 0 & -3 & -1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & -1 & 0 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] .
$$

So, the general solution of our matrix-vector equation is

$$
\left[\begin{array}{c}
\mathbf{x} \\
\mathbf{y}
\end{array}\right]=\left[\begin{array}{c}
q-2 r+3 t \\
-2 p+3 q+r-s \\
p \\
2 q+r+2 t \\
q \\
r \\
-s \\
s \\
-t \\
t
\end{array}\right], \quad \text { where } p, q, r, s, t \in \mathbb{R}
$$

But as per Proposition 4.2.18, we only need \mathbf{x} !

Solution. So, we simply ignore the part below the horizontal dotted line, and we obtain:

$$
\mathbf{x}=\left[\begin{array}{c}
q-2 r+3 t \\
-2 p+3 q+r-s \\
p \\
2 q+r+2 t
\end{array}\right], \quad \text { where } p, q, r, s, t \in \mathbb{R} \text {. }
$$

Solution. So, we simply ignore the part below the horizontal dotted line, and we obtain:

$$
\mathbf{x}=\left[\begin{array}{c}
q-2 r+3 t \\
-2 p+3 q+r-s \\
p \\
2 q+r+2 t
\end{array}\right], \quad \text { where } p, q, r, s, t \in \mathbb{R} \text {. }
$$

By separating parameters, we obtain

$$
\mathbf{x}=p\left[\begin{array}{r}
0 \\
-2 \\
1 \\
0
\end{array}\right]+q\left[\begin{array}{l}
1 \\
3 \\
0 \\
2
\end{array}\right]+r\left[\begin{array}{r}
-2 \\
1 \\
0 \\
1
\end{array}\right]+s\left[\begin{array}{r}
0 \\
-1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{l}
3 \\
0 \\
0 \\
2
\end{array}\right]
$$

where $p, q, r, s, t \in \mathbb{R}$.

Solution. So, we simply ignore the part below the horizontal dotted line, and we obtain:

$$
\mathbf{x}=\left[\begin{array}{c}
q-2 r+3 t \\
-2 p+3 q+r-s \\
p \\
2 q+r+2 t
\end{array}\right], \quad \text { where } p, q, r, s, t \in \mathbb{R} \text {. }
$$

By separating parameters, we obtain

$$
\mathbf{x}=p\left[\begin{array}{r}
0 \\
-2 \\
1 \\
0
\end{array}\right]+q\left[\begin{array}{l}
1 \\
3 \\
0 \\
2
\end{array}\right]+r\left[\begin{array}{r}
-2 \\
1 \\
0 \\
1
\end{array}\right]+s\left[\begin{array}{r}
0 \\
-1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{l}
3 \\
0 \\
0 \\
2
\end{array}\right]
$$

where $p, q, r, s, t \in \mathbb{R}$.
In view of Proposition 4.2.18, we now have that (next slide):

Solution.

$$
\begin{aligned}
f^{-1}[V]= & \left\{\left.p\left[\begin{array}{r}
0 \\
-2 \\
1 \\
0
\end{array}\right]+q\left[\begin{array}{l}
1 \\
3 \\
0 \\
2
\end{array}\right]+r\left[\begin{array}{r}
-2 \\
1 \\
0 \\
1
\end{array}\right]+s\left[\begin{array}{r}
0 \\
-1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{l}
3 \\
0 \\
0 \\
2
\end{array}\right] \right\rvert\,\right. \\
& \mid p, q, r, s, t \in \mathbb{R}\} \\
= & \operatorname{Span}\left(\left[\begin{array}{r}
0 \\
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
0 \\
2
\end{array}\right],\left[\begin{array}{r}
-2 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{r}
0 \\
-1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
0 \\
2
\end{array}\right]\right) \\
= & \operatorname{Col}(\underbrace{\left[\begin{array}{rrrrr}
0 & 1 & -2 & 0 & 3 \\
-2 & 3 & 1 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 2
\end{array}\right]}_{=: B}) .
\end{aligned}
$$

Solution (continued). Reminder:

$$
f^{-1}[V]=\operatorname{Col}(\underbrace{\left[\begin{array}{rrrrr}
0 & 1 & -2 & 0 & 3 \\
-2 & 3 & 1 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 2
\end{array}\right]}_{=: B}) .
$$

Solution (continued). Reminder:

$$
f^{-1}[V]=\operatorname{Col}(\underbrace{\left[\begin{array}{rrrrr}
0 & 1 & -2 & 0 & 3 \\
-2 & 3 & 1 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 2
\end{array}\right]}_{=: B})
$$

We note that the five vectors that we obtained in the second-to-last line above are not necessarily linearly independent, and so to find an actual basis of $f^{-1}[\mathrm{~V}]$, we row reduce the matrix B and use Theorem 3.3.4. Indeed, Theorem 3.3.4 guarantees that the pivot columns of B form a basis of $\operatorname{Col}(B)=f^{-1}[V]$.

- In fact, we can immediately see that they are not linearly independent: no five vectors in \mathbb{R}^{4} are linearly independent (by Theorem 3.2.17(a)).
- More generally, though, the reason our computation does not necessarily yield linearly independent vectors is because we "cut off" the entries below the vertical dotted line.

Solution (continued). Reminder:

$$
f^{-1}[V]=\operatorname{Col}(\underbrace{\left[\begin{array}{rrrrr}
0 & 1 & -2 & 0 & 3 \\
-2 & 3 & 1 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 2
\end{array}\right]}_{=: B}) .
$$

Solution (continued). Reminder:

$$
f^{-1}[V]=\operatorname{Col}(\underbrace{\left[\begin{array}{rrrrr}
0 & 1 & -2 & 0 & 3 \\
-2 & 3 & 1 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 2
\end{array}\right]}_{=: B}) .
$$

By row reducing, we obtain

$$
\operatorname{RREF}(B)=\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 7 / 5 \\
0 & 0 & 1 & 0 & -4 / 5 \\
0 & 0 & 0 & 1 & 17 / 5
\end{array}\right]
$$

Thus, the pivot columns of B are its leftmost four columns, and those four columns form a basis of $f^{-1}[V]$.

Solution (continued). So, our final answer is that

$$
\left\{\left[\begin{array}{r}
0 \\
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
0 \\
2
\end{array}\right],\left[\begin{array}{r}
-2 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{r}
0 \\
-1 \\
0 \\
0
\end{array}\right]\right\}
$$

is a basis of $f^{-1}[V] . \square$

Proposition 4.2.18

Let \mathbb{F} be a field, let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function, let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f, let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in \mathbb{F}^{n}$ $(k \geq 1)$, and set $V:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ Then

$$
\begin{aligned}
f^{-1}[V] & =\left\{\mathbf{x} \in \mathbb{F}^{m} \mid \exists \mathbf{y} \in \mathbb{F}^{k} \text { s.t. }\left[\begin{array}{lll}
A & \mathbf{v}_{1} & \ldots \\
\mathbf{v}_{k}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
-\mathbf{y}
\end{array}\right]=\mathbf{0}\right\} \\
& =\left\{\mathbf{x} \in \mathbb{F}^{m} \mid \exists \mathbf{y} \in \mathbb{F}^{k} \text { s.t. }\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right] \in \operatorname{Nul}\left(\left[\begin{array}{lll}
A & \mathbf{v}_{1} & \ldots \\
\mathbf{v}_{k}
\end{array}\right]\right)\right\} .
\end{aligned}
$$

Proof.

Proposition 4.2.18

Let \mathbb{F} be a field, let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function, let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f, let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in \mathbb{F}^{n}$ $(k \geq 1)$, and set $V:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ Then

$$
\begin{aligned}
f^{-1}[V] & =\left\{\mathbf{x} \in \mathbb{F}^{m} \mid \exists \mathbf{y} \in \mathbb{F}^{k} \text { s.t. }\left[\begin{array}{lll}
A & \mathbf{v}_{1} & \ldots \\
\mathbf{v}_{k}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
-\mathbf{y}
\end{array}\right]=\mathbf{0}\right\} \\
& =\left\{\mathbf{x} \in \mathbb{F}^{m} \mid \exists \mathbf{y} \in \mathbb{F}^{k} \text { s.t. }\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right] \in \operatorname{Nul}\left(\left[\begin{array}{llll}
A & \mathbf{v}_{1} & \ldots & \mathbf{v}_{k}
\end{array}\right]\right)\right\} .
\end{aligned}
$$

Proof. Set $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$.

Proposition 4.2.18

Let \mathbb{F} be a field, let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function, let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f, let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in \mathbb{F}^{n}$ $(k \geq 1)$, and set $V:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ Then

$$
\begin{aligned}
f^{-1}[V] & =\left\{\mathbf{x} \in \mathbb{F}^{m} \mid \exists \mathbf{y} \in \mathbb{F}^{k} \text { s.t. }\left[\begin{array}{llll}
A & \mathbf{v}_{1} & \ldots & \mathbf{v}_{k}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
-\mathbf{y}
\end{array}\right]=\mathbf{0}\right\} \\
& =\left\{\mathbf{x} \in \mathbb{F}^{m} \mid \exists \mathbf{y} \in \mathbb{F}^{k} \text { s.t. }\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right] \in \operatorname{Nul}\left(\left[\begin{array}{lll}
A & \mathbf{v}_{1} & \ldots \\
\mathbf{v}_{k}
\end{array}\right]\right)\right\} .
\end{aligned}
$$

Proof. Set $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$. Then for all vectors
$\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{m}\end{array}\right]^{T}$ in \mathbb{F}^{m}, we have the following sequence of equivalent statements (next slide):

Proof (continued).

$$
\begin{array}{ll}
& \mathbf{x} \in f^{-1}[V] \\
\Longleftrightarrow & f(\mathbf{x}) \in \underbrace{\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)}_{=V} \\
\stackrel{(*)}{\Longleftrightarrow} \quad A \mathbf{x} \in \operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right) \\
\Longleftrightarrow \quad & \underbrace{x_{1} \mathbf{a}_{1}+\cdots+x_{m} \mathbf{a}_{m}}_{=A \mathbf{x}} \in \operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right) \\
& \exists \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{F} \text { s.t. } x_{1} \mathbf{a}_{1}+\cdots+x_{m} \mathbf{a}_{m}=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{k} \mathbf{v}_{k} \\
\stackrel{(* *)}{\Longleftrightarrow} \quad \exists \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{F} \text { s.t. } x_{1} \mathbf{a}_{1}+\cdots+x_{m} \mathbf{a}_{m}-\alpha_{1} \mathbf{v}_{1}-\cdots-\alpha_{k} \mathbf{v}_{k}=\mathbf{0},
\end{array}
$$

where $\left(^{*}\right)$ follows from the fact that A is the standard matrix of f, and $\left({ }^{* *}\right)$ follows from the definition of span.

Proof (continued).

$$
\mathbf{x} \in f^{-1}[V]
$$

previous
$\xrightarrow{\text { slide }}$

$$
\exists \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{F} \text { s.t. } x_{1} \mathbf{a}_{1}+\cdots+x_{m} \mathbf{a}_{m}-\alpha_{1} \mathbf{v}_{1}-\cdots-\alpha_{k} \mathbf{v}_{k}=\mathbf{0}
$$

$\stackrel{(* *)}{\rightleftharpoons} \quad \exists y_{1}, \ldots, y_{k} \in \mathbb{F}$ s.t. $x_{1} \mathbf{a}_{1}+\cdots+x_{m} \mathbf{a}_{m}+y_{1} \mathbf{v}_{1}+\cdots+y_{k} \mathbf{v}_{k}=\mathbf{0}$
$\Longleftrightarrow \quad \exists y_{1}, \ldots, y_{k} \in \mathbb{F}$ s.t. $\left[\begin{array}{llllll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}, \mathbf{v}_{1} & \ldots & \mathbf{v}_{k}\end{array}\right]\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{m} \\ \frac{y_{1}}{-} \\ \vdots \\ y_{k}\end{array}\right]=\mathbf{0}$
$\Longleftrightarrow \quad \exists \mathbf{y} \in \mathbb{F}^{k}$ s.t. $\left[\begin{array}{llll}A & \mathbf{v}_{1} & \ldots & \mathbf{v}_{k}\end{array}\right]\left[\begin{array}{c}\mathbf{x} \\ \mathbf{y}^{-}\end{array}\right]=\mathbf{0}$,
where $\left({ }^{* * *}\right)$ follows via substitution $y_{i}:=-\alpha_{i} \forall i \in\{1, \ldots, k\}$.

Proof (continued).

$$
\mathbf{x} \in f^{-1}[V]
$$

$$
\begin{array}{ll}
\stackrel{\substack{\text { previous } \\
\text { slide }}}{\Longleftrightarrow} & \exists \mathbf{y} \in \mathbb{F}^{k} \text { s.t. }\left[\begin{array}{lll}
A & \mathbf{v}_{1} & \ldots
\end{array} \mathbf{v}_{k}\right]\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right]=\mathbf{0} \\
\stackrel{(* * * *)}{\Longleftrightarrow} & \exists \mathbf{y} \in \mathbb{F}^{k} \text { s.t. }\left[\begin{array}{l}
\mathbf{x} \\
-\mathbf{y}^{-}
\end{array}\right] \in \operatorname{Nul}\left(\left[\begin{array}{lll}
A^{\prime}, \mathbf{v}_{1} & \ldots & \mathbf{v}_{k}
\end{array}\right]\right),
\end{array}
$$

where $\left({ }^{* * * *}\right)$ follows from the definition of the null space. The result is now immediate. \square
(3) Linear functions and bases
(3) Linear functions and bases

- Reminder:

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be any vectors in \mathbb{F}^{n}. Then there exists a unique linear function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}. Moreover, this linear function f is given by $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$, where $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$.
(3) Linear functions and bases

- Reminder:

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be any vectors in \mathbb{F}^{n}. Then there exists a unique linear function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}. Moreover, this linear function f is given by $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$, where $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$.

- Our next goal is to generalize Theorem 1.10 .5 to linear functions $f: U \rightarrow V$, where U and V are vector spaces over a field \mathbb{F}, and U is finite-dimensional.
- Instead of using the standard basis $\mathcal{E}_{m}=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}\right\}$, we will use an arbitrary basis of U.
- Suppose that V is a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and that $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V.
- Suppose that V is a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and that $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V.
- By Theorem 3.2.7, every vector of V can be written as linear combination of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ in a unique way, that is, $\forall \mathbf{v} \in V \exists!\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$ s.t.

$$
\mathbf{v}:=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

and the coordinate vector of \mathbf{v} with respect to the basis \mathcal{B} is defined to be

$$
[\mathbf{v}]_{\mathcal{B}}:=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]
$$

- Suppose that V is a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and that $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V.
- By Theorem 3.2.7, every vector of V can be written as linear combination of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ in a unique way, that is, $\forall \mathbf{v} \in V \exists!\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$ s.t.

$$
\mathbf{v}:=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

and the coordinate vector of \mathbf{v} with respect to the basis \mathcal{B} is defined to be

$$
[\mathbf{v}]_{\mathcal{B}}:=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]
$$

- As our next proposition shows, $[\cdot]_{\mathcal{B}}: V \rightarrow \mathbb{F}^{n}$ is an isomorphism.
- It essentially allows us to "translate" vectors of an n-dimensional vector space $(n \neq 0)$ into vectors in \mathbb{F}^{n}.

Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Then $[\cdot]_{\mathcal{B}}: V \rightarrow \mathbb{F}^{n}$ is an isomorphism.

Proof.

Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Then $[\cdot]_{\mathcal{B}}: V \rightarrow \mathbb{F}^{n}$ is an isomorphism.

Proof. We start by proving that $[\cdot]_{\mathcal{B}}$ is linear.

1. Fix $\mathbf{x}, \mathbf{y} \in V$. WTS $[\mathbf{x}+\mathbf{y}]_{\mathcal{B}}=[\mathbf{x}]_{\mathcal{B}}+[\mathbf{y}]_{\mathcal{B}}$.

Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Then $[\cdot]_{\mathcal{B}}: V \rightarrow \mathbb{F}^{n}$ is an isomorphism.

Proof. We start by proving that $[\cdot]_{\mathcal{B}}$ is linear.

1. Fix $\mathbf{x}, \mathbf{y} \in V$. WTS $[\mathbf{x}+\mathbf{y}]_{\mathcal{B}}=[\mathbf{x}]_{\mathcal{B}}+[\mathbf{y}]_{\mathcal{B}}$. Set
$[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$ and $[\mathbf{y}]_{\mathcal{B}}=\left[\begin{array}{lll}\beta_{1} & \ldots & \beta_{n}\end{array}\right]^{T}$.

Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Then $[\cdot]_{\mathcal{B}}: V \rightarrow \mathbb{F}^{n}$ is an isomorphism.

Proof. We start by proving that $[\cdot]_{\mathcal{B}}$ is linear.

1. Fix $\mathbf{x}, \mathbf{y} \in V$. WTS $[\mathbf{x}+\mathbf{y}]_{\mathcal{B}}=[\mathbf{x}]_{\mathcal{B}}+[\mathbf{y}]_{\mathcal{B}}$. Set
$[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$ and $[\mathbf{y}]_{\mathcal{B}}=\left[\begin{array}{lll}\beta_{1} & \ldots & \beta_{n}\end{array}\right]^{T}$.
Then $\mathbf{x}=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}$ and $\mathbf{y}=\beta_{1} \mathbf{v}_{1}+\cdots+\beta_{n} \mathbf{v}_{n}$;

Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Then $[\cdot]_{\mathcal{B}}: V \rightarrow \mathbb{F}^{n}$ is an isomorphism.

Proof. We start by proving that $[.]_{\mathcal{B}}$ is linear.

1. Fix $\mathbf{x}, \mathbf{y} \in V$. WTS $[\mathbf{x}+\mathbf{y}]_{\mathcal{B}}=[\mathbf{x}]_{\mathcal{B}}+[\mathbf{y}]_{\mathcal{B}}$. Set
$[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$ and $[\mathbf{y}]_{\mathcal{B}}=\left[\begin{array}{lll}\beta_{1} & \ldots & \beta_{n}\end{array}\right]^{T}$.
Then $\mathbf{x}=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}$ and $\mathbf{y}=\beta_{1} \mathbf{v}_{1}+\cdots+\beta_{n} \mathbf{v}_{n}$;
consequently,

$$
\mathbf{x}+\mathbf{y}=\left(\alpha_{1}+\beta_{1}\right) \mathbf{v}_{1}+\cdots+\left(\alpha_{n}+\beta_{n}\right) \mathbf{v}_{n}
$$

Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Then $[\cdot]_{\mathcal{B}}: V \rightarrow \mathbb{F}^{n}$ is an isomorphism.

Proof. We start by proving that $[.]_{\mathcal{B}}$ is linear.

1. Fix $\mathbf{x}, \mathbf{y} \in V$. WTS $[\mathbf{x}+\mathbf{y}]_{\mathcal{B}}=[\mathbf{x}]_{\mathcal{B}}+[\mathbf{y}]_{\mathcal{B}}$. Set
$[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$ and $[\mathbf{y}]_{\mathcal{B}}=\left[\begin{array}{lll}\beta_{1} & \ldots & \beta_{n}\end{array}\right]^{T}$.
Then $\mathbf{x}=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}$ and $\mathbf{y}=\beta_{1} \mathbf{v}_{1}+\cdots+\beta_{n} \mathbf{v}_{n}$; consequently,

$$
\mathbf{x}+\mathbf{y}=\left(\alpha_{1}+\beta_{1}\right) \mathbf{v}_{1}+\cdots+\left(\alpha_{n}+\beta_{n}\right) \mathbf{v}_{n}
$$

and so $[\mathbf{x}+\mathbf{y}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1}+\beta_{1} & \ldots & \alpha_{n}+\beta_{n}\end{array}\right]^{T}$.

Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Then $[\cdot]_{\mathcal{B}}: V \rightarrow \mathbb{F}^{n}$ is an isomorphism.

Proof. We start by proving that $[\cdot]_{\mathcal{B}}$ is linear.

1. Fix $\mathbf{x}, \mathbf{y} \in V$. WTS $[\mathbf{x}+\mathbf{y}]_{\mathcal{B}}=[\mathbf{x}]_{\mathcal{B}}+[\mathbf{y}]_{\mathcal{B}}$. Set
$[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$ and $[\mathbf{y}]_{\mathcal{B}}=\left[\begin{array}{lll}\beta_{1} & \ldots & \beta_{n}\end{array}\right]^{T}$.
Then $\mathbf{x}=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}$ and $\mathbf{y}=\beta_{1} \mathbf{v}_{1}+\cdots+\beta_{n} \mathbf{v}_{n}$;
consequently,

$$
\mathbf{x}+\mathbf{y}=\left(\alpha_{1}+\beta_{1}\right) \mathbf{v}_{1}+\cdots+\left(\alpha_{n}+\beta_{n}\right) \mathbf{v}_{n}
$$

and so $[\mathbf{x}+\mathbf{y}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1}+\beta_{1} & \ldots & \alpha_{n}+\beta_{n}\end{array}\right]^{T}$. We now have that (next slide):

Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Then $[\cdot]_{\mathcal{B}}: V \rightarrow \mathbb{F}^{n}$ is an isomorphism.

Proof (continued).

$$
\begin{aligned}
{[\mathbf{x}+\mathbf{y}]_{\mathcal{B}} } & =\left[\begin{array}{c}
\alpha_{1}+\beta_{1} \\
\vdots \\
\alpha_{n}+\beta_{n}
\end{array}\right] \\
& =\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]+\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{n}
\end{array}\right] \\
& =[\mathbf{x}]_{\mathcal{B}}+[\mathbf{y}]_{\mathcal{B}}
\end{aligned}
$$

Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Then $[\cdot]_{\mathcal{B}}: V \rightarrow \mathbb{F}^{n}$ is an isomorphism.

Proof (continued). Similarly (details: Lecture Notes):
2. $\forall \mathbf{x} \in V, \alpha \in \mathbb{F}:[\alpha \mathbf{x}]_{\mathcal{B}}=\alpha[\mathbf{x}]_{\mathcal{B}}$.

Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Then $[\cdot]_{\mathcal{B}}: V \rightarrow \mathbb{F}^{n}$ is an isomorphism.

Proof (continued). Similarly (details: Lecture Notes):
2. $\forall \mathbf{x} \in V, \alpha \in \mathbb{F}:[\alpha \mathbf{x}]_{\mathcal{B}}=\alpha[\mathbf{x}]_{\mathcal{B}}$.

So, $[.]_{\mathcal{B}}: V \rightarrow \mathbb{F}^{n}$ is linear.

Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Then $[\cdot]_{\mathcal{B}}: V \rightarrow \mathbb{F}^{n}$ is an isomorphism.

Proof (continued). It remains to show that $[.]_{\mathcal{B}}$ is a bijection, i.e. that it is one-to-one and onto \mathbb{F}^{n}.

Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Then $[\cdot]_{\mathcal{B}}: V \rightarrow \mathbb{F}^{n}$ is an isomorphism.

Proof (continued). It remains to show that $[.]_{\mathcal{B}}$ is a bijection, i.e. that it is one-to-one and onto \mathbb{F}^{n}.

Since V and \mathbb{F}^{n} are both n dimensional, Corollary 4.2.10 guarantees that f is one-to-one iff f is onto \mathbb{F}^{n}.

Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Then $[\cdot]_{\mathcal{B}}: V \rightarrow \mathbb{F}^{n}$ is an isomorphism.

Proof (continued). It remains to show that $[.]_{\mathcal{B}}$ is a bijection, i.e. that it is one-to-one and onto \mathbb{F}^{n}.

Since V and \mathbb{F}^{n} are both n dimensional, Corollary 4.2.10 guarantees that f is one-to-one iff f is onto \mathbb{F}^{n}. So, it is enough to show that f is onto \mathbb{F}^{n}.

Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Then $[\cdot]_{\mathcal{B}}: V \rightarrow \mathbb{F}^{n}$ is an isomorphism.

Proof (continued). It remains to show that $[.]_{\mathcal{B}}$ is a bijection, i.e. that it is one-to-one and onto \mathbb{F}^{n}.

Since V and \mathbb{F}^{n} are both n dimensional, Corollary 4.2.10 guarantees that f is one-to-one iff f is onto \mathbb{F}^{n}. So, it is enough to show that f is onto \mathbb{F}^{n}.
$\operatorname{Fix}\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T} \in \mathbb{F}^{n}$.

Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Then $[\cdot]_{\mathcal{B}}: V \rightarrow \mathbb{F}^{n}$ is an isomorphism.

Proof (continued). It remains to show that $[.]_{\mathcal{B}}$ is a bijection, i.e. that it is one-to-one and onto \mathbb{F}^{n}.

Since V and \mathbb{F}^{n} are both n dimensional, Corollary 4.2.10 guarantees that f is one-to-one iff f is onto \mathbb{F}^{n}. So, it is enough to show that f is onto \mathbb{F}^{n}.
$\operatorname{Fix}\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T} \in \mathbb{F}^{n}$. Set $\mathbf{v}:=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}$.

Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Then $[\cdot]_{\mathcal{B}}: V \rightarrow \mathbb{F}^{n}$ is an isomorphism.

Proof (continued). It remains to show that $[.]_{\mathcal{B}}$ is a bijection, i.e. that it is one-to-one and onto \mathbb{F}^{n}.

Since V and \mathbb{F}^{n} are both n dimensional, Corollary 4.2.10 guarantees that f is one-to-one iff f is onto \mathbb{F}^{n}. So, it is enough to show that f is onto \mathbb{F}^{n}.
$\operatorname{Fix}\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T} \in \mathbb{F}^{n}$. Set $\mathbf{v}:=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}$. Then
$[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$.

Proposition 4.3.1

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Then $[\cdot]_{\mathcal{B}}: V \rightarrow \mathbb{F}^{n}$ is an isomorphism.

Proof (continued). It remains to show that $[.]_{\mathcal{B}}$ is a bijection, i.e. that it is one-to-one and onto \mathbb{F}^{n}.

Since V and \mathbb{F}^{n} are both n dimensional, Corollary 4.2.10 guarantees that f is one-to-one iff f is onto \mathbb{F}^{n}. So, it is enough to show that f is onto \mathbb{F}^{n}.
$\operatorname{Fix}\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T} \in \mathbb{F}^{n}$. Set $\mathbf{v}:=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}$. Then
$[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$. So, $[\cdot]_{\mathcal{B}}$ is onto \mathbb{F}^{n}. This
completes the argument. \square

- Reminder:

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be any vectors in \mathbb{F}^{n}. Then there exists a unique linear function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}. Moreover, this linear function f is given by $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$, where $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$.

- Reminder:

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be any vectors in \mathbb{F}^{n}. Then there exists a unique linear function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}. Moreover, this linear function f is given by $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$, where $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$.

- Let's generalize this!

Theorem 4.3.2

Let U and V be vector spaces over a field \mathbb{F}, and assume that U is finite-dimensional. Let $\mathcal{B}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be a basis of U, and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in V$. ${ }^{\text {a }}$ Then there exists a unique linear function $f: U \rightarrow V$ s.t. $f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$. Moreover, if the vector space U is non-trivial (i.e. $n \neq 0$), then this unique linear function $f: U \rightarrow V$ satisfies the following: for all $\mathbf{u} \in U$, we have that

$$
f(\mathbf{u})=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

where $[\mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$. On the other hand, if U is trivial (i.e. $U=\{\mathbf{0}\}$), ${ }^{b}$ then $f: U \rightarrow V$ is given by $f(\mathbf{0})=\mathbf{0}$.

[^0]Proof.

Proof. Suppose first that the vector space U is trivial, i.e. $n=0$ and $U=\{\mathbf{0}\}$.

Proof. Suppose first that the vector space U is trivial, i.e. $n=0$ and $U=\{\mathbf{0}\}$. Then the function $f: U \rightarrow V$ given by $f(\mathbf{0})=\mathbf{0}$ is obviously linear,

Proof. Suppose first that the vector space U is trivial, i.e. $n=0$ and $U=\{\mathbf{0}\}$. Then the function $f: U \rightarrow V$ given by $f(\mathbf{0})=\mathbf{0}$ is obviously linear, and moreover, it vacuously satisfies $f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$ (because $n=0$, and so both $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are empty lists of vectors).

Proof. Suppose first that the vector space U is trivial, i.e. $n=0$ and $U=\{\mathbf{0}\}$. Then the function $f: U \rightarrow V$ given by $f(\mathbf{0})=\mathbf{0}$ is obviously linear, and moreover, it vacuously satisfies $f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$ (because $n=0$, and so both $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are empty lists of vectors). The uniqueness of f follows from Proposition 4.1.6.

Proof. Suppose first that the vector space U is trivial, i.e. $n=0$ and $U=\{\mathbf{0}\}$. Then the function $f: U \rightarrow V$ given by $f(\mathbf{0})=\mathbf{0}$ is obviously linear, and moreover, it vacuously satisfies $f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$ (because $n=0$, and so both $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are empty lists of vectors). The uniqueness of f follows from Proposition 4.1.6.

From now on, we assume that the vector space U is non-trivial, i.e. that $n \neq 0$.

Proof. Suppose first that the vector space U is trivial, i.e. $n=0$ and $U=\{\mathbf{0}\}$. Then the function $f: U \rightarrow V$ given by $f(\mathbf{0})=\mathbf{0}$ is obviously linear, and moreover, it vacuously satisfies $f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$ (because $n=0$, and so both $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are empty lists of vectors). The uniqueness of f follows from Proposition 4.1.6.

From now on, we assume that the vector space U is non-trivial, i.e. that $n \neq 0$. We must prove the existence and the uniqueness of the linear function f satisfying the required properties.

Proof (continued). Existence. Let $f: U \rightarrow V$ be defined as in the statement of the theorem, i.e. for all $\mathbf{u} \in U$, we set

$$
f(\mathbf{u})=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

where $[\mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$.

Proof (continued). Existence. Let $f: U \rightarrow V$ be defined as in the statement of the theorem, i.e. for all $\mathbf{u} \in U$, we set

$$
f(\mathbf{u})=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

where $[\mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$. Note that this means that for all $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$, we have that

$$
f\left(\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{n} \mathbf{u}_{n}\right)=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

Proof (continued). Existence. Let $f: U \rightarrow V$ be defined as in the statement of the theorem, i.e. for all $\mathbf{u} \in U$, we set

$$
f(\mathbf{u})=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

where $[\mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$. Note that this means that for all $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$, we have that

$$
f\left(\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{n} \mathbf{u}_{n}\right)=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

Let us show that f is linear and satisfies $f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$.

Proof (continued). Existence. Let $f: U \rightarrow V$ be defined as in the statement of the theorem, i.e. for all $\mathbf{u} \in U$, we set

$$
f(\mathbf{u})=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

where $[\mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$. Note that this means that for all $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$, we have that

$$
f\left(\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{n} \mathbf{u}_{n}\right)=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

Let us show that f is linear and satisfies
$f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$. For the latter, we note that for all
$i \in\{1, \ldots, n\}$, we have that

$$
\begin{aligned}
f\left(\mathbf{u}_{i}\right) & =f\left(0 \mathbf{u}_{1}+\cdots+0 \mathbf{u}_{i-1}+1 \mathbf{u}_{i}+0 \mathbf{u}_{i+1}+\cdots+0 \mathbf{u}_{n}\right) \\
& =0 \mathbf{v}_{1}+\cdots+0 \mathbf{v}_{i-1}+1 \mathbf{v}_{i}+0 \mathbf{v}_{i+1}+\cdots+0 \mathbf{v}_{n} \\
& =\mathbf{v}_{i}
\end{aligned}
$$

This proves that $f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$.

Proof (continued). Let us now show that f is linear. We verify that f satisfies the two axioms from the definition of a linear function.

Proof (continued). Let us now show that f is linear. We verify that f satisfies the two axioms from the definition of a linear function.

1. Fix $\mathbf{x}, \mathbf{y} \in U$. WTS $f(\mathbf{x}+\mathbf{y})=f(\mathbf{x})+f(\mathbf{y})$.

Proof (continued). Let us now show that f is linear. We verify that f satisfies the two axioms from the definition of a linear function.

1. Fix $\mathbf{x}, \mathbf{y} \in U$. WTS $f(\mathbf{x}+\mathbf{y})=f(\mathbf{x})+f(\mathbf{y})$. Set
$[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}\beta_{1} & \ldots & \beta_{n}\end{array}\right]^{T}$.

Proof (continued). Let us now show that f is linear. We verify that f satisfies the two axioms from the definition of a linear function.

1. Fix $\mathbf{x}, \mathbf{y} \in U$. WTS $f(\mathbf{x}+\mathbf{y})=f(\mathbf{x})+f(\mathbf{y})$. Set
$[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}\beta_{1} & \ldots & \beta_{n}\end{array}\right]^{T}$. We then
have that $[\mathbf{x}+\mathbf{y}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1}+\beta_{1} & \ldots & \alpha_{n}+\beta_{n}\end{array}\right]^{T}$,

Proof (continued). Let us now show that f is linear. We verify that f satisfies the two axioms from the definition of a linear function.

1. Fix $\mathbf{x}, \mathbf{y} \in U$. WTS $f(\mathbf{x}+\mathbf{y})=f(\mathbf{x})+f(\mathbf{y})$. Set
$[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}\beta_{1} & \ldots & \beta_{n}\end{array}\right]^{T}$. We then have that $[\mathbf{x}+\mathbf{y}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1}+\beta_{1} & \ldots & \alpha_{n}+\beta_{n}\end{array}\right]^{T}$, and we see that

$$
\begin{aligned}
f(\mathbf{x}+\mathbf{y}) & \stackrel{(*)}{=}\left(\alpha_{1}+\beta_{1}\right) \mathbf{v}_{1}+\cdots+\left(\alpha_{n}+\beta_{n}\right) \mathbf{v}_{n} \\
& =\left(\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}\right)+\left(\beta_{1} \mathbf{v}_{1}+\cdots+\beta_{n} \mathbf{v}_{n}\right) \\
& \stackrel{(* *)}{=} f(\mathbf{x})+f(\mathbf{y})
\end{aligned}
$$

where both $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ follow from the construction of f.

Proof (continued). 2. Fix $\mathbf{u} \in U$ and $\alpha \in \mathbb{F}$. WTS $f(\alpha \mathbf{u})=\alpha f(\mathbf{u})$.

Proof (continued). 2. Fix $\mathbf{u} \in U$ and $\alpha \in \mathbb{F}$. WTS $f(\alpha \mathbf{u})=\alpha f(\mathbf{u})$. Set $[\mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$.

Proof (continued). 2. Fix $\mathbf{u} \in U$ and $\alpha \in \mathbb{F}$. WTS $f(\alpha \mathbf{u})=\alpha f(\mathbf{u})$.
Set $[\mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$. Then
$[\alpha \mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha \alpha_{1} & \ldots & \alpha \alpha_{n}\end{array}\right]^{T}$,

Proof (continued). 2. Fix $\mathbf{u} \in U$ and $\alpha \in \mathbb{F}$. WTS $f(\alpha \mathbf{u})=\alpha f(\mathbf{u})$. Set $[\mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$. Then
$[\alpha \mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha \alpha_{1} & \ldots & \alpha \alpha_{n}\end{array}\right]^{T}$, and we see that

$$
\begin{aligned}
f(\alpha \mathbf{u}) & \stackrel{(*)}{=}\left(\alpha \alpha_{1}\right) \mathbf{v}_{1}+\cdots+\left(\alpha \alpha_{n}\right) \mathbf{v}_{n} \\
& =\alpha\left(\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}\right) \\
& \stackrel{(* *)}{=} \alpha f(\mathbf{u}),
\end{aligned}
$$

where both $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ follow from the construction of f.

Proof (continued). 2. Fix $\mathbf{u} \in U$ and $\alpha \in \mathbb{F}$. WTS $f(\alpha \mathbf{u})=\alpha f(\mathbf{u})$. Set $[\mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$. Then
$[\alpha \mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha \alpha_{1} & \ldots & \alpha \alpha_{n}\end{array}\right]^{T}$, and we see that

$$
\begin{aligned}
f(\alpha \mathbf{u}) & \stackrel{(*)}{=}\left(\alpha \alpha_{1}\right) \mathbf{v}_{1}+\cdots+\left(\alpha \alpha_{n}\right) \mathbf{v}_{n} \\
& =\alpha\left(\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}\right) \\
& \stackrel{(* *)}{=} \alpha f(\mathbf{u}),
\end{aligned}
$$

where both $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ follow from the construction of f.
By 1. and 2., we see that f is linear. This completes the proof of existence.

Proof (continued). Uniqueness. Let $f_{1}, f_{2}: U \rightarrow V$ be linear functions that satisfy $f_{1}\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f_{1}\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$ and $f_{2}\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f_{2}\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$. WTS $f_{1}=f_{2}$.

Proof (continued). Uniqueness. Let $f_{1}, f_{2}: U \rightarrow V$ be linear functions that satisfy $f_{1}\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f_{1}\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$ and $f_{2}\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f_{2}\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$. WTS $f_{1}=f_{2}$. Fix $\mathbf{u} \in U$. WTS $f_{1}(\mathbf{u})=f_{2}(\mathbf{u})$.

Proof (continued). Uniqueness. Let $f_{1}, f_{2}: U \rightarrow V$ be linear functions that satisfy $f_{1}\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f_{1}\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$ and $f_{2}\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f_{2}\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$. WTS $f_{1}=f_{2}$. Fix $\mathbf{u} \in U$. WTS $f_{1}(\mathbf{u})=f_{2}(\mathbf{u})$. Set $[\mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$.

Proof (continued). Uniqueness. Let $f_{1}, f_{2}: U \rightarrow V$ be linear functions that satisfy $f_{1}\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f_{1}\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$ and $f_{2}\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f_{2}\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$. WTS $f_{1}=f_{2}$. Fix $\mathbf{u} \in U$. WTS $f_{1}(\mathbf{u})=f_{2}(\mathbf{u})$. Set $[\mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$. Then

$$
\begin{aligned}
f_{1}(\mathbf{u}) & =f_{1}\left(\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{n} \mathbf{u}_{n}\right) \\
& =\alpha_{1} f_{1}\left(\mathbf{u}_{1}\right)+\cdots+\alpha_{n} f_{1}\left(\mathbf{u}_{n}\right) \\
& =\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n} \\
& =\alpha_{1} f_{2}\left(\mathbf{u}_{1}\right)+\cdots+\alpha_{n} f_{2}\left(\mathbf{u}_{n}\right) \\
& =f_{2}\left(\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{n} \mathbf{u}_{n}\right) \\
& =f_{2}(\mathbf{u})
\end{aligned}
$$

by the linearity of f_{1} (and more precisely, by Proposition 4.1.5) because
$f_{1}\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f_{1}\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$
because $f_{2}\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f_{2}\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$
by the linearity of $\overline{f_{2}}$ (and more precisely, by Proposition 4.1.5)

Thus, $f_{1}=f_{2}$. This proves uniqueness. \square

Theorem 4.3.2

Let U and V be vector spaces over a field \mathbb{F}, and assume that U is finite-dimensional. Let $\mathcal{B}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be a basis of U, and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in V$. ${ }^{\text {a }}$ Then there exists a unique linear function $f: U \rightarrow V$ s.t. $f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$. Moreover, if the vector space U is non-trivial (i.e. $n \neq 0$), then this unique linear function $f: U \rightarrow V$ satisfies the following: for all $\mathbf{u} \in U$, we have that

$$
f(\mathbf{u})=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

where $[\mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{lll}\alpha_{1} & \ldots & \alpha_{n}\end{array}\right]^{T}$. On the other hand, if U is trivial (i.e. $U=\{\mathbf{0}\}$), ${ }^{b}$ then $f: U \rightarrow V$ is given by $f(\mathbf{0})=\mathbf{0}$.

[^1]
Corollary 4.3.3

Let U and V be vector spaces over a field \mathbb{F}, and assume that U is finite-dimensional. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be a linearly independent set of vectors in U, and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$. ${ }^{\text {a }}$ Then there exists a linear function $f: U \rightarrow V$ s.t. $f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f\left(\mathbf{u}_{k}\right)=\mathbf{v}_{k}$. Moreover, if V is non-trivial, then this linear function f is unique iff $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a basis of U.
${ }^{a}$ Here, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are arbitrary vectors in V. They are not necessarily pairwise distinct.

- Remark: If V is trivial (i.e. $V=\{\mathbf{0}\}$, and consequently $\mathbf{v}_{1}=\cdots=\mathbf{v}_{k}=\mathbf{0}$), then there exists exactly one function from U to V, this function maps all elements of U to $\mathbf{0}$, and obviously, it is linear.

Corollary 4.3.3

Let U and V be vector spaces over a field \mathbb{F}, and assume that U is finite-dimensional. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be a linearly independent set of vectors in U, and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$. ${ }^{\text {a }}$ Then there exists a linear function $f: U \rightarrow V$ s.t. $f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f\left(\mathbf{u}_{k}\right)=\mathbf{v}_{k}$. Moreover, if V is non-trivial, then this linear function f is unique iff $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a basis of U.

[^2]Proof (outline).

Corollary 4.3.3

Let U and V be vector spaces over a field \mathbb{F}, and assume that U is finite-dimensional. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be a linearly independent set of vectors in U, and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$. ${ }^{\text {a }}$ Then there exists a linear function $f: U \rightarrow V$ s.t. $f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f\left(\mathbf{u}_{k}\right)=\mathbf{v}_{k}$. Moreover, if V is non-trivial, then this linear function f is unique iff $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a basis of U.
> ${ }^{2}$ Here, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are arbitrary vectors in V. They are not necessarily pairwise distinct.

Proof (outline). Using Theorem 3.2.19, we extend $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ to a basis of U, and then we apply Theorem 4.3.2. The details are left as an exercise. \square
(9) Isomorphisms
(4) Isomorphisms

- Recall that, for vector spaces U and V over a field \mathbb{F}, a function $f: U \rightarrow V$ is an isomorphism if it is linear and a bijection.
(c) Isomorphisms
- Recall that, for vector spaces U and V over a field \mathbb{F}, a function $f: U \rightarrow V$ is an isomorphism if it is linear and a bijection.
- Vector spaces U and V (over the same field \mathbb{F}) are isomorphic, and we write $U \cong V$, if there exits an isomorphism $f: U \rightarrow V$.

Proposition 4.4.1

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be an isomorphism. Then $f^{-1}: V \rightarrow U$ is also an isomorphism.

Proof. The same as for isomorphisms $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ (details: Lecture Notes). \square

Proposition 4.4.2

Let U, V, and W be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ and $g: V \rightarrow W$ be isomorphisms. Then $g \circ f: U \rightarrow W$ is an isomorphism.

Proof.

Proposition 4.4.2

Let U, V, and W be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ and $g: V \rightarrow W$ be isomorphisms. Then $g \circ f: U \rightarrow W$ is an isomorphism.

Proof. Since $f: U \rightarrow V$ and $g: V \rightarrow W$ are linear functions (because they are isomorphisms), Proposition 4.1 .7 guarantees that their composition $g \circ f: U \rightarrow W$ is also linear.

Proposition 4.4.2

Let U, V, and W be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ and $g: V \rightarrow W$ be isomorphisms. Then $g \circ f: U \rightarrow W$ is an isomorphism.

Proof. Since $f: U \rightarrow V$ and $g: V \rightarrow W$ are linear functions (because they are isomorphisms), Proposition 4.1 .7 guarantees that their composition $g \circ f: U \rightarrow W$ is also linear.

Since $f: U \rightarrow V$ and $g: V \rightarrow W$ are bijections, Proposition 1.10.17 guarantees that $g \circ f: U \rightarrow W$ is also a bijection.

Proposition 4.4.2

Let U, V, and W be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ and $g: V \rightarrow W$ be isomorphisms. Then $g \circ f: U \rightarrow W$ is an isomorphism.

Proof. Since $f: U \rightarrow V$ and $g: V \rightarrow W$ are linear functions (because they are isomorphisms), Proposition 4.1 .7 guarantees that their composition $g \circ f: U \rightarrow W$ is also linear.

Since $f: U \rightarrow V$ and $g: V \rightarrow W$ are bijections, Proposition 1.10.17 guarantees that $g \circ f: U \rightarrow W$ is also a bijection.

So, $g \circ f: U \rightarrow W$ is linear and a bijection, i.e. it is an isomorphism. \square

Theorem 4.4.3

Let U, V, and W be vector spaces over a field \mathbb{F}. Then all the following hold:
(a) $U \cong U$;
(D) if $U \cong V$, then $V \cong U$;
(0) if $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof.

Theorem 4.4.3

Let U, V, and W be vector spaces over a field \mathbb{F}. Then all the following hold:
(0) $U \cong U$;
(D) if $U \cong V$, then $V \cong U$;
(0) if $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof. (a) Clearly, Id $U: U \rightarrow U$ (the identity function on U) is an isomorphism. So, $U \cong U$.

Theorem 4.4.3

Let U, V, and W be vector spaces over a field \mathbb{F}. Then all the following hold:
(2) $U \cong U$;
(D) if $U \cong V$, then $V \cong U$;
(0) if $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof. (a) Clearly, Id $U: U \rightarrow U$ (the identity function on U) is an isomorphism. So, $U \cong U$.
(b) Suppose that $U \cong V$.

Theorem 4.4.3

Let U, V, and W be vector spaces over a field \mathbb{F}. Then all the following hold:
(a) $U \cong U$;
(D) if $U \cong V$, then $V \cong U$;
(0) if $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof. (a) Clearly, Id $U: U \rightarrow U$ (the identity function on U) is an isomorphism. So, $U \cong U$.
(b) Suppose that $U \cong V$. Then there exists an isomorphism $f: U \rightarrow V$.

Theorem 4.4.3

Let U, V, and W be vector spaces over a field \mathbb{F}. Then all the following hold:
(2) $U \cong U$;
(D) if $U \cong V$, then $V \cong U$;
(0) if $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof. (a) Clearly, Id $U: U \rightarrow U$ (the identity function on U) is an isomorphism. So, $U \cong U$.
(b) Suppose that $U \cong V$. Then there exists an isomorphism $f: U \rightarrow V$. But then by Proposition 4.4.2, $f^{-1}: V \rightarrow U$ is also an isomorphism.

Theorem 4.4.3

Let U, V, and W be vector spaces over a field \mathbb{F}. Then all the following hold:
(1) $U \cong U$;
(D) if $U \cong V$, then $V \cong U$;
(0) if $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof. (a) Clearly, Id $U: U \rightarrow U$ (the identity function on U) is an isomorphism. So, $U \cong U$.
(b) Suppose that $U \cong V$. Then there exists an isomorphism $f: U \rightarrow V$. But then by Proposition 4.4.2, $f^{-1}: V \rightarrow U$ is also an isomorphism. So, $V \cong U$.

Theorem 4.4.3

Let U, V, and W be vector spaces over a field \mathbb{F}. Then all the following hold:
(1) $U \cong U$;
(D) if $U \cong V$, then $V \cong U$;
(0) if $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof. (a) Clearly, Id $U: U \rightarrow U$ (the identity function on U) is an isomorphism. So, $U \cong U$.
(b) Suppose that $U \cong V$. Then there exists an isomorphism $f: U \rightarrow V$. But then by Proposition 4.4.2, $f^{-1}: V \rightarrow U$ is also an isomorphism. So, $V \cong U$.
(c) Suppose that $U \cong V$ and $V \cong W$.

Theorem 4.4.3

Let U, V, and W be vector spaces over a field \mathbb{F}. Then all the following hold:
(2) $U \cong U$;
(D) if $U \cong V$, then $V \cong U$;
(0) if $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof. (a) Clearly, Id $U: U \rightarrow U$ (the identity function on U) is an isomorphism. So, $U \cong U$.
(b) Suppose that $U \cong V$. Then there exists an isomorphism $f: U \rightarrow V$. But then by Proposition 4.4.2, $f^{-1}: V \rightarrow U$ is also an isomorphism. So, $V \cong U$.
(c) Suppose that $U \cong V$ and $V \cong W$. Then there exist isomorphisms $f: U \rightarrow V$ and $g: V \rightarrow W$.

Theorem 4.4.3

Let U, V, and W be vector spaces over a field \mathbb{F}. Then all the following hold:
(1) $U \cong U$;
(D) if $U \cong V$, then $V \cong U$;
(0) if $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof. (a) Clearly, Id $U: U \rightarrow U$ (the identity function on U) is an isomorphism. So, $U \cong U$.
(b) Suppose that $U \cong V$. Then there exists an isomorphism $f: U \rightarrow V$. But then by Proposition 4.4.2, $f^{-1}: V \rightarrow U$ is also an isomorphism. So, $V \cong U$.
(c) Suppose that $U \cong V$ and $V \cong W$. Then there exist isomorphisms $f: U \rightarrow V$ and $g: V \rightarrow W$. But then by Proposition 4.4.2, $g \circ f: U \rightarrow W$ is an isomorphism.

Theorem 4.4.3

Let U, V, and W be vector spaces over a field \mathbb{F}. Then all the following hold:
(2) $U \cong U$;
(D) if $U \cong V$, then $V \cong U$;
(0) if $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof. (a) Clearly, Id $U: U \rightarrow U$ (the identity function on U) is an isomorphism. So, $U \cong U$.
(b) Suppose that $U \cong V$. Then there exists an isomorphism $f: U \rightarrow V$. But then by Proposition 4.4.2, $f^{-1}: V \rightarrow U$ is also an isomorphism. So, $V \cong U$.
(c) Suppose that $U \cong V$ and $V \cong W$. Then there exist isomorphisms $f: U \rightarrow V$ and $g: V \rightarrow W$. But then by Proposition 4.4.2, $g \circ f: U \rightarrow W$ is an isomorphism. So, $U \cong W . \square$

- Reminder: Theorem 4.2.13 (schematically and informally):

$$
\begin{array}{lll}
f: U \\
\text { (a)-(b) } \begin{array}{l}
\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \text { are } \\
\text { linearly independent }
\end{array} & \stackrel{\text { if } f \text { is }{ }_{\text {is }}}{\rightleftharpoons} \\
\text { always }
\end{array} \quad \begin{aligned}
& \text { linearly independent } \\
& \text { (c)-(d) } \\
& \mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \text { span } U
\end{aligned}
$$

- Reminder: Theorem 4.2.13 (schematically and informally):

		$f: U \xrightarrow{\text { linear }} V$	
(a)-(b)	$\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ are linearly independent		$f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ are linearly independent
(c)-(d)	$\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ span U	$\begin{aligned} & \text { if } f \stackrel{\text { is onto }}{\Longrightarrow} \\ & \text { if } f \text { is } 1-1 \end{aligned}$	$f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ span V

Theorem 4.4.4

Let U and V be vector spaces over a field \mathbb{F}, let $f: U \rightarrow V$ be an isomorphism, and let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$. Then all the following hold:
(a) vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ are linearly independent in U iff vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ are linearly independent in V;
(b) vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ span U iff vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ span V;
(๑) $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a basis of U iff $\left\{f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right\}$ is a basis of V.

Proof. This follows from Theorem 4.2.13 (details: Lecture Notes).

Theorem 4.4.4

Let U and V be vector spaces over a field \mathbb{F}, let $f: U \rightarrow V$ be an isomorphism, and let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$. Then all the following hold:
(0) vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ are linearly independent in U iff vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ are linearly independent in V;
(b) vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ span U iff vectors $f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)$ span V;
(c) $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a basis of U iff $\left\{f\left(\mathbf{u}_{1}\right), \ldots, f\left(\mathbf{u}_{k}\right)\right\}$ is a basis of V.

- Proposition 4.4.5 (next slide) is a converse of sorts of Theorem 4.4.4(c).
- It essentially states that any linear function that (injectively) maps a basis onto a basis is an isomorphism.

Proposition 4.4.5

Let U and V be finite-dimensional vector spaces over a field \mathbb{F}. Assume that $\operatorname{dim}(U)=\operatorname{dim}(V)=: n$. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be a basis for U, and let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for V. Then there exists a unique linear function $f: U \rightarrow V$ s.t. $f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$. Moreover, this linear function f is an isomorphism.

Proof.

Proposition 4.4.5

Let U and V be finite-dimensional vector spaces over a field \mathbb{F}. Assume that $\operatorname{dim}(U)=\operatorname{dim}(V)=: n$. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be a basis for U, and let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for V. Then there exists a unique linear function $f: U \rightarrow V$ s.t. $f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$. Moreover, this linear function f is an isomorphism.

Proof. The existence and uniqueness of the linear function f follows from Theorem 4.3.2.

Proposition 4.4.5

Let U and V be finite-dimensional vector spaces over a field \mathbb{F}. Assume that $\operatorname{dim}(U)=\operatorname{dim}(V)=: n$. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be a basis for U, and let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for V. Then there exists a unique linear function $f: U \rightarrow V$ s.t. $f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$. Moreover, this linear function f is an isomorphism.

Proof. The existence and uniqueness of the linear function f follows from Theorem 4.3.2. But by hypothesis, U and V are finite-dimensional vector spaces satisfying $\operatorname{dim}(U)=\operatorname{dim}(V)$, and so by Corollary 4.2.10, it is enough to show that f is onto.

Proof (continued). Fix $\mathbf{v} \in V$.

Proof (continued). Fix $\mathbf{v} \in V$. Since $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for V, we know that there exist scalars $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$ s.t. $\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}$.

Proof (continued). Fix $\mathbf{v} \in V$. Since $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for V, we know that there exist scalars $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$ s.t. $\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}$. But now

$$
\begin{aligned}
f\left(\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{n} \mathbf{u}_{n}\right) & \stackrel{(*)}{=} \alpha_{1} f\left(\mathbf{u}_{1}\right)+\cdots+\alpha_{n} f\left(\mathbf{u}_{n}\right) \\
& =\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n} \\
& =\mathbf{v}
\end{aligned}
$$

where $\left(^{*}\right)$ follows from the linearity of f (and more precisely, from Proposition 4.1.5). So, f is onto, and we are done. \square

Proposition 4.4.5

Let U and V be finite-dimensional vector spaces over a field \mathbb{F}. Assume that $\operatorname{dim}(U)=\operatorname{dim}(V)=: n$. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be a basis for U, and let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for V. Then there exists a unique linear function $f: U \rightarrow V$ s.t. $f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}, \ldots, f\left(\mathbf{u}_{n}\right)=\mathbf{v}_{n}$. Moreover, this linear function f is an isomorphism.

- Reminder:

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Then all the following hold:
(0) if f is one-to-one, then $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(D) if f is onto, then $\operatorname{dim}(U) \geq \operatorname{dim}(V)$;
(c) if f is an isomorphism, then $\operatorname{dim}(U)=\operatorname{dim}(V)$.

- Reminder:

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Then all the following hold:
(0) if f is one-to-one, then $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(D) if f is onto, then $\operatorname{dim}(U) \geq \operatorname{dim}(V)$;
(c) if f is an isomorphism, then $\operatorname{dim}(U)=\operatorname{dim}(V)$.

- By Theorem 4.2.14(c), any two isomorphic vector spaces have the same dimension.
- Reminder:

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be a linear function. Then all the following hold:
(0) if f is one-to-one, then $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(D) if f is onto, then $\operatorname{dim}(U) \geq \operatorname{dim}(V)$;
(c) if f is an isomorphism, then $\operatorname{dim}(U)=\operatorname{dim}(V)$.

- By Theorem 4.2.14(c), any two isomorphic vector spaces have the same dimension.
- Theorem 4.4.6 (next slide) guarantees that, in the case of finite-dimensional vector spaces, the converse is also true: any two vector spaces (over the same field) that have the same finite dimension are isomorphic.
- We give two proofs of Theorem 4.4.6!

Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field \mathbb{F}. Then U and V are isomorphic iff $\operatorname{dim}(U)=\operatorname{dim}(V)$.

- Warning: This theorem is only true for finite-dimensional vector spaces, and it becomes false for infinite-dimensional ones.

Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field \mathbb{F}. Then U and V are isomorphic iff $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Proof\#1.

Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field \mathbb{F}. Then U and V are isomorphic iff $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Proof\#1. If U and V are isomorphic, then Theorem 4.2.14(c) guarantees that $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field \mathbb{F}. Then U and V are isomorphic iff $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Proof\#1. If U and V are isomorphic, then Theorem 4.2.14(c) guarantees that $\operatorname{dim}(U)=\operatorname{dim}(V)$.
Suppose, conversely, that $\operatorname{dim}(U)=\operatorname{dim}(V)=: n$.

Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field \mathbb{F}. Then U and V are isomorphic iff $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Proof\#1. If U and V are isomorphic, then Theorem 4.2.14(c) guarantees that $\operatorname{dim}(U)=\operatorname{dim}(V)$.
Suppose, conversely, that $\operatorname{dim}(U)=\operatorname{dim}(V)=: n$. Fix any basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of U and any basis $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ of V.

Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field \mathbb{F}. Then U and V are isomorphic iff $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Proof\#1. If U and V are isomorphic, then Theorem 4.2.14(c) guarantees that $\operatorname{dim}(U)=\operatorname{dim}(V)$.
Suppose, conversely, that $\operatorname{dim}(U)=\operatorname{dim}(V)=: n$. Fix any basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of U and any basis $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ of V. By Proposition 4.3.1, $[\cdot]_{\mathcal{B}}: U \rightarrow \mathbb{F}^{n}$ and $[\cdot]_{\mathcal{C}}: V \rightarrow \mathbb{F}^{n}$ are both isomorphisms,

Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field \mathbb{F}. Then U and V are isomorphic iff $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Proof\#1. If U and V are isomorphic, then Theorem 4.2.14(c) guarantees that $\operatorname{dim}(U)=\operatorname{dim}(V)$.
Suppose, conversely, that $\operatorname{dim}(U)=\operatorname{dim}(V)=: n$. Fix any basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of U and any basis $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ of V. By Proposition 4.3.1, $[\cdot]_{\mathcal{B}}: U \rightarrow \mathbb{F}^{n}$ and $[\cdot]_{\mathcal{C}}: V \rightarrow \mathbb{F}^{n}$ are both isomorphisms, and consequently, $U \cong \mathbb{F}^{n}$ and $V \cong \mathbb{F}^{n}$.

Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field \mathbb{F}. Then U and V are isomorphic iff $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Proof\#1. If U and V are isomorphic, then Theorem 4.2.14(c) guarantees that $\operatorname{dim}(U)=\operatorname{dim}(V)$.
Suppose, conversely, that $\operatorname{dim}(U)=\operatorname{dim}(V)=: n$. Fix any basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of U and any basis $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ of V. By Proposition 4.3.1, $[\cdot]_{\mathcal{B}}: U \rightarrow \mathbb{F}^{n}$ and $[\cdot]_{\mathcal{C}}: V \rightarrow \mathbb{F}^{n}$ are both isomorphisms, and consequently, $U \cong \mathbb{F}^{n}$ and $V \cong \mathbb{F}^{n}$. But now Theorem 4.4.3 guarantees that $U \cong V . \square$

Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field \mathbb{F}. Then U and V are isomorphic iff $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Proof\#2.

Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field \mathbb{F}. Then U and V are isomorphic iff $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Proof\#2. If U and V are isomorphic, then Theorem 4.2.14(c) guarantees that $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field \mathbb{F}. Then U and V are isomorphic iff $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Proof\#2. If U and V are isomorphic, then Theorem 4.2.14(c) guarantees that $\operatorname{dim}(U)=\operatorname{dim}(V)$. Suppose, conversely, that $\operatorname{dim}(U)=\operatorname{dim}(V)=: n$.

Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field \mathbb{F}. Then U and V are isomorphic iff $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Proof\#2. If U and V are isomorphic, then Theorem 4.2.14(c) guarantees that $\operatorname{dim}(U)=\operatorname{dim}(V)$. Suppose, conversely, that $\operatorname{dim}(U)=\operatorname{dim}(V)=: n$. Fix a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of U and a basis $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ of V.

Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field \mathbb{F}. Then U and V are isomorphic iff $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Proof\#2. If U and V are isomorphic, then Theorem 4.2.14(c) guarantees that $\operatorname{dim}(U)=\operatorname{dim}(V)$. Suppose, conversely, that $\operatorname{dim}(U)=\operatorname{dim}(V)=: n$. Fix a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of U and a basis $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ of V. Then by Proposition 4.4.5, there exists a unique linear function $f: U \rightarrow V$ s.t. $f\left(\mathbf{b}_{1}\right)=\mathbf{c}_{1}, \ldots, f\left(\mathbf{b}_{n}\right)=\mathbf{c}_{n}$, and moreover, this linear function f is an isomorphism.

Theorem 4.4.6

Let U and V be finite-dimensional vector spaces over a field \mathbb{F}. Then U and V are isomorphic iff $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Proof\#2. If U and V are isomorphic, then Theorem 4.2.14(c) guarantees that $\operatorname{dim}(U)=\operatorname{dim}(V)$. Suppose, conversely, that $\operatorname{dim}(U)=\operatorname{dim}(V)=: n$. Fix a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of U and a basis $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ of V. Then by Proposition 4.4.5, there exists a unique linear function $f: U \rightarrow V$ s.t. $f\left(\mathbf{b}_{1}\right)=\mathbf{c}_{1}, \ldots, f\left(\mathbf{b}_{n}\right)=\mathbf{c}_{n}$, and moreover, this linear function f is an isomorphism.

So, U and V are isomorphic. \square

Proposition 4.4.7

Let U and V be a vector spaces over a field \mathbb{F}, and let $f: U \rightarrow V$ be an isomorphism, and let $U^{\prime} \subseteq U$. Then U^{\prime} is a subspace of U iff $V^{\prime}:=f\left[U^{\prime}\right]$ is a subspace of V. Moreover, in this case, all the following hold:
(a) the function $f^{\prime}: U^{\prime} \rightarrow V^{\prime}$ given by $f^{\prime}(\mathbf{u})=f(\mathbf{u})$ for all $\mathbf{u} \in U^{\prime}$ is an isormophism;
(D) $U^{\prime} \cong V^{\prime}$;
(0) $\operatorname{dim}\left(U^{\prime}\right)=\operatorname{dim}\left(V^{\prime}\right)$.

Proof. Lecture Notes. \square

[^0]: ${ }^{\text {a }}$ Here, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are arbitrary vectors in V. They are not necessarily pairwise distinct.
 ${ }^{b}$ Note that in this case, we have that $n=0$ and $\mathcal{B}=\emptyset$.

[^1]: ${ }^{\text {a }}$ Here, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are arbitrary vectors in V. They are not necessarily pairwise distinct.
 ${ }^{b}$ Note that in this case, we have that $n=0$ and $\mathcal{B}=\emptyset$.

[^2]: ${ }^{\text {a }}$ Here, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are arbitrary vectors in V. They are not necessarily pairwise distinct.

