Linear Algebra 1

Lecture #11

Linear functions (part II)

Irena Penev

December 20-21, 2023

• This lecture has four parts:

- This lecture has four parts:
 - The effect of a linear function on linearly independent and spanning sets

- This lecture has four parts:
 - The effect of a linear function on linearly independent and spanning sets
 - Computing bases of the images and preimages of subspaces under linear functions

- This lecture has four parts:
 - The effect of a linear function on linearly independent and spanning sets
 - Computing bases of the images and preimages of subspaces under linear functions
 - 3 Linear functions and bases

- This lecture has four parts:
 - The effect of a linear function on linearly independent and spanning sets
 - Computing bases of the images and preimages of subspaces under linear functions
 - Iinear functions and bases
 - Isomorphisms

The effect of a linear function on linearly independent and spanning sets

The effect of a linear function on linearly independent and spanning sets

Theorem 4.2.11

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$, and set $U' := \operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$. Then all the following hold: (a) U' is a subspace of U, and f[U'] is a subspace of V; (b) $f[U'] = f[\operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)] = \operatorname{Span}(f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k))$, i.e. vectors $f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k)$ span $f[U'] = f[\operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)]$; (c) $\dim(f[U']) \leq \dim(U') \leq k$.

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$, and set $U' := \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$. Then all the following hold:

(a) U' is a subspace of U, and f[U'] is a subspace of V;

Proof of (a).

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$, and set $U' := \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$. Then all the following hold:

• U' is a subspace of U, and f[U'] is a subspace of V;

Proof of (a). The fact that U' is a subspace of U follows immediately from Theorem 3.1.11, and the fact that f[U'] is a subspace of V follows from 4.2.3(a). This proves (a).

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$, and set $U' := \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$. Then all the following hold:

• $f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)] = \text{Span}(f(\mathbf{u}_1), \dots, f(\mathbf{u}_k))$, i.e. vectors $f(\mathbf{u}_1), \dots, f(\mathbf{u}_k)$ span $f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)]$;

Proof of (b).

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$, and set $U' := \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$. Then all the following hold:

•
$$f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)] = \text{Span}(f(\mathbf{u}_1), \dots, f(\mathbf{u}_k))$$
, i.e.
vectors $f(\mathbf{u}_1), \dots, f(\mathbf{u}_k)$ span $f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)]$;

Proof of (b).

$$\begin{aligned} \mathsf{Span}\big(f(\mathbf{u}_1),\ldots,f(\mathbf{u}_k)\big) &= \left\{\alpha_1 f(\mathbf{u}_1) + \cdots + \alpha_k f(\mathbf{u}_k) \mid \alpha_1,\ldots,\alpha_k \in \mathbb{F}\right\} \\ &\stackrel{(*)}{=} \left\{f\big(\alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k\big) \mid \alpha_1,\ldots,\alpha_k \in \mathbb{F}\right\} \end{aligned}$$

$$\stackrel{(**)}{=} \left\{ f(\mathbf{u}) \mid \mathbf{u} \in \mathsf{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k) \right\}$$

$$= f[\mathsf{Span}(\mathbf{u}_1,\ldots,\mathbf{u}_k)] = f[U'],$$

where (*) follows from the linearity of the f (and more precisely, from Prop. 4.1.5), and (**) follows from the definition of span.

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$, and set $U' := \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$. Then all the following hold:

- (a) U' is a subspace of U, and f[U'] is a subspace of V;
- $f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)] = \text{Span}(f(\mathbf{u}_1), \dots, f(\mathbf{u}_k))$, i.e. vectors $f(\mathbf{u}_1), \dots, f(\mathbf{u}_k)$ span $f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)]$;

• dim
$$(f[U']) \leq \dim(U') \leq k$$
.

Proof of (c).

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$, and set $U' := \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$. Then all the following hold:

- (a) U' is a subspace of U, and f[U'] is a subspace of V;
- $f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)] = \text{Span}(f(\mathbf{u}_1), \dots, f(\mathbf{u}_k))$, i.e. vectors $f(\mathbf{u}_1), \dots, f(\mathbf{u}_k)$ span $f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)]$;

• dim
$$(f[U']) \leq \dim(U') \leq k$$
.

Proof of (c). By hypothesis, $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a spanning set of U'.

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$, and set $U' := \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$. Then all the following hold:

- (a) U' is a subspace of U, and f[U'] is a subspace of V;
- $f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)] = \text{Span}(f(\mathbf{u}_1), \dots, f(\mathbf{u}_k))$, i.e. vectors $f(\mathbf{u}_1), \dots, f(\mathbf{u}_k)$ span $f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)]$;

• dim
$$(f[U']) \leq \dim(U') \leq k$$
.

Proof of (c). By hypothesis, $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a spanning set of U'. So, by Theorem 3.2.14, some subset of that spanning set, say $\{\mathbf{u}_{i_1}, \ldots, \mathbf{u}_{i_m}\}$ (with $1 \le i_1 < \cdots < i_m \le k$) is a basis of U'.

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$, and set $U' := \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$. Then all the following hold:

- (a) U' is a subspace of U, and f[U'] is a subspace of V;
- $f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)] = \text{Span}(f(\mathbf{u}_1), \dots, f(\mathbf{u}_k))$, i.e. vectors $f(\mathbf{u}_1), \dots, f(\mathbf{u}_k)$ span $f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)]$;

• dim
$$(f[U']) \leq \dim(U') \leq k$$
.

Proof of (c). By hypothesis, $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a spanning set of U'. So, by Theorem 3.2.14, some subset of that spanning set, say $\{\mathbf{u}_{i_1}, \ldots, \mathbf{u}_{i_m}\}$ (with $1 \le i_1 < \cdots < i_m \le k$) is a basis of U'. So, $\dim(U') = m \le k$.

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$, and set $U' := \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$. Then all the following hold:

- (a) U' is a subspace of U, and f[U'] is a subspace of V;
- $f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)] = \text{Span}(f(\mathbf{u}_1), \dots, f(\mathbf{u}_k))$, i.e. vectors $f(\mathbf{u}_1), \dots, f(\mathbf{u}_k)$ span $f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)]$;

• dim
$$(f[U']) \leq \dim(U') \leq k$$
.

Proof of (c). By hypothesis, $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a spanning set of U'. So, by Theorem 3.2.14, some subset of that spanning set, say $\{\mathbf{u}_{i_1}, \ldots, \mathbf{u}_{i_m}\}$ (with $1 \le i_1 < \cdots < i_m \le k$) is a basis of U'. So, $\dim(U') = m \le k$. But now $\{\mathbf{u}_{i_1}, \ldots, \mathbf{u}_{i_m}\}$ is a spanning set of U'.

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$, and set $U' := \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$. Then all the following hold:

- (a) U' is a subspace of U, and f[U'] is a subspace of V;
- $f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)] = \text{Span}(f(\mathbf{u}_1), \dots, f(\mathbf{u}_k))$, i.e. vectors $f(\mathbf{u}_1), \dots, f(\mathbf{u}_k)$ span $f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)]$;

$$Im(f[U']) \le \dim(U') \le k.$$

Proof of (c). By hypothesis, $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a spanning set of U'. So, by Theorem 3.2.14, some subset of that spanning set, say $\{\mathbf{u}_{i_1}, \ldots, \mathbf{u}_{i_m}\}$ (with $1 \le i_1 < \cdots < i_m \le k$) is a basis of U'. So, dim $(U') = m \le k$. But now $\{\mathbf{u}_{i_1}, \ldots, \mathbf{u}_{i_m}\}$ is a spanning set of U'. So, by part (b) applied to the set $\{\mathbf{u}_{i_1}, \ldots, \mathbf{u}_{i_m}\}$, we get that $\{f(\mathbf{u}_{i_1}), \ldots, f(\mathbf{u}_{i_m})\}$ is a spanning set of f[U'].

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$, and set $U' := \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$. Then all the following hold:

- (a) U' is a subspace of U, and f[U'] is a subspace of V;
- $f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)] = \text{Span}(f(\mathbf{u}_1), \dots, f(\mathbf{u}_k))$, i.e. vectors $f(\mathbf{u}_1), \dots, f(\mathbf{u}_k)$ span $f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)]$;

$$Im(f[U']) \le \dim(U') \le k.$$

Proof of (c). By hypothesis, $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a spanning set of U'. So, by Theorem 3.2.14, some subset of that spanning set, say $\{\mathbf{u}_{i_1}, \ldots, \mathbf{u}_{i_m}\}$ (with $1 \le i_1 < \cdots < i_m \le k$) is a basis of U'. So, dim $(U') = m \le k$. But now $\{\mathbf{u}_{i_1}, \ldots, \mathbf{u}_{i_m}\}$ is a spanning set of U'. So, by part (b) applied to the set $\{\mathbf{u}_{i_1}, \ldots, \mathbf{u}_{i_m}\}$, we get that $\{f(\mathbf{u}_{i_1}), \ldots, f(\mathbf{u}_{i_m})\}$ is a spanning set of f[U']. We now apply Theorem 3.2.14 again, and we deduce that some subset of $\{f(\mathbf{u}_{i_1}), \ldots, f(\mathbf{u}_{i_m})\}$ is a basis of f[U'],

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$, and set $U' := \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$. Then all the following hold:

- (a) U' is a subspace of U, and f[U'] is a subspace of V;
- $f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)] = \text{Span}(f(\mathbf{u}_1), \dots, f(\mathbf{u}_k))$, i.e. vectors $f(\mathbf{u}_1), \dots, f(\mathbf{u}_k)$ span $f[U'] = f[\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)]$;

$$Im(f[U']) \le \dim(U') \le k.$$

Proof of (c). By hypothesis, $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a spanning set of U'. So, by Theorem 3.2.14, some subset of that spanning set, say $\{\mathbf{u}_{i_1}, \ldots, \mathbf{u}_{i_m}\}$ (with $1 \le i_1 < \cdots < i_m \le k$) is a basis of U'. So, dim $(U') = m \le k$. But now $\{\mathbf{u}_{i_1}, \ldots, \mathbf{u}_{i_m}\}$ is a spanning set of U'. So, by part (b) applied to the set $\{\mathbf{u}_{i_1}, \ldots, \mathbf{u}_{i_m}\}$, we get that $\{f(\mathbf{u}_{i_1}), \ldots, f(\mathbf{u}_{i_m})\}$ is a spanning set of f[U']. We now apply Theorem 3.2.14 again, and we deduce that some subset of $\{f(\mathbf{u}_{i_1}), \ldots, f(\mathbf{u}_{i_m})\}$ is a basis of f[U'], and so dim $(f[U']) \le m$. \Box

Let U and V be vector spaces over a field \mathbb{F} , and let $f: U \to V$ be a linear function. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$, and set $U' := \operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$. Then all the following hold: (a) U' is a subspace of U, and f[U'] is a subspace of V; (b) $f[U'] = f[\operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)] = \operatorname{Span}(f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k))$, i.e. vectors $f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k)$ span $f[U'] = f[\operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)]$; (c) $\dim(f[U']) \leq \dim(U') \leq k$.

Let U and V be vector spaces over a field \mathbb{F} , let $f : U \to V$ be a linear function, and let $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ be a spanning set of U. Then $\operatorname{Im}(f) = \operatorname{Span}(f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k))$ and $\operatorname{rank}(f) = \dim(\operatorname{Span}(f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k))) \leq k$.

Proof.

Let U and V be vector spaces over a field \mathbb{F} , let $f : U \to V$ be a linear function, and let $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ be a spanning set of U. Then $\operatorname{Im}(f) = \operatorname{Span}(f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k))$ and $\operatorname{rank}(f) = \dim(\operatorname{Span}(f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k))) \leq k$.

Proof. By hypothesis, $U = \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$.

Let U and V be vector spaces over a field \mathbb{F} , let $f : U \to V$ be a linear function, and let $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ be a spanning set of U. Then $\operatorname{Im}(f) = \operatorname{Span}(f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k))$ and $\operatorname{rank}(f) = \dim(\operatorname{Span}(f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k))) \leq k$.

Proof. By hypothesis, $U = \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$. So, by Theorem 4.2.11(b), we have that $\text{Im}(f) = f[U] = \text{Span}(f(\mathbf{u}_1), \dots, f(\mathbf{u}_k))$,

Let U and V be vector spaces over a field \mathbb{F} , let $f : U \to V$ be a linear function, and let $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ be a spanning set of U. Then $\operatorname{Im}(f) = \operatorname{Span}(f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k))$ and $\operatorname{rank}(f) = \dim(\operatorname{Span}(f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k))) \leq k$.

Proof. By hypothesis, $U = \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$. So, by Theorem 4.2.11(b), we have that $\text{Im}(f) = f[U] = \text{Span}(f(\mathbf{u}_1), \dots, f(\mathbf{u}_k))$, and by Theorem 4.2.11(c), we have that $\text{rank}(f) = \dim(\text{Im}(f)) = \dim(f[U]) \le k$. \Box

Let U and V be vector spaces over a field \mathbb{F} , let $f : U \to V$ be a linear function, and let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$. Then all the following hold:

- if f is one-to-one and vectors u₁,..., u_k are linearly independent in U, then vectors f(u₁),..., f(u_k) are linearly independent in V;
-) if vectors $f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k)$ are linearly independent in V, then vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ are linearly independent in U;
- if f is onto and vectors u₁,..., u_k span U, then vectors f(u₁),..., f(u_k) span V;
- () if f is one-to-one and vectors $f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k)$ span V, then vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ span U.
 - Proof: Lecture Notes.
 - Informal summary: next slide.

• Theorem 4.2.13 (schematically and informally):

$$f: U \stackrel{\text{linear}}{\longrightarrow} V$$

• Dimension considerations:

- As we know, for any function *f* : *A* → *B*, where *A* and *B* are finite sets, the following hold:
 - if f is one-to-one, then $|A| \leq |B|$;
 - if f is onto, then $|A| \ge |B|$;
 - if f is a bijection, then |A| = |B|.

(Actually, the above is true even if we allow A and B to be infinite, but to make sense of the statement, we would need infinite cardinals. We omit the details.)

• Dimension considerations:

- As we know, for any function *f* : *A* → *B*, where *A* and *B* are finite sets, the following hold:
 - if f is one-to-one, then $|A| \leq |B|$;
 - if f is onto, then $|A| \ge |B|$;
 - if f is a bijection, then |A| = |B|.

(Actually, the above is true even if we allow A and B to be infinite, but to make sense of the statement, we would need infinite cardinals. We omit the details.)

• In the case of **linear** functions, Theorem 4.2.14 (next slide) gives us a very similar statement, only involving dimension (rather than cardinality) of the domain and codomain.

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Then all the following hold:

- (a) if f is one-to-one, then $\dim(U) \leq \dim(V)$;
- () if f is onto, then $\dim(U) \ge \dim(V)$;
- If f is an isomorphism, then $\dim(U) = \dim(V)$.

Proof.

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Then all the following hold:

- (a) if f is one-to-one, then $\dim(U) \leq \dim(V)$;
- If f is onto, then $\dim(U) \ge \dim(V)$;
- If f is an isomorphism, then $\dim(U) = \dim(V)$.

Proof. Obviously, (a) and (b) together imply (c).

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Then all the following hold:

- (a) if f is one-to-one, then $\dim(U) \leq \dim(V)$;
- If f is onto, then $\dim(U) \ge \dim(V)$;
- If f is an isomorphism, then $\dim(U) = \dim(V)$.

Proof. Obviously, (a) and (b) together imply (c). So, it is enough to prove (a) and (b).

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Then all the following hold:

(a) if f is one-to-one, then $\dim(U) \leq \dim(V)$;

Proof (continued). (a) We prove the contrapositive: we assume that $\dim(U) > \dim(V)$ (and in particular, $\dim(V)$ is finite), and we prove that f is **not** one-to-one.

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Then all the following hold:

(a) if f is one-to-one, then $\dim(U) \leq \dim(V)$;

Proof (continued). (a) We prove the contrapositive: we assume that $\dim(U) > \dim(V)$ (and in particular, $\dim(V)$ is finite), and we prove that f is **not** one-to-one.

Set $n := \dim(V)$.

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Then all the following hold:

(a) if f is one-to-one, then $\dim(U) \leq \dim(V)$;

Proof (continued). (a) We prove the contrapositive: we assume that $\dim(U) > \dim(V)$ (and in particular, $\dim(V)$ is finite), and we prove that f is **not** one-to-one.

Set $n := \dim(V)$. Since $\dim(U) > \dim(V)$, we know that U has a linearly independent set of size greater than n.

• Indeed, if U is finite-dimensional, then any one of its bases is a linearly independent set of size $\dim(U) > n$, and if U is infinite-dimensional, then Proposition 3.2.18 guarantees that U has linearly independent sets of any finite size.

So, fix a linearly independent set $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ of U, with k > n.

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Then all the following hold:

(a) if f is one-to-one, then $\dim(U) \leq \dim(V)$;

Proof (continued). (a) We prove the contrapositive: we assume that $\dim(U) > \dim(V)$ (and in particular, $\dim(V)$ is finite), and we prove that f is **not** one-to-one.

Set $n := \dim(V)$. Since $\dim(U) > \dim(V)$, we know that U has a linearly independent set of size greater than n.

 Indeed, if U is finite-dimensional, then any one of its bases is a linearly independent set of size dim(U) > n, and if U is infinite-dimensional, then Proposition 3.2.18 guarantees that U has linearly independent sets of any finite size.

So, fix a linearly independent set $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ of U, with k > n. Since dim(V) = n, Theorem 3.2.17(a) guarantees that the set $\{f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k)\}$ is linearly dependent. But now Theorem 4.2.13(a) guarantees that f is not one-to-one.
Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Then all the following hold:

If f is onto, then $\dim(U) \ge \dim(V)$;

Proof (continued). (b) Assume that f is onto; we must show that $\dim(U) \ge \dim(V)$.

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Then all the following hold:

If f is onto, then $\dim(U) \ge \dim(V)$;

Proof (continued). (b) Assume that f is onto; we must show that $\dim(U) \ge \dim(V)$. We may assume that $n := \dim(U)$ is finite, for otherwise, we are done.

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Then all the following hold:

If f is onto, then $\dim(U) \ge \dim(V)$;

Proof (continued). (b) Assume that f is onto; we must show that $\dim(U) \ge \dim(V)$. We may assume that $n := \dim(U)$ is finite, for otherwise, we are done. We must show that $\dim(V) \le n$.

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Then all the following hold:

If f is onto, then $\dim(U) \ge \dim(V)$;

Proof (continued). (b) Assume that f is onto; we must show that $\dim(U) \ge \dim(V)$. We may assume that $n := \dim(U)$ is finite, for otherwise, we are done. We must show that $\dim(V) \le n$.

Fix any basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ of U.

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Then all the following hold:

If f is onto, then $\dim(U) \ge \dim(V)$;

Proof (continued). (b) Assume that f is onto; we must show that $\dim(U) \ge \dim(V)$. We may assume that $n := \dim(U)$ is finite, for otherwise, we are done. We must show that $\dim(V) \le n$.

Fix any basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ of U. In particular, vectos $\mathbf{u}_1, \ldots, \mathbf{u}_n$ span U, and so since f is onto, Theorem 4.2.13(c) guarantees that vectors $f(\mathbf{u}_1), \ldots, f(\mathbf{u}_n)$ span V.

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Then all the following hold:

If f is onto, then $\dim(U) \ge \dim(V)$;

Proof (continued). (b) Assume that f is onto; we must show that $\dim(U) \ge \dim(V)$. We may assume that $n := \dim(U)$ is finite, for otherwise, we are done. We must show that $\dim(V) \le n$.

Fix any basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ of U. In particular, vectos $\mathbf{u}_1, \ldots, \mathbf{u}_n$ span U, and so since f is onto, Theorem 4.2.13(c) guarantees that vectors $f(\mathbf{u}_1), \ldots, f(\mathbf{u}_n)$ span V. But then by Theorem 3.2.14, some subset of $\{f(\mathbf{u}_1), \ldots, f(\mathbf{u}_n)\}$ is a basis of V, and it follows that dim $(V) \leq n$. \Box

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Then all the following hold:

- (a) if f is one-to-one, then $\dim(U) \leq \dim(V)$;
- If f is onto, then $\dim(U) \ge \dim(V)$;
- If f is an isomorphism, then $\dim(U) = \dim(V)$.

Computing bases of the images and preimages of subspaces under linear functions

Proposition 4.2.15

Let \mathbb{F} be a field, let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function, let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f, let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in \mathbb{F}^m$ $(k \ge 1)$, and set $U := \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$. Then

$$f[U] = \operatorname{Col}(A[\mathbf{u}_1 \ldots \mathbf{u}_k]),$$

and moreover, the pivot columns of the matrix $A \begin{bmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_k \end{bmatrix}$ form a basis of f[U].

• First an example, then a proof.

Example 4.2.16

Let $f:\mathbb{Z}_2^5 o \mathbb{Z}_2^4$ be the linear function whose standard matrix is

and consider the vectors

$$\mathbf{u}_{1} = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, \quad \mathbf{u}_{2} = \begin{bmatrix} 1\\0\\1\\0\\1 \end{bmatrix}, \quad \mathbf{u}_{3} = \begin{bmatrix} 0\\1\\0\\1\\0 \end{bmatrix}, \quad \mathbf{u}_{4} = \begin{bmatrix} 1\\0\\0\\0\\1 \end{bmatrix}$$

in \mathbb{Z}_2^5 . Set $U := \text{Span}(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4)$. Find a basis for f[U].

Solution.

Solution. Our goal is to find the pivot columns of the matrix $A \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 & \mathbf{u}_4 \end{bmatrix}$, since by Proposition 4.2.15, those columns form a basis of f[U]. First, by multiplying matrices, we obtain

$$A\begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 & \mathbf{u}_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

$$\mathsf{RREF}\Big(A\left[\begin{array}{ccccc} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 & \mathbf{u}_4\end{array}\right]\Big) = \left[\begin{array}{cccccc} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right].$$

-

-

$$\mathsf{RREF}\Big(A\left[\begin{array}{cccc} \mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} & \mathbf{u}_{4}\end{array}\right]\Big) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

The can see, the pivot columns of $A\left[\begin{array}{cccc} \mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} & \mathbf{u}_{4}\end{array}\right]$ are its and fourth column.

As we first and fourth colu

$$\mathsf{RREF}\Big(A\left[\begin{array}{ccccc} \mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} & \mathbf{u}_{4}\end{array}\right]\Big) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

can see, the pivot columns of $A\left[\begin{array}{ccccc} \mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} & \mathbf{u}_{4}\end{array}\right]$ are its

As we first and fourth column. Therefore,

$$\left\{ \left[\begin{array}{c} 1\\1\\0\\0 \end{array} \right], \left[\begin{array}{c} 0\\1\\1\\0 \end{array} \right] \right\}$$

is a basis of f[U]. \Box

Proposition 4.2.15

Let \mathbb{F} be a field, let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function, let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f, let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in \mathbb{F}^m$ $(k \ge 1)$, and set $U := \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$. Then

$$f[U] = \operatorname{Col}(A[\mathbf{u}_1 \ldots \mathbf{u}_k]),$$

and moreover, the pivot columns of the matrix $A \begin{bmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_k \end{bmatrix}$ form a basis of f[U].

Proof.

Proposition 4.2.15

Let \mathbb{F} be a field, let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function, let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f, let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in \mathbb{F}^m$ $(k \ge 1)$, and set $U := \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$. Then

$$f[U] = \operatorname{Col}(A[\mathbf{u}_1 \ldots \mathbf{u}_k]),$$

and moreover, the pivot columns of the matrix $A \begin{bmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_k \end{bmatrix}$ form a basis of f[U].

Proof. First, we compute (next slide):

Proof (continued).

$$f[U] = f[\operatorname{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)]$$

$$\stackrel{(*)}{=} \operatorname{Span}(f(\mathbf{u}_1), \dots, f(\mathbf{u}_k))$$

$$\stackrel{(**)}{=} \operatorname{Col}([f(\mathbf{u}_1) \dots f(\mathbf{u}_k)])$$

$$\stackrel{(***)}{=} \operatorname{Col}([A\mathbf{u}_1 \dots A\mathbf{u}_k])$$

$$\stackrel{(****)}{=} \operatorname{Col}(A[\mathbf{u}_1 \dots \mathbf{u}_k]),$$

where (*) follows from Theorem 4.2.11(b), (**) follows from the definition of the column space, and (***) follows from the fact that A is the standard matrix of f, and (****) follows from the definition of matrix multiplication.

Proof (continued).

$$f[U] = f[\operatorname{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)]$$

$$\stackrel{(*)}{=} \operatorname{Span}(f(\mathbf{u}_1), \dots, f(\mathbf{u}_k))$$

$$\stackrel{(**)}{=} \operatorname{Col}([f(\mathbf{u}_1) \dots f(\mathbf{u}_k)])$$

$$\stackrel{(***)}{=} \operatorname{Col}([A\mathbf{u}_1 \dots A\mathbf{u}_k])$$

$$\stackrel{(****)}{=} \operatorname{Col}(A[\mathbf{u}_1 \dots \mathbf{u}_k]),$$

where (*) follows from Theorem 4.2.11(b), (**) follows from the definition of the column space, and (***) follows from the fact that A is the standard matrix of f, and (****) follows from the definition of matrix multiplication. By Theorem 3.3.4, the pivot columns of a matrix form a basis of the column space of that matrix, and the result follows. \Box

Proposition 4.2.18

Let \mathbb{F} be a field, let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function, let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f, let $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathbb{F}^n$ $(k \ge 1)$, and set $V := \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$ Then

$$\begin{aligned} f^{-1}[V] &= \left\{ \mathbf{x} \in \mathbb{F}^m \mid \exists \mathbf{y} \in \mathbb{F}^k \text{ s.t. } \left[\begin{array}{c} A \mid \mathbf{v}_1 & \dots & \mathbf{v}_k \end{array} \right] \left[\begin{array}{c} \mathbf{x} \\ \mathbf{y} \end{array} \right] = \mathbf{0} \right\} \\ &= \left\{ \mathbf{x} \in \mathbb{F}^m \mid \exists \mathbf{y} \in \mathbb{F}^k \text{ s.t. } \left[\begin{array}{c} \mathbf{x} \\ \mathbf{y} \end{array} \right] \in \mathsf{Nul} \left(\left[\begin{array}{c} A \mid \mathbf{v}_1 & \dots & \mathbf{v}_k \end{array} \right] \right) \right\} \end{aligned}$$

• First an example, then a proof.

Example 4.2.19

Consider the linear function $f : \mathbb{R}^4 \to \mathbb{R}^5$ whose standard matrix is

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -2 & -4 & 0 \\ -2 & -3 & -6 & 1 \\ 4 & 0 & 0 & 0 \\ 2 & -1 & -2 & 0 \end{bmatrix}$$

and consider the following vectors in \mathbb{R}^5 :

•
$$\mathbf{v}_1 = \begin{bmatrix} -1 & 6 & 9 & -4 & 1 \end{bmatrix}';$$

• $\mathbf{v}_2 = \begin{bmatrix} 2 & 2 & -2 & 8 & 5 \end{bmatrix};$
• $\mathbf{v}_3 = \begin{bmatrix} 0 & 0 & 0 & -1 & 0 \end{bmatrix}^T;$
• $\mathbf{v}_4 = \begin{bmatrix} 0 & -2 & -3 & -1 & -1 \end{bmatrix}^T;$
• $\mathbf{v}_5 = \begin{bmatrix} 0 & -1 & -2 & 1 & 0 \end{bmatrix}^T;$
• $\mathbf{v}_6 = \begin{bmatrix} -3 & -1 & 2 & -11 & -6 \end{bmatrix}^T.$
Set $V := \operatorname{Span}(\mathbf{v}_1, \dots, \mathbf{v}_6)$. Find a basis of $f^{-1}[V]$

Solution. We apply Proposition 4.2.18.

Solution. We apply Proposition 4.2.18. We first form the matrix

$$C := \begin{bmatrix} A & \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 & \mathbf{v}_5 & \mathbf{v}_6 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & 2 & 0 & 0 & 0 & -3 \\ 0 & -2 & -4 & 0 & 6 & 2 & 0 & -2 & -1 & -1 \\ -2 & -3 & -6 & 1 & 9 & -2 & 0 & -3 & -2 & 2 \\ 4 & 0 & 0 & 0 & -4 & 8 & -1 & -1 & 1 & -11 \\ 2 & -1 & -2 & 0 & 1 & 5 & 0 & -1 & 0 & -6 \end{bmatrix},$$

and we find the general solution of the matrix-vector equation

$$\underbrace{\left[\begin{array}{cccc} A & \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 & \mathbf{v}_5 & \mathbf{v}_6 \end{array}\right]}_{=C} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \mathbf{0},$$

where the vector **x** has four entries (because A has four columns) and the vector **y** has six entries (because we have six vectors $\mathbf{v}_1, \ldots, \mathbf{v}_6$).

$$\mathsf{RREF}(C) = \begin{bmatrix} 1 & 0 & 0 & 0 & | & -1 & 2 & 0 & 0 & 0 & -3 \\ 0 & 1 & 2 & 0 & | & -3 & -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & | & -2 & -1 & 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 & | & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & | & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

So, the general solution of our matrix-vector equation is

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} q - 2r + 3t \\ -2p + 3q + r - s \\ p \\ -2q + r + 2t \\ q \\ r \\ -s \\ s \\ -t \\ t \end{bmatrix},$$

where $p, q, r, s, t \in \mathbb{R}$.

$$\mathsf{RREF}(C) = \begin{bmatrix} 1 & 0 & 0 & 0 & | & -1 & 2 & 0 & 0 & 0 & -3 \\ 0 & 1 & 2 & 0 & | & -3 & -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & | & -2 & -1 & 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 & | & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & | & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

So, the general solution of our matrix-vector equation is

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} q - 2r + 3t \\ -2p + 3q + r - s \\ p \\ 2q + r + 2t \\ - - \frac{2q}{q} + r + 2t \\ q \\ r \\ -s \\ s \\ -t \\ t \end{bmatrix}, \quad \text{where } p, q, r, s, t \in \mathbb{R}.$$

But as per Proposition 4.2.18, we only need x!

Solution. So, we simply ignore the part below the horizontal dotted line, and we obtain:

$$\mathbf{x} = \begin{bmatrix} q - 2r + 3t \\ -2p + 3q + r - s \\ p \\ 2q + r + 2t \end{bmatrix},$$

where
$$p, q, r, s, t \in \mathbb{R}$$
.

Solution. So, we simply ignore the part below the horizontal dotted line, and we obtain:

$$\mathbf{x} = \begin{bmatrix} q-2r+3t \\ -2p+3q+r-s \\ p \\ 2q+r+2t \end{bmatrix}, \quad \text{where } p, q, r, s, t \in \mathbb{R}.$$

By separating parameters, we obtain

$$\mathbf{x} = p \begin{bmatrix} 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + q \begin{bmatrix} 1 \\ 3 \\ 0 \\ 2 \end{bmatrix} + r \begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix} + s \begin{bmatrix} 0 \\ -1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 3 \\ 0 \\ 0 \\ 2 \end{bmatrix},$$

where $p, q, r, s, t \in \mathbb{R}$.

Solution. So, we simply ignore the part below the horizontal dotted line, and we obtain:

$$\mathbf{x} = \begin{bmatrix} q-2r+3t \\ -2p+3q+r-s \\ p \\ 2q+r+2t \end{bmatrix}, \quad \text{where } p, q, r, s, t \in \mathbb{R}.$$

By separating parameters, we obtain

$$\mathbf{x} = p \begin{bmatrix} 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + q \begin{bmatrix} 1 \\ 3 \\ 0 \\ 2 \end{bmatrix} + r \begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix} + s \begin{bmatrix} 0 \\ -1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 3 \\ 0 \\ 0 \\ 2 \end{bmatrix},$$

where $p, q, r, s, t \in \mathbb{R}$.

In view of Proposition 4.2.18, we now have that (next slide):

Solution.

$$f^{-1}[V] = \left\{ p \begin{bmatrix} 0\\-2\\1\\0 \end{bmatrix} + q \begin{bmatrix} 1\\3\\0\\2 \end{bmatrix} + r \begin{bmatrix} -2\\1\\0\\1 \end{bmatrix} + s \begin{bmatrix} 0\\-1\\0\\0 \end{bmatrix} + t \begin{bmatrix} 3\\0\\0\\2 \end{bmatrix} \right\}$$
$$| p, q, r, s, t \in \mathbb{R} \right\}$$

$$= \operatorname{Span}\left(\begin{bmatrix} 0 \\ -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 0 \\ 2 \end{bmatrix} \right)$$
$$= \operatorname{Col}\left(\begin{bmatrix} 0 & 1 & -2 & 0 & 3 \\ -2 & 3 & 1 & -1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 2 \end{bmatrix} \right).$$
$$=:B$$

$$f^{-1}[V] = \operatorname{Col}\left(\underbrace{\begin{bmatrix} 0 & 1 & -2 & 0 & 3\\ -2 & 3 & 1 & -1 & 0\\ 1 & 0 & 0 & 0 & 0\\ 0 & 2 & 1 & 0 & 2 \end{bmatrix}}_{=:B}\right).$$

$$f^{-1}[V] = \operatorname{Col}\left(\underbrace{\begin{bmatrix} 0 & 1 & -2 & 0 & 3\\ -2 & 3 & 1 & -1 & 0\\ 1 & 0 & 0 & 0 & 0\\ 0 & 2 & 1 & 0 & 2 \end{bmatrix}}_{=:B}\right)$$

We note that the five vectors that we obtained in the second-to-last line above are not necessarily linearly independent, and so to find an actual basis of $f^{-1}[V]$, we row reduce the matrix B and use Theorem 3.3.4. Indeed, Theorem 3.3.4 guarantees that the pivot columns of B form a basis of $Col(B) = f^{-1}[V]$.

- In fact, we can immediately see that they are not linearly independent: no five vectors in ℝ⁴ are linearly independent (by Theorem 3.2.17(a)).
- More generally, though, the reason our computation does not necessarily yield linearly independent vectors is because we "cut off" the entries below the vertical dotted line.

$$f^{-1}[V] = \operatorname{Col}\left(\underbrace{\begin{bmatrix} 0 & 1 & -2 & 0 & 3\\ -2 & 3 & 1 & -1 & 0\\ 1 & 0 & 0 & 0 & 0\\ 0 & 2 & 1 & 0 & 2 \end{bmatrix}}_{=:B}\right).$$

$$f^{-1}[V] = \operatorname{Col}\left(\underbrace{\begin{bmatrix} 0 & 1 & -2 & 0 & 3\\ -2 & 3 & 1 & -1 & 0\\ 1 & 0 & 0 & 0 & 0\\ 0 & 2 & 1 & 0 & 2 \end{bmatrix}}_{=:B}\right).$$

By row reducing, we obtain

$$\mathsf{RREF}(B) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 7/5 \\ 0 & 0 & 1 & 0 & -4/5 \\ 0 & 0 & 0 & 1 & 17/5 \end{bmatrix}$$

٠

Thus, the pivot columns of *B* are its leftmost four columns, and those four columns form a basis of $f^{-1}[V]$.

Solution (continued). So, our final answer is that

$$\left\{ \begin{bmatrix} 0\\-2\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\3\\0\\2 \end{bmatrix}, \begin{bmatrix} -2\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\0\\0 \end{bmatrix} \right\}$$

is a basis of $f^{-1}[V]$. \Box

Proposition 4.2.18

Let \mathbb{F} be a field, let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function, let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f, let $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathbb{F}^n$ $(k \ge 1)$, and set $V := \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$ Then

$$f^{-1}[V] = \left\{ \mathbf{x} \in \mathbb{F}^m \mid \exists \mathbf{y} \in \mathbb{F}^k \text{ s.t. } \left[\begin{array}{c} A \mid \mathbf{v}_1 & \dots & \mathbf{v}_k \end{array} \right] \left[\begin{array}{c} \mathbf{x} \\ \mathbf{y} \end{array} \right] = \mathbf{0} \right\}$$
$$= \left\{ \mathbf{x} \in \mathbb{F}^m \mid \exists \mathbf{y} \in \mathbb{F}^k \text{ s.t. } \left[\begin{array}{c} \mathbf{x} \\ \mathbf{y} \end{array} \right] \in \mathsf{Nul} \left(\left[\begin{array}{c} A \mid \mathbf{v}_1 & \dots & \mathbf{v}_k \end{array} \right] \right) \right\}$$

Proof.

Proposition 4.2.18

Let \mathbb{F} be a field, let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function, let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f, let $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathbb{F}^n$ $(k \ge 1)$, and set $V := \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$ Then

$$f^{-1}[V] = \left\{ \mathbf{x} \in \mathbb{F}^m \mid \exists \mathbf{y} \in \mathbb{F}^k \text{ s.t. } \left[\begin{array}{c} A \mid \mathbf{v}_1 & \dots & \mathbf{v}_k \end{array} \right] \left[\begin{array}{c} \mathbf{x} \\ \mathbf{y} \end{array} \right] = \mathbf{0} \right\}$$
$$= \left\{ \mathbf{x} \in \mathbb{F}^m \mid \exists \mathbf{y} \in \mathbb{F}^k \text{ s.t. } \left[\begin{array}{c} \mathbf{x} \\ \mathbf{y} \end{array} \right] \in \operatorname{Nul} \left(\left[\begin{array}{c} A \mid \mathbf{v}_1 & \dots & \mathbf{v}_k \end{array} \right] \right) \right\}$$
Proof. Set $A = \left[\begin{array}{c} \mathbf{a}_1 & \dots & \mathbf{a}_m \end{array} \right].$
Let \mathbb{F} be a field, let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function, let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f, let $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathbb{F}^n$ $(k \ge 1)$, and set $V := \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$ Then

$$f^{-1}[V] = \left\{ \mathbf{x} \in \mathbb{F}^m \mid \exists \mathbf{y} \in \mathbb{F}^k \text{ s.t. } \left[\begin{array}{c} A \mid \mathbf{v}_1 & \dots & \mathbf{v}_k \end{array} \right] \left[\begin{array}{c} \mathbf{x} \\ \mathbf{y} \end{array} \right] = \mathbf{0} \right\}$$
$$= \left\{ \mathbf{x} \in \mathbb{F}^m \mid \exists \mathbf{y} \in \mathbb{F}^k \text{ s.t. } \left[\begin{array}{c} \mathbf{x} \\ \mathbf{y} \end{array} \right] \in \mathsf{Nul} \left(\left[\begin{array}{c} A \mid \mathbf{v}_1 & \dots & \mathbf{v}_k \end{array} \right] \right) \right\}$$

Proof. Set $A = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_m \end{bmatrix}$. Then for all vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_m \end{bmatrix}^T$ in \mathbb{F}^m , we have the following sequence of equivalent statements (next slide):

Proof (continued).

$$\mathbf{x} \in f^{-1}[V]$$

$$\iff f(\mathbf{x}) \in \underbrace{\operatorname{Span}(\mathbf{v}_{1}, \dots, \mathbf{v}_{k})}_{=V}$$

$$\stackrel{(*)}{\iff} A\mathbf{x} \in \operatorname{Span}(\mathbf{v}_{1}, \dots, \mathbf{v}_{k})$$

$$\iff \underbrace{x_{1}\mathbf{a}_{1} + \dots + x_{m}\mathbf{a}_{m}}_{=A\mathbf{x}} \in \operatorname{Span}(\mathbf{v}_{1}, \dots, \mathbf{v}_{k})$$

$$\stackrel{(**)}{\iff} \exists \alpha_{1}, \dots, \alpha_{k} \in \mathbb{F} \text{ s.t. } x_{1}\mathbf{a}_{1} + \dots + x_{m}\mathbf{a}_{m} = \alpha_{1}\mathbf{v}_{1} + \dots + \alpha_{k}\mathbf{v}_{k}$$

$$\iff \exists \alpha_{1}, \dots, \alpha_{k} \in \mathbb{F} \text{ s.t. } x_{1}\mathbf{a}_{1} + \dots + x_{m}\mathbf{a}_{m} - \alpha_{1}\mathbf{v}_{1} - \dots - \alpha_{k}\mathbf{v}_{k} = \mathbf{0},$$

where (*) follows from the fact that A is the standard matrix of f, and (**) follows from the definition of span.

Proof (continued).

$$\mathbf{x} \in f^{-1}[V]$$

$$\exists \alpha_1, \dots, \alpha_k \in \mathbb{F} \text{ s.t. } x_1 \mathbf{a}_1 + \dots + x_m \mathbf{a}_m - \alpha_1 \mathbf{v}_1 - \dots - \alpha_k \mathbf{v}_k = \mathbf{0}$$

$$\stackrel{(***)}{\iff} \quad \exists y_1, \dots, y_k \in \mathbb{F} \text{ s.t. } x_1 \mathbf{a}_1 + \dots + x_m \mathbf{a}_m + y_1 \mathbf{v}_1 + \dots + y_k \mathbf{v}_k = \mathbf{0}$$

$$\iff \quad \exists y_1, \dots, y_k \in \mathbb{F} \text{ s.t. } \left[\mathbf{a}_1 \quad \dots \quad \mathbf{a}_m \mid \mathbf{v}_1 \quad \dots \quad \mathbf{v}_k \right] \begin{bmatrix} x_1 \\ \vdots \\ x_m \\ y_1 \end{bmatrix} = \mathbf{0}$$

$$\iff \qquad \exists \mathbf{y} \in \mathbb{F}^k \text{ s.t. } \begin{bmatrix} A & \mathbf{v}_1 & \dots & \mathbf{v}_k \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \mathbf{0},$$

where (***) follows via substitution $y_i := -\alpha_i \ \forall i \in \{1, \dots, k\}$.

Proof (continued).

$$\mathbf{x} \in f^{-1}[V]$$

$$\stackrel{\text{previous}}{\Longrightarrow} \quad \exists \mathbf{y} \in \mathbb{F}^k \text{ s.t. } \begin{bmatrix} A & \mathbf{v}_1 & \dots & \mathbf{v}_k \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \mathbf{0}$$

$$\stackrel{(****)}{\longleftrightarrow} \quad \exists \mathbf{y} \in \mathbb{F}^k \text{ s.t. } \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \in \text{Nul} \left(\begin{bmatrix} A & \mathbf{v}_1 & \dots & \mathbf{v}_k \end{bmatrix} \right),$$

where (****) follows from the definition of the null space. The result is now immediate. \Box

Inear functions and bases

• Reminder:

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be any vectors in \mathbb{F}^n . Then there exists a **unique** linear function $f : \mathbb{F}^m \to \mathbb{F}^n$ that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$, where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m . Moreover, this linear function f is given by $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$, where $A = \begin{bmatrix} \mathbf{a}_1 & \ldots & \mathbf{a}_m \end{bmatrix}$.

Iinear functions and bases

• Reminder:

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be any vectors in \mathbb{F}^n . Then there exists a **unique** linear function $f : \mathbb{F}^m \to \mathbb{F}^n$ that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$, where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m . Moreover, this linear function f is given by $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$, where $A = \begin{bmatrix} \mathbf{a}_1 & \ldots & \mathbf{a}_m \end{bmatrix}$.

- Our next goal is to generalize Theorem 1.10.5 to linear functions f : U → V, where U and V are vector spaces over a field F, and U is finite-dimensional.
 - Instead of using the standard basis $\mathcal{E}_m = \{\mathbf{e}_1, \dots, \mathbf{e}_m\}$, we will use an arbitrary basis of U.

Suppose that V is a non-trivial, finite-dimensional vector space over a field 𝔽, and that 𝔅 = {𝑢₁,...,𝑢_n} is a basis of V.

- Suppose that V is a non-trivial, finite-dimensional vector space over a field 𝔽, and that 𝔅 = {𝑢₁,...,𝑢_n} is a basis of V.
- By Theorem 3.2.7, every vector of V can be written as linear combination of the vectors v₁,..., v_n in a unique way, that is, ∀v ∈ V ∃!α₁,..., α_n ∈ F s.t.

$$\mathbf{v} := \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n,$$

and the coordinate vector of \boldsymbol{v} with respect to the basis $\mathcal B$ is defined to be

$$\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} := \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}.$$

- Suppose that V is a non-trivial, finite-dimensional vector space over a field 𝔽, and that 𝔅 = {𝑢₁,...,𝑢_n} is a basis of V.
- By Theorem 3.2.7, every vector of V can be written as linear combination of the vectors v₁,..., v_n in a unique way, that is, ∀v ∈ V ∃!α₁,..., α_n ∈ F s.t.

$$\mathbf{v} := \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n,$$

and the coordinate vector of \boldsymbol{v} with respect to the basis $\mathcal B$ is defined to be

$$\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} := \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}.$$

- As our next proposition shows, $\left[\begin{array}{c} \cdot \end{array} \right]_{\mathcal{B}} : V \to \mathbb{F}^n$ is an isomorphism.
 - It essentially allows us to "translate" vectors of an n-dimensional vector space (n ≠ 0) into vectors in Fⁿ.

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F} , and let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis of V. Then $\left[\ \cdot \ \right]_{\mathcal{B}} : V \to \mathbb{F}^n$ is an isomorphism.

Proof.

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F} , and let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis of V. Then $\left[\begin{array}{c} \cdot \end{array} \right]_{\mathcal{B}} : V \to \mathbb{F}^n$ is an isomorphism.

Proof. We start by proving that $\left[\begin{array}{c} \cdot \end{array} \right]_{R}$ is linear.

1. Fix
$$\mathbf{x}, \mathbf{y} \in V$$
. WTS $\begin{bmatrix} \mathbf{x} + \mathbf{y} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} + \begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}}$.

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F} , and let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis of V. Then $\left[\begin{array}{c} \cdot \end{array} \right]_{\mathcal{B}} : V \to \mathbb{F}^n$ is an isomorphism.

1. Fix
$$\mathbf{x}, \mathbf{y} \in V$$
. WTS $\begin{bmatrix} \mathbf{x} + \mathbf{y} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} + \begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}}$. Set $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$ and $\begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \beta_1 & \dots & \beta_n \end{bmatrix}^T$.

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F} , and let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis of V. Then $\left[\begin{array}{c} \cdot \end{array} \right]_{\mathcal{B}} : V \to \mathbb{F}^n$ is an isomorphism.

1. Fix
$$\mathbf{x}, \mathbf{y} \in V$$
. WTS $\begin{bmatrix} \mathbf{x} + \mathbf{y} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} + \begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}}$. Set
 $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$ and $\begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \beta_1 & \dots & \beta_n \end{bmatrix}^T$.
Then $\mathbf{x} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$ and $\mathbf{y} = \beta_1 \mathbf{v}_1 + \dots + \beta_n \mathbf{v}_n$;

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F} , and let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis of V. Then $\left[\begin{array}{c} \cdot \end{array} \right]_{\mathcal{B}} : V \to \mathbb{F}^n$ is an isomorphism.

1. Fix
$$\mathbf{x}, \mathbf{y} \in V$$
. WTS $\begin{bmatrix} \mathbf{x} + \mathbf{y} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} + \begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}}$. Set $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$ and $\begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \beta_1 & \dots & \beta_n \end{bmatrix}^T$. Then $\mathbf{x} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$ and $\mathbf{y} = \beta_1 \mathbf{v}_1 + \dots + \beta_n \mathbf{v}_n$; consequently,

$$\mathbf{x} + \mathbf{y} = (\alpha_1 + \beta_1)\mathbf{v}_1 + \cdots + (\alpha_n + \beta_n)\mathbf{v}_n$$

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F} , and let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis of V. Then $\left[\begin{array}{c} \cdot \end{array} \right]_{\mathcal{B}} : V \to \mathbb{F}^n$ is an isomorphism.

1. Fix
$$\mathbf{x}, \mathbf{y} \in V$$
. WTS $\begin{bmatrix} \mathbf{x} + \mathbf{y} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} + \begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}}$. Set
 $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$ and $\begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \beta_1 & \dots & \beta_n \end{bmatrix}^T$. Then $\mathbf{x} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$ and $\mathbf{y} = \beta_1 \mathbf{v}_1 + \dots + \beta_n \mathbf{v}_n$; consequently,

$$\mathbf{x} + \mathbf{y} = (\alpha_1 + \beta_1)\mathbf{v}_1 + \cdots + (\alpha_n + \beta_n)\mathbf{v}_n$$

and so
$$\begin{bmatrix} \mathbf{x} + \mathbf{y} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 + \beta_1 & \dots & \alpha_n + \beta_n \end{bmatrix}^T$$

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F} , and let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis of V. Then $\left[\begin{array}{c} \cdot \end{array} \right]_{\mathcal{B}} : V \to \mathbb{F}^n$ is an isomorphism.

Proof. We start by proving that $\left[\cdot \right]_{R}$ is linear.

1. Fix
$$\mathbf{x}, \mathbf{y} \in V$$
. WTS $\begin{bmatrix} \mathbf{x} + \mathbf{y} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} + \begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}}$. Set
 $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$ and $\begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \beta_1 & \dots & \beta_n \end{bmatrix}^T$. Then $\mathbf{x} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$ and $\mathbf{y} = \beta_1 \mathbf{v}_1 + \dots + \beta_n \mathbf{v}_n$; consequently,

$$\mathbf{x} + \mathbf{y} = (\alpha_1 + \beta_1)\mathbf{v}_1 + \dots + (\alpha_n + \beta_n)\mathbf{v}_n$$

and so $\begin{bmatrix} \mathbf{x} + \mathbf{y} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 + \beta_1 & \dots & \alpha_n + \beta_n \end{bmatrix}^T$. We now have that (next slide):

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F} , and let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis of V. Then $\left[\ \cdot \ \right]_{\mathcal{B}} : V \to \mathbb{F}^n$ is an isomorphism.

Proof (continued).

$$\begin{bmatrix} \mathbf{x} + \mathbf{y} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 + \beta_1 \\ \vdots \\ \alpha_n + \beta_n \end{bmatrix}$$
$$= \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} + \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} + \begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}}.$$

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F} , and let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis of V. Then $\left[\cdot \right]_{\mathcal{B}} : V \to \mathbb{F}^n$ is an isomorphism.

Proof (continued). Similarly (details: Lecture Notes): 2. $\forall \mathbf{x} \in V, \ \alpha \in \mathbb{F}: \left[\ \alpha \mathbf{x} \ \right]_{\mathcal{B}} = \alpha \left[\ \mathbf{x} \ \right]_{\mathcal{B}}.$

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F} , and let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis of V. Then $\left[\cdot \right]_{\mathcal{B}} : V \to \mathbb{F}^n$ is an isomorphism.

Proof (continued). Similarly (details: Lecture Notes): 2. $\forall \mathbf{x} \in V, \ \alpha \in \mathbb{F}: \left[\ \alpha \mathbf{x} \ \right]_{\mathcal{B}} = \alpha \left[\ \mathbf{x} \ \right]_{\mathcal{B}}.$ So, $\left[\ \cdot \ \right]_{\mathcal{B}}: V \to \mathbb{F}^n$ is linear.

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F} , and let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis of V. Then $\left[\ \cdot \ \right]_{\mathcal{B}} : V \to \mathbb{F}^n$ is an isomorphism.

Proof (continued). It remains to show that $\left[\cdot \right]_{\mathcal{B}}$ is a bijection, i.e. that it is one-to-one and onto \mathbb{F}^n .

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F} , and let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis of V. Then $\left[\ \cdot \ \right]_{\mathcal{B}} : V \to \mathbb{F}^n$ is an isomorphism.

Proof (continued). It remains to show that $\left\lfloor \cdot \right\rfloor_{\mathcal{B}}$ is a bijection, i.e. that it is one-to-one and onto \mathbb{F}^n .

Since V and \mathbb{F}^n are both *n* dimensional, Corollary 4.2.10 guarantees that *f* is one-to-one iff *f* is onto \mathbb{F}^n .

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F} , and let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis of V. Then $\left[\ \cdot \ \right]_{\mathcal{B}} : V \to \mathbb{F}^n$ is an isomorphism.

Proof (continued). It remains to show that $\left\lfloor \cdot \right\rfloor_{\mathcal{B}}$ is a bijection, i.e. that it is one-to-one and onto \mathbb{F}^n .

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F} , and let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis of V. Then $\left[\ \cdot \ \right]_{\mathcal{B}} : V \to \mathbb{F}^n$ is an isomorphism.

Proof (continued). It remains to show that $\left\lfloor \cdot \right\rfloor_{\mathcal{B}}$ is a bijection, i.e. that it is one-to-one and onto \mathbb{F}^n .

Fix
$$\begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T \in \mathbb{F}^n$$
.

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F} , and let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis of V. Then $\left[\ \cdot \ \right]_{\mathcal{B}} : V \to \mathbb{F}^n$ is an isomorphism.

Proof (continued). It remains to show that $\left\lfloor \cdot \right\rfloor_{\mathcal{B}}$ is a bijection, i.e. that it is one-to-one and onto \mathbb{F}^n .

Fix
$$\begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T \in \mathbb{F}^n$$
. Set $\mathbf{v} := \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$.

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F} , and let $\mathcal{B} = \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a basis of V. Then $\left[\begin{array}{c} \cdot \end{array} \right]_{\mathcal{B}} : V \to \mathbb{F}^n$ is an isomorphism.

Proof (continued). It remains to show that $\left\lfloor \cdot \right\rfloor_{\mathcal{B}}$ is a bijection, i.e. that it is one-to-one and onto \mathbb{F}^n .

Fix
$$\begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T \in \mathbb{F}^n$$
. Set $\mathbf{v} := \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$. Then $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$.

Let V be a non-trivial, finite-dimensional vector space over a field \mathbb{F} , and let $\mathcal{B} = \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a basis of V. Then $\left[\begin{array}{c} \cdot \end{array} \right]_{\mathcal{B}} : V \to \mathbb{F}^n$ is an isomorphism.

Proof (continued). It remains to show that $\left\lfloor \cdot \right\rfloor_{\mathcal{B}}$ is a bijection, i.e. that it is one-to-one and onto \mathbb{F}^n .

Since V and \mathbb{F}^n are both *n* dimensional, Corollary 4.2.10 guarantees that *f* is one-to-one iff *f* is onto \mathbb{F}^n . So, it is enough to show that *f* is onto \mathbb{F}^n .

Fix $\begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T \in \mathbb{F}^n$. Set $\mathbf{v} := \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$. Then $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$. So, $\begin{bmatrix} \cdot \end{bmatrix}_{\mathcal{B}}$ is onto \mathbb{F}^n . This completes the argument. \Box

• Reminder:

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be any vectors in \mathbb{F}^n . Then there exists a **unique** linear function $f : \mathbb{F}^m \to \mathbb{F}^n$ that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$, where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m . Moreover, this linear function f is given by $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$, where $A = \begin{bmatrix} \mathbf{a}_1 & \ldots & \mathbf{a}_m \end{bmatrix}$. • Reminder:

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be any vectors in \mathbb{F}^n . Then there exists a **unique** linear function $f : \mathbb{F}^m \to \mathbb{F}^n$ that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$, where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m . Moreover, this linear function f is given by $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$, where $A = \begin{bmatrix} \mathbf{a}_1 & \ldots & \mathbf{a}_m \end{bmatrix}$.

• Let's generalize this!

Theorem 4.3.2

Let U and V be vector spaces over a field \mathbb{F} , and assume that U is finite-dimensional. Let $\mathcal{B} = \{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ be a basis of U, and let $\mathbf{v}_1, \ldots, \mathbf{v}_n \in V$.^a Then there exists a unique linear function $f: U \to V$ s.t. $f(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f(\mathbf{u}_n) = \mathbf{v}_n$. Moreover, if the vector space U is non-trivial (i.e. $n \neq 0$), then this unique linear function $f: U \to V$ satisfies the following: for all $\mathbf{u} \in U$, we have that

$$f(\mathbf{u}) = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n,$$

where $\begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$. On the other hand, if U is trivial (i.e. $U = \{\mathbf{0}\}$),^b then $f : U \to V$ is given by $f(\mathbf{0}) = \mathbf{0}$.

^aHere, $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are arbitrary vectors in V. They are not necessarily pairwise distinct.

^bNote that in this case, we have that n = 0 and $\mathcal{B} = \emptyset$.

Proof.

Proof. Suppose first that the vector space U is trivial, i.e. n = 0 and $U = \{\mathbf{0}\}$.

Proof. Suppose first that the vector space U is trivial, i.e. n = 0 and $U = \{\mathbf{0}\}$. Then the function $f : U \to V$ given by $f(\mathbf{0}) = \mathbf{0}$ is obviously linear,

Proof. Suppose first that the vector space U is trivial, i.e. n = 0 and $U = \{\mathbf{0}\}$. Then the function $f : U \to V$ given by $f(\mathbf{0}) = \mathbf{0}$ is obviously linear, and moreover, it vacuously satisfies $f(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f(\mathbf{u}_n) = \mathbf{v}_n$ (because n = 0, and so both $\mathbf{u}_1, \ldots, \mathbf{u}_n$ and $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are empty lists of vectors).

Proof. Suppose first that the vector space U is trivial, i.e. n = 0 and $U = \{\mathbf{0}\}$. Then the function $f : U \to V$ given by $f(\mathbf{0}) = \mathbf{0}$ is obviously linear, and moreover, it vacuously satisfies $f(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f(\mathbf{u}_n) = \mathbf{v}_n$ (because n = 0, and so both $\mathbf{u}_1, \ldots, \mathbf{u}_n$ and $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are empty lists of vectors). The uniqueness of f follows from Proposition 4.1.6.

Proof. Suppose first that the vector space U is trivial, i.e. n = 0 and $U = \{\mathbf{0}\}$. Then the function $f : U \to V$ given by $f(\mathbf{0}) = \mathbf{0}$ is obviously linear, and moreover, it vacuously satisfies $f(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f(\mathbf{u}_n) = \mathbf{v}_n$ (because n = 0, and so both $\mathbf{u}_1, \ldots, \mathbf{u}_n$ and $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are empty lists of vectors). The uniqueness of f follows from Proposition 4.1.6.

From now on, we assume that the vector space U is non-trivial, i.e. that $n \neq 0$.
Proof. Suppose first that the vector space U is trivial, i.e. n = 0 and $U = \{\mathbf{0}\}$. Then the function $f : U \to V$ given by $f(\mathbf{0}) = \mathbf{0}$ is obviously linear, and moreover, it vacuously satisfies $f(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f(\mathbf{u}_n) = \mathbf{v}_n$ (because n = 0, and so both $\mathbf{u}_1, \ldots, \mathbf{u}_n$ and $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are empty lists of vectors). The uniqueness of f follows from Proposition 4.1.6.

From now on, we assume that the vector space U is non-trivial, i.e. that $n \neq 0$. We must prove the existence and the uniqueness of the linear function f satisfying the required properties.

$$f(\mathbf{u}) = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n,$$

where $\begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$.

$$f(\mathbf{u}) = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n,$$

where $\begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$. Note that this means that for all $\alpha_1, \dots, \alpha_n \in \mathbb{F}$, we have that

$$f(\alpha_1\mathbf{u}_1+\cdots+\alpha_n\mathbf{u}_n) = \alpha_1\mathbf{v}_1+\cdots+\alpha_n\mathbf{v}_n.$$

$$f(\mathbf{u}) = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n,$$

where $\begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$. Note that this means that for all $\alpha_1, \dots, \alpha_n \in \mathbb{F}$, we have that

$$f(\alpha_1\mathbf{u}_1+\cdots+\alpha_n\mathbf{u}_n) = \alpha_1\mathbf{v}_1+\cdots+\alpha_n\mathbf{v}_n.$$

Let us show that f is linear and satisfies $f(\mathbf{u}_1) = \mathbf{v}_1, \dots, f(\mathbf{u}_n) = \mathbf{v}_n$.

$$f(\mathbf{u}) = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n,$$

where $\begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$. Note that this means that for all $\alpha_1, \dots, \alpha_n \in \mathbb{F}$, we have that

$$f(\alpha_1 \mathbf{u}_1 + \dots + \alpha_n \mathbf{u}_n) = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$$

Let us show that f is linear and satisfies $f(\mathbf{u}_1) = \mathbf{v}_1, \dots, f(\mathbf{u}_n) = \mathbf{v}_n$. For the latter, we note that for all $i \in \{1, \dots, n\}$, we have that

$$f(\mathbf{u}_i) = f(0\mathbf{u}_1 + \cdots + 0\mathbf{u}_{i-1} + 1\mathbf{u}_i + 0\mathbf{u}_{i+1} + \cdots + 0\mathbf{u}_n)$$

$$= 0\mathbf{v}_1 + \cdots + 0\mathbf{v}_{i-1} + 1\mathbf{v}_i + 0\mathbf{v}_{i+1} + \cdots + 0\mathbf{v}_n$$

 $= \mathbf{v}_i$.

This proves that $f(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f(\mathbf{u}_n) = \mathbf{v}_n$.

```
1. Fix \mathbf{x}, \mathbf{y} \in U. WTS f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y}).
```

1. Fix
$$\mathbf{x}, \mathbf{y} \in U$$
. WTS $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$. Set
 $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} \beta_1 & \dots & \beta_n \end{bmatrix}^T$.

1. Fix
$$\mathbf{x}, \mathbf{y} \in U$$
. WTS $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$. Set
 $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} \beta_1 & \dots & \beta_n \end{bmatrix}^T$. We then
have that $\begin{bmatrix} \mathbf{x} + \mathbf{y} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 + \beta_1 & \dots & \alpha_n + \beta_n \end{bmatrix}^T$,

1. Fix
$$\mathbf{x}, \mathbf{y} \in U$$
. WTS $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$. Set
 $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} \beta_1 & \dots & \beta_n \end{bmatrix}^T$. We then
have that $\begin{bmatrix} \mathbf{x} + \mathbf{y} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 + \beta_1 & \dots & \alpha_n + \beta_n \end{bmatrix}^T$, and we see
that

$$f(\mathbf{x} + \mathbf{y}) \stackrel{(*)}{=} (\alpha_1 + \beta_1)\mathbf{v}_1 + \dots + (\alpha_n + \beta_n)\mathbf{v}_n$$
$$= (\alpha_1\mathbf{v}_1 + \dots + \alpha_n\mathbf{v}_n) + (\beta_1\mathbf{v}_1 + \dots + \beta_n\mathbf{v}_n)$$
$$\stackrel{(**)}{=} f(\mathbf{x}) + f(\mathbf{y}),$$

where both (*) and (**) follow from the construction of f.

Proof (continued). 2. Fix $\mathbf{u} \in U$ and $\alpha \in \mathbb{F}$. WTS $f(\alpha \mathbf{u}) = \alpha f(\mathbf{u})$.

Proof (continued). 2. Fix $\mathbf{u} \in U$ and $\alpha \in \mathbb{F}$. WTS $f(\alpha \mathbf{u}) = \alpha f(\mathbf{u})$. Set $\begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$. Proof (continued). 2. Fix $\mathbf{u} \in U$ and $\alpha \in \mathbb{F}$. WTS $f(\alpha \mathbf{u}) = \alpha f(\mathbf{u})$. Set $\begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$. Then $\begin{bmatrix} \alpha \mathbf{u} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha \alpha_1 & \dots & \alpha \alpha_n \end{bmatrix}^T$,

Proof (continued). 2. Fix
$$\mathbf{u} \in U$$
 and $\alpha \in \mathbb{F}$. WTS $f(\alpha \mathbf{u}) = \alpha f(\mathbf{u})$.
Set $\begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$. Then
 $\begin{bmatrix} \alpha \mathbf{u} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha \alpha_1 & \dots & \alpha \alpha_n \end{bmatrix}^T$, and we see that
 $f(\alpha \mathbf{u}) \stackrel{(*)}{=} (\alpha \alpha_1) \mathbf{v}_1 + \dots + (\alpha \alpha_n) \mathbf{v}_n$
 $= \alpha (\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n)$
 $\stackrel{(**)}{=} \alpha f(\mathbf{u}),$

where both (*) and (**) follow from the construction of f.

Proof (continued). 2. Fix
$$\mathbf{u} \in U$$
 and $\alpha \in \mathbb{F}$. WTS $f(\alpha \mathbf{u}) = \alpha f(\mathbf{u})$.
Set $\begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$. Then
 $\begin{bmatrix} \alpha \mathbf{u} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha \alpha_1 & \dots & \alpha \alpha_n \end{bmatrix}^T$, and we see that
 $f(\alpha \mathbf{u}) \stackrel{(*)}{=} (\alpha \alpha_1) \mathbf{v}_1 + \dots + (\alpha \alpha_n) \mathbf{v}_n$
 $= \alpha(\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n)$
 $\stackrel{(**)}{=} \alpha f(\mathbf{u}),$

where both (*) and (**) follow from the construction of f. By 1. and 2., we see that f is linear. This completes the proof of existence. *Proof (continued).* **Uniqueness.** Let $f_1, f_2 : U \to V$ be linear functions that satisfy $f_1(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f_1(\mathbf{u}_n) = \mathbf{v}_n$ and $f_2(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f_2(\mathbf{u}_n) = \mathbf{v}_n$. WTS $f_1 = f_2$.

Proof (continued). Uniqueness. Let $f_1, f_2 : U \to V$ be linear functions that satisfy $f_1(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f_1(\mathbf{u}_n) = \mathbf{v}_n$ and $f_2(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f_2(\mathbf{u}_n) = \mathbf{v}_n$. WTS $f_1 = f_2$. Fix $\mathbf{u} \in U$. WTS $f_1(\mathbf{u}) = f_2(\mathbf{u})$.

Proof (continued). Uniqueness. Let $f_1, f_2 : U \to V$ be linear functions that satisfy $f_1(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f_1(\mathbf{u}_n) = \mathbf{v}_n$ and $f_2(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f_2(\mathbf{u}_n) = \mathbf{v}_n$. WTS $f_1 = f_2$. Fix $\mathbf{u} \in U$. WTS $f_1(\mathbf{u}) = f_2(\mathbf{u})$. Set $\begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \ldots & \alpha_n \end{bmatrix}^T$.

Proof (continued). Uniqueness. Let
$$f_1, f_2 : U \to V$$
 be linear
functions that satisfy $f_1(\mathbf{u}_1) = \mathbf{v}_1, \dots, f_1(\mathbf{u}_n) = \mathbf{v}_n$ and
 $f_2(\mathbf{u}_1) = \mathbf{v}_1, \dots, f_2(\mathbf{u}_n) = \mathbf{v}_n$. WTS $f_1 = f_2$. Fix $\mathbf{u} \in U$. WTS
 $f_1(\mathbf{u}) = f_2(\mathbf{u})$. Set $\begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$. Then
 $f_1(\mathbf{u}) = f_1(\alpha_1\mathbf{u}_1 + \dots + \alpha_n\mathbf{u}_n)$
 $= \alpha_1f_1(\mathbf{u}_1) + \dots + \alpha_nf_1(\mathbf{u}_n)$
 $= \alpha_1f_2(\mathbf{u}_1) + \dots + \alpha_nf_2(\mathbf{u}_n)$
 $= f_2(\alpha_1\mathbf{u}_1 + \dots + \alpha_n\mathbf{u}_n)$
 $= f_2(\alpha_1\mathbf{u}_1 + \dots + \alpha_n\mathbf{u}_n)$
 $= f_2(\mathbf{u})$.

Thus, $f_1 = f_2$. This proves uniqueness. \Box

Let U and V be vector spaces over a field \mathbb{F} , and assume that U is finite-dimensional. Let $\mathcal{B} = \{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ be a basis of U, and let $\mathbf{v}_1, \ldots, \mathbf{v}_n \in V$.^a Then there exists a unique linear function $f: U \to V$ s.t. $f(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f(\mathbf{u}_n) = \mathbf{v}_n$. Moreover, if the vector space U is non-trivial (i.e. $n \neq 0$), then this unique linear function $f: U \to V$ satisfies the following: for all $\mathbf{u} \in U$, we have that

$$f(\mathbf{u}) = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n,$$

where $\begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$. On the other hand, if U is trivial (i.e. $U = \{\mathbf{0}\}$),^b then $f : U \to V$ is given by $f(\mathbf{0}) = \mathbf{0}$.

^aHere, $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are arbitrary vectors in V. They are not necessarily pairwise distinct.

^bNote that in this case, we have that n = 0 and $\mathcal{B} = \emptyset$.

Corollary 4.3.3

Let U and V be vector spaces over a field \mathbb{F} , and assume that U is finite-dimensional. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ be a linearly independent set of vectors in U, and let $\mathbf{v}_1, \ldots, \mathbf{v}_k \in V$.^{*a*} Then there exists a linear function $f: U \to V$ s.t. $f(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f(\mathbf{u}_k) = \mathbf{v}_k$. Moreover, if V is non-trivial, then this linear function f is unique iff $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a basis of U.

^aHere, $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are arbitrary vectors in V. They are not necessarily pairwise distinct.

• **Remark:** If V is trivial (i.e. $V = \{\mathbf{0}\}$, and consequently $\mathbf{v}_1 = \cdots = \mathbf{v}_k = \mathbf{0}$), then there exists exactly one **function** from U to V, this function maps all elements of U to $\mathbf{0}$, and obviously, it is linear.

Corollary 4.3.3

Let U and V be vector spaces over a field \mathbb{F} , and assume that U is finite-dimensional. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ be a linearly independent set of vectors in U, and let $\mathbf{v}_1, \ldots, \mathbf{v}_k \in V$.^a Then there exists a linear function $f: U \to V$ s.t. $f(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f(\mathbf{u}_k) = \mathbf{v}_k$. Moreover, if V is non-trivial, then this linear function f is unique iff $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a basis of U.

^aHere, $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are arbitrary vectors in V. They are not necessarily pairwise distinct.

Proof (outline).

Corollary 4.3.3

Let U and V be vector spaces over a field \mathbb{F} , and assume that U is finite-dimensional. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ be a linearly independent set of vectors in U, and let $\mathbf{v}_1, \ldots, \mathbf{v}_k \in V$.^a Then there exists a linear function $f: U \to V$ s.t. $f(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f(\mathbf{u}_k) = \mathbf{v}_k$. Moreover, if V is non-trivial, then this linear function f is unique iff $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a basis of U.

^aHere, $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are arbitrary vectors in V. They are not necessarily pairwise distinct.

Proof (outline). Using Theorem 3.2.19, we extend $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ to a basis of U, and then we apply Theorem 4.3.2. The details are left as an exercise. \Box

Isomorphisms

Recall that, for vector spaces U and V over a field 𝔽, a function f : U → V is an *isomorphism* if it is linear and a bijection.

Isomorphisms

- Recall that, for vector spaces U and V over a field 𝔽, a function f : U → V is an *isomorphism* if it is linear and a bijection.
- Vector spaces U and V (over the same field 𝔽) are isomorphic, and we write U ≅ V, if there exits an isomorphism f : U → V.

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be an isomorphism. Then $f^{-1} : V \to U$ is also an isomorphism.

$$U \xrightarrow{f} V$$

Proof. The same as for isomorphisms $f : \mathbb{F}^n \to \mathbb{F}^n$ (details: Lecture Notes). \Box

Let U, V, and W be vector spaces over a field \mathbb{F} , and let $f: U \to V$ and $g: V \to W$ be isomorphisms. Then $g \circ f: U \to W$ is an isomorphism.

Proof.

Let U, V, and W be vector spaces over a field \mathbb{F} , and let $f: U \to V$ and $g: V \to W$ be isomorphisms. Then $g \circ f: U \to W$ is an isomorphism.

Proof. Since $f : U \to V$ and $g : V \to W$ are linear functions (because they are isomorphisms), Proposition 4.1.7 guarantees that their composition $g \circ f : U \to W$ is also linear.

Let U, V, and W be vector spaces over a field \mathbb{F} , and let $f: U \to V$ and $g: V \to W$ be isomorphisms. Then $g \circ f: U \to W$ is an isomorphism.

Proof. Since $f : U \to V$ and $g : V \to W$ are linear functions (because they are isomorphisms), Proposition 4.1.7 guarantees that their composition $g \circ f : U \to W$ is also linear.

Since $f : U \to V$ and $g : V \to W$ are bijections, Proposition 1.10.17 guarantees that $g \circ f : U \to W$ is also a bijection.

Let U, V, and W be vector spaces over a field \mathbb{F} , and let $f: U \to V$ and $g: V \to W$ be isomorphisms. Then $g \circ f: U \to W$ is an isomorphism.

Proof. Since $f : U \to V$ and $g : V \to W$ are linear functions (because they are isomorphisms), Proposition 4.1.7 guarantees that their composition $g \circ f : U \to W$ is also linear.

Since $f : U \to V$ and $g : V \to W$ are bijections, Proposition 1.10.17 guarantees that $g \circ f : U \to W$ is also a bijection.

So, $g \circ f : U \to W$ is linear and a bijection, i.e. it is an isomorphism. \Box

Let U, V, and W be vector spaces over a field \mathbb{F} . Then all the following hold:

- $0 \quad U \cong U;$
- (b) if $U \cong V$, then $V \cong U$;
- (a) if $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof.

Let U, V, and W be vector spaces over a field \mathbb{F} . Then all the following hold:

$$\bigcirc \quad U \cong U$$

If
$$U \cong V$$
, then $V \cong U$;

(a) if $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof. (a) Clearly, $Id_U : U \to U$ (the identity function on U) is an isomorphism. So, $U \cong U$.

Let U, V, and W be vector spaces over a field \mathbb{F} . Then all the following hold:

$$\bigcirc \quad U \cong U$$

) if
$$U \cong V$$
, then $V \cong U$;

(a) if $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof. (a) Clearly, $Id_U : U \to U$ (the identity function on U) is an isomorphism. So, $U \cong U$.

(b) Suppose that $U \cong V$.

Let U, V, and W be vector spaces over a field \mathbb{F} . Then all the following hold:

$$\bigcirc \quad U \cong U$$

) if
$$U \cong V$$
, then $V \cong U$;

(a) if $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof. (a) Clearly, $Id_U : U \to U$ (the identity function on U) is an isomorphism. So, $U \cong U$.

(b) Suppose that $U \cong V$. Then there exists an isomorphism $f: U \to V$.

Let U, V, and W be vector spaces over a field \mathbb{F} . Then all the following hold:

$$\bigcirc \quad U \cong U$$

) if
$$U \cong V$$
, then $V \cong U$;

If $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof. (a) Clearly, $Id_U : U \to U$ (the identity function on U) is an isomorphism. So, $U \cong U$.

(b) Suppose that $U \cong V$. Then there exists an isomorphism $f: U \to V$. But then by Proposition 4.4.2, $f^{-1}: V \to U$ is also an isomorphism.
Let U, V, and W be vector spaces over a field \mathbb{F} . Then all the following hold:

$$\bigcirc \quad U \cong U$$

) if
$$U \cong V$$
, then $V \cong U$;

If $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof. (a) Clearly, $Id_U : U \to U$ (the identity function on U) is an isomorphism. So, $U \cong U$.

(b) Suppose that $U \cong V$. Then there exists an isomorphism $f: U \to V$. But then by Proposition 4.4.2, $f^{-1}: V \to U$ is also an isomorphism. So, $V \cong U$.

Let U, V, and W be vector spaces over a field \mathbb{F} . Then all the following hold:

$$\bigcirc \quad U \cong U$$

) if
$$U \cong V$$
, then $V \cong U$;

If $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof. (a) Clearly, $Id_U : U \to U$ (the identity function on U) is an isomorphism. So, $U \cong U$.

(b) Suppose that $U \cong V$. Then there exists an isomorphism $f: U \to V$. But then by Proposition 4.4.2, $f^{-1}: V \to U$ is also an isomorphism. So, $V \cong U$.

(c) Suppose that $U \cong V$ and $V \cong W$.

Let U, V, and W be vector spaces over a field \mathbb{F} . Then all the following hold:

$$\bigcirc \quad U \cong U$$

) if
$$U \cong V$$
, then $V \cong U$;

If $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof. (a) Clearly, $Id_U : U \to U$ (the identity function on U) is an isomorphism. So, $U \cong U$.

(b) Suppose that $U \cong V$. Then there exists an isomorphism $f: U \to V$. But then by Proposition 4.4.2, $f^{-1}: V \to U$ is also an isomorphism. So, $V \cong U$.

(c) Suppose that $U \cong V$ and $V \cong W$. Then there exist isomorphisms $f : U \to V$ and $g : V \to W$.

Let U, V, and W be vector spaces over a field \mathbb{F} . Then all the following hold:

$$\bigcirc \quad U \cong U$$

) if
$$U \cong V$$
, then $V \cong U$;

If $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof. (a) Clearly, $Id_U : U \to U$ (the identity function on U) is an isomorphism. So, $U \cong U$.

(b) Suppose that $U \cong V$. Then there exists an isomorphism $f: U \to V$. But then by Proposition 4.4.2, $f^{-1}: V \to U$ is also an isomorphism. So, $V \cong U$.

(c) Suppose that $U \cong V$ and $V \cong W$. Then there exist isomorphisms $f : U \to V$ and $g : V \to W$. But then by Proposition 4.4.2, $g \circ f : U \to W$ is an isomorphism.

Let U, V, and W be vector spaces over a field \mathbb{F} . Then all the following hold:

$$\bigcirc \quad U \cong U$$

) if
$$U \cong V$$
, then $V \cong U$;

If $U \cong V$ and $V \cong W$, then $U \cong W$.

Proof. (a) Clearly, $Id_U : U \to U$ (the identity function on U) is an isomorphism. So, $U \cong U$.

(b) Suppose that $U \cong V$. Then there exists an isomorphism $f: U \to V$. But then by Proposition 4.4.2, $f^{-1}: V \to U$ is also an isomorphism. So, $V \cong U$.

(c) Suppose that $U \cong V$ and $V \cong W$. Then there exist isomorphisms $f : U \to V$ and $g : V \to W$. But then by Proposition 4.4.2, $g \circ f : U \to W$ is an isomorphism. So, $U \cong W$. \Box

• Reminder: Theorem 4.2.13 (schematically and informally):

 $f: U \stackrel{\text{linear}}{\longrightarrow} V$

(a)-(b)	$\mathbf{u}_1, \ldots, \mathbf{u}_k$ are linearly independent	$\stackrel{\text{if } f \text{ is } 1-1}{\underset{\text{always}}{\longleftarrow}}$	$f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k)$ are linearly independent
(c)-(d)	$\mathbf{u}_1, \dots, \mathbf{u}_k$ span U	$ \begin{array}{c} \text{if } f \text{ is onto} \\ \Longrightarrow \\ & \longleftarrow \\ & \text{if } f \text{ is } 1\text{-}1 \end{array} $	$f(\mathbf{u}_1), \dots, f(\mathbf{u}_k)$ span V

• Reminder: Theorem 4.2.13 (schematically and informally):

 $f: U \stackrel{\text{linear}}{\longrightarrow} V$

(a)-(b)	$\mathbf{u}_1, \ldots, \mathbf{u}_k$ are linearly independent	$\stackrel{\text{if } f \text{ is } 1-1}{\underset{\text{always}}{\longleftarrow}}$	$f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k)$ are linearly independent
(c)-(d)	$\mathbf{u}_1, \dots, \mathbf{u}_k$ span U	$ \begin{array}{c} \text{if } f \text{ is onto} \\ & \Longrightarrow \\ & \longleftarrow \\ & \text{if } f \text{ is } 1\text{-}1 \end{array} $	$f(\mathbf{u}_1), \dots, f(\mathbf{u}_k)$ span V

Theorem 4.4.4

Let U and V be vector spaces over a field \mathbb{F} , let $f : U \to V$ be an isomorphism, and let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$. Then all the following hold:

- vectors u₁,..., u_k are linearly independent in U iff vectors f(u₁),..., f(u_k) are linearly independent in V;
- vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ span U iff vectors $f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k)$ span V;
- $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a basis of U iff $\{f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k)\}$ is a basis of V.

Proof. This follows from Theorem 4.2.13 (details: Lecture Notes).

Let U and V be vector spaces over a field \mathbb{F} , let $f : U \to V$ be an isomorphism, and let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in U$. Then all the following hold:

- vectors u₁,..., u_k are linearly independent in U iff vectors f(u₁),..., f(u_k) are linearly independent in V;
- vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ span U iff vectors $f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k)$ span V;
- $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a basis of U iff $\{f(\mathbf{u}_1), \ldots, f(\mathbf{u}_k)\}$ is a basis of V.
 - Proposition 4.4.5 (next slide) is a converse of sorts of Theorem 4.4.4(c).
 - It essentially states that any linear function that (injectively) maps a basis onto a basis is an isomorphism.

Let U and V be finite-dimensional vector spaces over a field \mathbb{F} . Assume that dim $(U) = \dim(V) =: n$. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ be a basis for U, and let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be a basis for V. Then there exists a unique linear function $f : U \to V$ s.t. $f(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f(\mathbf{u}_n) = \mathbf{v}_n$. Moreover, this linear function f is an isomorphism.

Proof.

Let U and V be finite-dimensional vector spaces over a field \mathbb{F} . Assume that dim $(U) = \dim(V) =: n$. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ be a basis for U, and let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be a basis for V. Then there exists a unique linear function $f : U \to V$ s.t. $f(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f(\mathbf{u}_n) = \mathbf{v}_n$. Moreover, this linear function f is an isomorphism.

Proof. The existence and uniqueness of the linear function f follows from Theorem 4.3.2.

Let U and V be finite-dimensional vector spaces over a field \mathbb{F} . Assume that dim $(U) = \dim(V) =: n$. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ be a basis for U, and let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be a basis for V. Then there exists a unique linear function $f : U \to V$ s.t. $f(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f(\mathbf{u}_n) = \mathbf{v}_n$. Moreover, this linear function f is an isomorphism.

Proof. The existence and uniqueness of the linear function f follows from Theorem 4.3.2. But by hypothesis, U and V are finite-dimensional vector spaces satisfying dim $(U) = \dim(V)$, and so by Corollary 4.2.10, it is enough to show that f is onto.

Proof (continued). Fix $\mathbf{v} \in V$.

Proof (continued). Fix $\mathbf{v} \in V$. Since $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a basis for V, we know that there exist scalars $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ s.t. $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n$.

Proof (continued). Fix $\mathbf{v} \in V$. Since $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a basis for V, we know that there exist scalars $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ s.t. $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n$. But now

$$f(\alpha_1\mathbf{u}_1+\cdots+\alpha_n\mathbf{u}_n) \stackrel{(*)}{=} \alpha_1f(\mathbf{u}_1)+\cdots+\alpha_nf(\mathbf{u}_n)$$

$$= \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n$$

= V,

where (*) follows from the linearity of f (and more precisely, from Proposition 4.1.5). So, f is onto, and we are done. \Box

Let U and V be finite-dimensional vector spaces over a field \mathbb{F} . Assume that dim $(U) = \dim(V) =: n$. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ be a basis for U, and let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be a basis for V. Then there exists a unique linear function $f : U \to V$ s.t. $f(\mathbf{u}_1) = \mathbf{v}_1, \ldots, f(\mathbf{u}_n) = \mathbf{v}_n$. Moreover, this linear function f is an isomorphism.

• Reminder:

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Then all the following hold:

- (a) if f is one-to-one, then $\dim(U) \leq \dim(V)$;
- (a) if f is onto, then $\dim(U) \ge \dim(V)$;

If f is an isomorphism, then $\dim(U) = \dim(V)$.

• Reminder:

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F} , and let $f : U \to V$ be a linear function. Then all the following hold:

- (a) if f is one-to-one, then $\dim(U) \leq \dim(V)$;
- (a) if f is onto, then $\dim(U) \ge \dim(V)$;
- If f is an isomorphism, then $\dim(U) = \dim(V)$.
 - By Theorem 4.2.14(c), any two isomorphic vector spaces have the same dimension.

• Reminder:

Theorem 4.2.14

Let U and V be vector spaces over a field \mathbb{F} , and let $f: U \to V$ be a linear function. Then all the following hold:

- (a) if f is one-to-one, then $\dim(U) \leq \dim(V)$;
- If f is onto, then $\dim(U) \ge \dim(V)$;

If f is an isomorphism, then $\dim(U) = \dim(V)$.

- By Theorem 4.2.14(c), any two isomorphic vector spaces have the same dimension.
- Theorem 4.4.6 (next slide) guarantees that, in the case of **finite-dimensional** vector spaces, the converse is also true: any two vector spaces (over the same field) that have the same finite dimension are isomorphic.
 - We give two proofs of Theorem 4.4.6!

Let U and V be **finite-dimensional** vector spaces over a field \mathbb{F} . Then U and V are isomorphic iff dim $(U) = \dim(V)$.

• Warning: This theorem is only true for finite-dimensional vector spaces, and it becomes false for infinite-dimensional ones.

Let U and V be **finite-dimensional** vector spaces over a field \mathbb{F} . Then U and V are isomorphic iff dim $(U) = \dim(V)$.

Proof#1.

Let U and V be **finite-dimensional** vector spaces over a field \mathbb{F} . Then U and V are isomorphic iff dim $(U) = \dim(V)$.

Proof#1. If U and V are isomorphic, then Theorem 4.2.14(c) guarantees that $\dim(U) = \dim(V)$.

Let U and V be **finite-dimensional** vector spaces over a field \mathbb{F} . Then U and V are isomorphic iff dim $(U) = \dim(V)$.

Proof#1. If U and V are isomorphic, then Theorem 4.2.14(c) guarantees that $\dim(U) = \dim(V)$.

Suppose, conversely, that $\dim(U) = \dim(V) =: n$.

Let U and V be **finite-dimensional** vector spaces over a field \mathbb{F} . Then U and V are isomorphic iff dim $(U) = \dim(V)$.

Proof#1. If U and V are isomorphic, then Theorem 4.2.14(c) guarantees that $\dim(U) = \dim(V)$.

Suppose, conversely, that dim $(U) = \dim(V) =: n$. Fix any basis $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ of U and any basis $\mathcal{C} = {\mathbf{c}_1, \dots, \mathbf{c}_n}$ of V.

Let U and V be **finite-dimensional** vector spaces over a field \mathbb{F} . Then U and V are isomorphic iff dim $(U) = \dim(V)$.

Proof#1. If U and V are isomorphic, then Theorem 4.2.14(c) guarantees that $\dim(U) = \dim(V)$.

Suppose, conversely, that dim $(U) = \dim(V) =: n$. Fix any basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ of U and any basis $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ of V. By Proposition 4.3.1, $\left[\begin{array}{c} \cdot \end{array} \right]_{\mathcal{B}} : U \to \mathbb{F}^n$ and $\left[\begin{array}{c} \cdot \end{array} \right]_{\mathcal{C}} : V \to \mathbb{F}^n$ are both isomorphisms,

Let U and V be **finite-dimensional** vector spaces over a field \mathbb{F} . Then U and V are isomorphic iff dim $(U) = \dim(V)$.

Proof#1. If U and V are isomorphic, then Theorem 4.2.14(c) guarantees that $\dim(U) = \dim(V)$.

Suppose, conversely, that dim(U) = dim(V) =: *n*. Fix any basis $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ of *U* and any basis $\mathcal{C} = {\mathbf{c}_1, \ldots, \mathbf{c}_n}$ of *V*. By Proposition 4.3.1, $\left[\cdot \right]_{\mathcal{B}} : U \to \mathbb{F}^n$ and $\left[\cdot \right]_{\mathcal{C}} : V \to \mathbb{F}^n$ are both isomorphisms, and consequently, $U \cong \mathbb{F}^n$ and $V \cong \mathbb{F}^n$.

Let U and V be **finite-dimensional** vector spaces over a field \mathbb{F} . Then U and V are isomorphic iff dim $(U) = \dim(V)$.

Proof#1. If U and V are isomorphic, then Theorem 4.2.14(c) guarantees that $\dim(U) = \dim(V)$.

Suppose, conversely, that dim $(U) = \dim(V) =: n$. Fix any basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ of U and any basis $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ of V. By Proposition 4.3.1, $\begin{bmatrix} \cdot \end{bmatrix}_{\mathcal{B}} : U \to \mathbb{F}^n$ and $\begin{bmatrix} \cdot \end{bmatrix}_{\mathcal{C}} : V \to \mathbb{F}^n$ are both isomorphisms, and consequently, $U \cong \mathbb{F}^n$ and $V \cong \mathbb{F}^n$. But now Theorem 4.4.3 guarantees that $U \cong V$. \Box

Let U and V be **finite-dimensional** vector spaces over a field \mathbb{F} . Then U and V are isomorphic iff dim $(U) = \dim(V)$.

Proof#2.

Let U and V be **finite-dimensional** vector spaces over a field \mathbb{F} . Then U and V are isomorphic iff dim $(U) = \dim(V)$.

Proof#2. If U and V are isomorphic, then Theorem 4.2.14(c) guarantees that $\dim(U) = \dim(V)$.

Let U and V be **finite-dimensional** vector spaces over a field \mathbb{F} . Then U and V are isomorphic iff dim $(U) = \dim(V)$.

Proof#2. If U and V are isomorphic, then Theorem 4.2.14(c) guarantees that $\dim(U) = \dim(V)$. Suppose, conversely, that $\dim(U) = \dim(V) =: n$.

Let U and V be **finite-dimensional** vector spaces over a field \mathbb{F} . Then U and V are isomorphic iff dim $(U) = \dim(V)$.

Proof#2. If *U* and *V* are isomorphic, then Theorem 4.2.14(c) guarantees that dim(*U*) = dim(*V*). Suppose, conversely, that dim(*U*) = dim(*V*) =: *n*. Fix a basis $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ of *U* and a basis $\mathcal{C} = {\mathbf{c}_1, \dots, \mathbf{c}_n}$ of *V*.

Let U and V be **finite-dimensional** vector spaces over a field \mathbb{F} . Then U and V are isomorphic iff dim $(U) = \dim(V)$.

Proof#2. If *U* and *V* are isomorphic, then Theorem 4.2.14(c) guarantees that dim(*U*) = dim(*V*). Suppose, conversely, that dim(*U*) = dim(*V*) =: *n*. Fix a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ of *U* and a basis $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ of *V*. Then by Proposition 4.4.5, there exists a unique linear function $f : U \to V$ s.t. $f(\mathbf{b}_1) = \mathbf{c}_1, \dots, f(\mathbf{b}_n) = \mathbf{c}_n$, and moreover, this linear function *f* is an isomorphism.

Let U and V be **finite-dimensional** vector spaces over a field \mathbb{F} . Then U and V are isomorphic iff dim $(U) = \dim(V)$.

Proof#2. If *U* and *V* are isomorphic, then Theorem 4.2.14(c) guarantees that dim(*U*) = dim(*V*). Suppose, conversely, that dim(*U*) = dim(*V*) =: *n*. Fix a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ of *U* and a basis $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ of *V*. Then by Proposition 4.4.5, there exists a unique linear function $f : U \to V$ s.t. $f(\mathbf{b}_1) = \mathbf{c}_1, \dots, f(\mathbf{b}_n) = \mathbf{c}_n$, and moreover, this linear function *f* is an isomorphism.

So, U and V are isomorphic. \Box

Let U and V be a vector spaces over a field \mathbb{F} , and let $f: U \to V$ be an isomorphism, and let $U' \subseteq U$. Then U' is a subspace of U iff V' := f[U'] is a subspace of V. Moreover, in this case, all the following hold:

• the function $f': U' \to V'$ given by $f'(\mathbf{u}) = f(\mathbf{u})$ for all $\mathbf{u} \in U'$ is an isormophism;

 $U' \cong V';$

$$Im(U') = \dim(V').$$

Proof. Lecture Notes. \Box