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This lecture has four parts:

1 The effect of a linear function on linearly independent and
spanning sets

2 Computing bases of the images and preimages of subspaces
under linear functions

3 Linear functions and bases
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1 The effect of a linear function on linearly independent and
spanning sets

Theorem 4.2.11
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Let u1, . . . , uk ∈ U, and set
U ′ := Span(u1, . . . , uk). Then all the following hold:

(a) U ′ is a subspace of U, and f [U ′] is a subspace of V ;
(b) f [U ′] = f

[
Span(u1, . . . , uk)

]
= Span

(
f (u1), . . . , f (uk)

)
, i.e.

vectors f (u1), . . . , f (uk) span f [U ′] = f
[
Span(u1, . . . , uk)

]
;

(c) dim
(
f [U ′]

)
≤ dim(U ′) ≤ k.
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Theorem 4.2.11
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Let u1, . . . , uk ∈ U, and set
U ′ := Span(u1, . . . , uk). Then all the following hold:

(a) U ′ is a subspace of U, and f [U ′] is a subspace of V ;

Proof of (a).

The fact that U ′ is a subspace of U follows
immediately from Theorem 3.1.11, and the fact that f [U ′] is a
subspace of V follows from 4.2.3(a). This proves (a).
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Theorem 4.2.11
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Let u1, . . . , uk ∈ U, and set
U ′ := Span(u1, . . . , uk). Then all the following hold:

(b) f [U ′] = f
[
Span(u1, . . . , uk)

]
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(
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, i.e.

vectors f (u1), . . . , f (uk) span f [U ′] = f
[
Span(u1, . . . , uk)

]
;

Proof of (b).

Span
(
f (u1), . . . , f (uk)

)
=

{
α1f (u1) + · · · + αk f (uk) | α1, . . . , αk ∈ F

}
(∗)=

{
f
(
α1u1 + · · · + αkuk

)
| α1, . . . , αk ∈ F

}
(∗∗)=

{
f (u) | u ∈ Span(u1, . . . , uk)

}
= f

[
Span(u1, . . . , uk)

]
= f [U ′],

where (*) follows from the linearity of the f (and more precisely,
from Prop. 4.1.5), and (**) follows from the definition of span.



Theorem 4.2.11
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Let u1, . . . , uk ∈ U, and set
U ′ := Span(u1, . . . , uk). Then all the following hold:

(b) f [U ′] = f
[
Span(u1, . . . , uk)

]
= Span

(
f (u1), . . . , f (uk)

)
, i.e.

vectors f (u1), . . . , f (uk) span f [U ′] = f
[
Span(u1, . . . , uk)

]
;

Proof of (b).

Span
(
f (u1), . . . , f (uk)

)
=

{
α1f (u1) + · · · + αk f (uk) | α1, . . . , αk ∈ F

}
(∗)=

{
f
(
α1u1 + · · · + αkuk

)
| α1, . . . , αk ∈ F

}
(∗∗)=

{
f (u) | u ∈ Span(u1, . . . , uk)

}
= f

[
Span(u1, . . . , uk)

]
= f [U ′],

where (*) follows from the linearity of the f (and more precisely,
from Prop. 4.1.5), and (**) follows from the definition of span.



Theorem 4.2.11
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Let u1, . . . , uk ∈ U, and set
U ′ := Span(u1, . . . , uk). Then all the following hold:

(a) U ′ is a subspace of U, and f [U ′] is a subspace of V ;
(b) f [U ′] = f

[
Span(u1, . . . , uk)

]
= Span

(
f (u1), . . . , f (uk)

)
, i.e.

vectors f (u1), . . . , f (uk) span f [U ′] = f
[
Span(u1, . . . , uk)

]
;

(c) dim
(
f [U ′]

)
≤ dim(U ′) ≤ k.

Proof of (c).

By hypothesis, {u1, . . . , uk} is a spanning set of U ′.
So, by Theorem 3.2.14, some subset of that spanning set, say
{ui1 , . . . , uim} (with 1 ≤ i1 < · · · < im ≤ k) is a basis of U ′. So,
dim(U ′) = m ≤ k. But now {ui1 , . . . , uim} is a spanning set of U ′.
So, by part (b) applied to the set {ui1 , . . . , uim}, we get that
{f (ui1), . . . , f (uim)} is a spanning set of f [U ′]. We now apply
Theorem 3.2.14 again, and we deduce that some subset of
{f (ui1), . . . , f (uim)} is a basis of f [U ′], and so dim

(
f [U ′]

)
≤ m. □
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Corollary 4.2.12
Let U and V be vector spaces over a field F, let f : U → V be a
linear function, and let {u1, . . . , uk} be a spanning set of U. Then
Im(f ) = Span

(
f (u1), . . . , f (uk)

)
and

rank(f ) = dim
(
Span

(
f (u1), . . . , f (uk)

))
≤ k.

Proof.

By hypothesis, U = Span(u1, . . . , uk). So, by
Theorem 4.2.11(b), we have that
Im(f ) = f [U] = Span

(
f (u1), . . . , f (uk)

)
, and by

Theorem 4.2.11(c), we have that
rank(f ) = dim

(
Im(f )

)
= dim

(
f [U]

)
≤ k. □
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Theorem 4.2.13
Let U and V be vector spaces over a field F, let f : U → V be a
linear function, and let u1, . . . , uk ∈ U. Then all the following
hold:

(a) if f is one-to-one and vectors u1, . . . , uk are linearly
independent in U, then vectors f (u1), . . . , f (uk) are linearly
independent in V ;

(b) if vectors f (u1), . . . , f (uk) are linearly independent in V , then
vectors u1, . . . , uk are linearly independent in U;

(c) if f is onto and vectors u1, . . . , uk span U, then vectors
f (u1), . . . , f (uk) span V ;

(d) if f is one-to-one and vectors f (u1), . . . , f (uk) span V , then
vectors u1, . . . , uk span U.

Proof: Lecture Notes.
Informal summary: next slide.



Theorem 4.2.13 (schematically and informally):

f : U
linear−→ V

(a)-(b)
u1, . . . ,uk are
linearly independent

if f is 1-1
=⇒
⇐=
always

f(u1), . . . , f(uk) are
linearly independent

(c)-(d) u1, . . . ,uk span U

if f is onto
=⇒
⇐=

if f is 1-1

f(u1), . . . , f(uk) span V



Dimension considerations:

A B

f

As we know, for any function f : A → B, where A and B are
finite sets, the following hold:

if f is one-to-one, then |A| ≤ |B|;
if f is onto, then |A| ≥ |B|;
if f is a bijection, then |A| = |B|.

(Actually, the above is true even if we allow A and B to be
infinite, but to make sense of the statement, we would need
infinite cardinals. We omit the details.)

In the case of linear functions, Theorem 4.2.14 (next slide)
gives us a very similar statement, only involving dimension
(rather than cardinality) of the domain and codomain.
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Theorem 4.2.14
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then all the following hold:

(a) if f is one-to-one, then dim(U) ≤ dim(V );
(b) if f is onto, then dim(U) ≥ dim(V );
(c) if f is an isomorphism, then dim(U) = dim(V ).

Proof.

Obviously, (a) and (b) together imply (c). So, it is enough
to prove (a) and (b).
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Proof (continued). (a) We prove the contrapositive: we assume
that dim(U) > dim(V ) (and in particular, dim(V ) is finite), and
we prove that f is not one-to-one.

Set n := dim(V ). Since dim(U) > dim(V ), we know that U has a
linearly independent set of size greater than n.

Indeed, if U is finite-dimensional, then any one of its bases is
a linearly independent set of size dim(U) > n, and if U is
infinite-dimensional, then Proposition 3.2.18 guarantees that
U has linearly independent sets of any finite size.

So, fix a linearly independent set {u1, . . . , uk} of U, with k > n.
Since dim(V ) = n, Theorem 3.2.17(a) guarantees that the set{
f (u1), . . . , f (uk)

}
is linearly dependent. But now

Theorem 4.2.13(a) guarantees that f is not one-to-one.
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Theorem 4.2.14
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then all the following hold:

(b) if f is onto, then dim(U) ≥ dim(V );

Proof (continued). (b) Assume that f is onto; we must show that
dim(U) ≥ dim(V ).

We may assume that n := dim(U) is finite, for
otherwise, we are done. We must show that dim(V ) ≤ n.

Fix any basis {u1, . . . , un} of U. In particular, vectos u1, . . . , un
span U, and so since f is onto, Theorem 4.2.13(c) guarantees that
vectors f (u1), . . . , f (un) span V . But then by Theorem 3.2.14,
some subset of

{
f (u1), . . . , f (un)

}
is a basis of V , and it follows

that dim(V ) ≤ n. □
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Theorem 4.2.14
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then all the following hold:

(a) if f is one-to-one, then dim(U) ≤ dim(V );
(b) if f is onto, then dim(U) ≥ dim(V );
(c) if f is an isomorphism, then dim(U) = dim(V ).



2 Computing bases of the images and preimages of subspaces
under linear functions

Proposition 4.2.15
Let F be a field, let f : Fm → Fn be a linear function, let
A ∈ Fn×m be the standard matrix of f , let u1, . . . , uk ∈ Fm

(k ≥ 1), and set U := Span(u1, . . . , uk). Then

f [U] = Col
(
A

[
u1 . . . uk

] )
,

and moreover, the pivot columns of the matrix A
[

u1 . . . uk
]

form a basis of f [U].

First an example, then a proof.



Example 4.2.16
Let f : Z5

2 → Z4
2 be the linear function whose standard matrix is

A =


1 1 0 0 1
0 1 1 0 1
1 0 1 0 0
1 1 0 1 1

 ,

and consider the vectors

u1 =


1
1
1
1
1

 , u2 =


1
0
1
0
1

 , u3 =


0
1
0
1
0

 , u4 =


1
0
0
0
1


in Z5

2. Set U := Span(u1, u2, u3, u4). Find a basis for f [U].



Solution.

Our goal is to find the pivot columns of the matrix
A

[
u1 u2 u3 u4

]
, since by Proposition 4.2.15, those columns

form a basis of f [U]. First, by multiplying matrices, we obtain

A
[

u1 u2 u3 u4
]

=


1 1 0 0 1
0 1 1 0 1
1 0 1 0 0
1 1 0 1 1




1 1 0 1
1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 1



=


1 0 1 0
1 0 1 1
0 0 0 1
0 0 0 0

.



Solution. Our goal is to find the pivot columns of the matrix
A

[
u1 u2 u3 u4

]
, since by Proposition 4.2.15, those columns

form a basis of f [U]. First, by multiplying matrices, we obtain

A
[

u1 u2 u3 u4
]

=


1 1 0 0 1
0 1 1 0 1
1 0 1 0 0
1 1 0 1 1




1 1 0 1
1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 1



=


1 0 1 0
1 0 1 1
0 0 0 1
0 0 0 0

.



Solution (continued). By row reducing, we obtain

RREF
(

A
[

u1 u2 u3 u4
] )

=


1 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 .

As we can see, the pivot columns of A
[

u1 u2 u3 u4
]

are its
first and fourth column. Therefore,

{ 
1
1
0
0

 ,


0
1
1
0

 }

is a basis of f [U]. □



Solution (continued). By row reducing, we obtain

RREF
(

A
[

u1 u2 u3 u4
] )

=


1 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
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As we can see, the pivot columns of A
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u1 u2 u3 u4
]

are its
first and fourth column.

Therefore,
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1
1
0
0

 ,


0
1
1
0

 }

is a basis of f [U]. □
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are its
first and fourth column. Therefore,
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1
1
0
0

 ,


0
1
1
0
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is a basis of f [U]. □
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(
A
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[

u1 . . . uk
]

form a basis of f [U].

Proof.

First, we compute (next slide):
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Proof (continued).

f [U] = f
[
Span(u1, . . . , uk)

]
(∗)= Span

(
f (u1), . . . , f (uk)

)
(∗∗)= Col

( [
f (u1) . . . f (uk)

] )
(∗∗∗)= Col

( [
Au1 . . . Auk

] )
(∗∗∗∗)= Col

(
A

[
u1 . . . uk

] )
,

where (*) follows from Theorem 4.2.11(b), (**) follows from the
definition of the column space, and (***) follows from the fact
that A is the standard matrix of f , and (****) follows from the
definition of matrix multiplication.

By Theorem 3.3.4, the pivot
columns of a matrix form a basis of the column space of that
matrix, and the result follows. □



Proof (continued).

f [U] = f
[
Span(u1, . . . , uk)

]
(∗)= Span

(
f (u1), . . . , f (uk)

)
(∗∗)= Col

( [
f (u1) . . . f (uk)

] )
(∗∗∗)= Col

( [
Au1 . . . Auk

] )
(∗∗∗∗)= Col

(
A

[
u1 . . . uk

] )
,

where (*) follows from Theorem 4.2.11(b), (**) follows from the
definition of the column space, and (***) follows from the fact
that A is the standard matrix of f , and (****) follows from the
definition of matrix multiplication. By Theorem 3.3.4, the pivot
columns of a matrix form a basis of the column space of that
matrix, and the result follows. □



Proposition 4.2.18
Let F be a field, let f : Fm → Fn be a linear function, let
A ∈ Fn×m be the standard matrix of f , let v1, . . . , vk ∈ Fn

(k ≥ 1), and set V := Span(v1, . . . , vk) Then

f −1[V ] =
{

x ∈ Fm | ∃y ∈ Fk s.t.
[

A v1 . . . vk
] [

x
y

]
= 0

}

=
{

x ∈ Fm | ∃y ∈ Fk s.t.
[

x
y

]
∈ Nul

( [
A v1 . . . vk

] )}
.

First an example, then a proof.



Example 4.2.19
Consider the linear function f : R4 → R5 whose standard matrix is

A =


1 0 0 0
0 −2 −4 0

−2 −3 −6 1
4 0 0 0
2 −1 −2 0

 ,

and consider the following vectors in R5:
v1 =

[
−1 6 9 −4 1

]T ;
v2 =

[
2 2 −2 8 5

]
;

v3 =
[

0 0 0 −1 0
]T ;

v4 =
[

0 −2 −3 −1 −1
]T ;

v5 =
[

0 −1 −2 1 0
]T ;

v6 =
[

−3 −1 2 −11 −6
]T .

Set V := Span(v1, . . . , v6). Find a basis of f −1[V ].



Solution. We apply Proposition 4.2.18.

We first form the matrix

C :=
[

A v1 v2 v3 v4 v5 v6
]

=


1 0 0 0 −1 2 0 0 0 −3
0 −2 −4 0 6 2 0 −2 −1 −1

−2 −3 −6 1 9 −2 0 −3 −2 2
4 0 0 0 −4 8 −1 −1 1 −11
2 −1 −2 0 1 5 0 −1 0 −6

 ,

and we find the general solution of the matrix-vector equation

[
A v1 v2 v3 v4 v5 v6

]︸ ︷︷ ︸
=C

[
x
y

]
= 0,

where the vector x has four entries (because A has four columns)
and the vector y has six entries (because we have six vectors
v1, . . . , v6).



Solution. We apply Proposition 4.2.18. We first form the matrix

C :=
[

A v1 v2 v3 v4 v5 v6
]

=


1 0 0 0 −1 2 0 0 0 −3
0 −2 −4 0 6 2 0 −2 −1 −1

−2 −3 −6 1 9 −2 0 −3 −2 2
4 0 0 0 −4 8 −1 −1 1 −11
2 −1 −2 0 1 5 0 −1 0 −6

 ,

and we find the general solution of the matrix-vector equation

[
A v1 v2 v3 v4 v5 v6

]︸ ︷︷ ︸
=C

[
x
y

]
= 0,

where the vector x has four entries (because A has four columns)
and the vector y has six entries (because we have six vectors
v1, . . . , v6).



Solution (continued). By row reducing, we obtain

RREF(C) =


1 0 0 0 −1 2 0 0 0 −3
0 1 2 0 −3 −1 0 1 0 0
0 0 0 1 −2 −1 0 0 0 −2
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1

 .

So, the general solution of our matrix-vector equation is

[
x
y

]
=



q − 2r + 3t
−2p + 3q + r − s

p
2q + r + 2t

q
r

−s
s

−t
t


, where p, q, r , s, t ∈ R.

But as per Proposition 4.2.18, we only need x!



Solution (continued). By row reducing, we obtain
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Solution (continued). By row reducing, we obtain
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q
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−s
s

−t
t


, where p, q, r , s, t ∈ R.

But as per Proposition 4.2.18, we only need x!



Solution. So, we simply ignore the part below the horizontal dotted
line, and we obtain:

x =


q − 2r + 3t

−2p + 3q + r − s
p

2q + r + 2t

 , where p, q, r , s, t ∈ R.

By separating parameters, we obtain

x = p


0

−2
1
0

 + q


1
3
0
2

 + r


−2

1
0
1

 + s


0

−1
0
0

 + t


3
0
0
2

 ,

where p, q, r , s, t ∈ R.

In view of Proposition 4.2.18, we now have that (next slide):
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Solution.

f −1[V ] =
{

p


0

−2
1
0

 + q


1
3
0
2

 + r


−2

1
0
1

 + s


0

−1
0
0

 + t


3
0
0
2

 |

| p, q, r , s, t ∈ R
}

= Span
( 

0
−2

1
0

 ,


1
3
0
2

 ,


−2

1
0
1

 ,


0

−1
0
0

 ,


3
0
0
2

 )

= Col
( 

0 1 −2 0 3
−2 3 1 −1 0

1 0 0 0 0
0 2 1 0 2


︸ ︷︷ ︸

=:B

)
.



Solution (continued). Reminder:

f −1[V ] = Col
( 

0 1 −2 0 3
−2 3 1 −1 0

1 0 0 0 0
0 2 1 0 2


︸ ︷︷ ︸

=:B

)
.

We note that the five vectors that we obtained in the
second-to-last line above are not necessarily linearly independent,
and so to find an actual basis of f −1[V ], we row reduce the matrix
B and use Theorem 3.3.4. Indeed, Theorem 3.3.4 guarantees that
the pivot columns of B form a basis of Col(B) = f −1[V ].

In fact, we can immediately see that they are not linearly
independent: no five vectors in R4 are linearly independent
(by Theorem 3.2.17(a)).
More generally, though, the reason our computation does not
necessarily yield linearly independent vectors is because we
“cut off” the entries below the vertical dotted line.
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Solution (continued). Reminder:

f −1[V ] = Col
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0 2 1 0 2
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=:B

)
.

By row reducing, we obtain

RREF(B) =


1 0 0 0 0
0 1 0 0 7/5
0 0 1 0 −4/5
0 0 0 1 17/5

 .

Thus, the pivot columns of B are its leftmost four columns, and
those four columns form a basis of f −1[V ].



Solution (continued). Reminder:

f −1[V ] = Col
( 

0 1 −2 0 3
−2 3 1 −1 0

1 0 0 0 0
0 2 1 0 2


︸ ︷︷ ︸

=:B

)
.

By row reducing, we obtain

RREF(B) =


1 0 0 0 0
0 1 0 0 7/5
0 0 1 0 −4/5
0 0 0 1 17/5

 .

Thus, the pivot columns of B are its leftmost four columns, and
those four columns form a basis of f −1[V ].



Solution (continued). So, our final answer is that

{ 
0

−2
1
0

 ,


1
3
0
2

 ,


−2

1
0
1

 ,


0

−1
0
0

 }

is a basis of f −1[V ]. □



Proposition 4.2.18
Let F be a field, let f : Fm → Fn be a linear function, let
A ∈ Fn×m be the standard matrix of f , let v1, . . . , vk ∈ Fn

(k ≥ 1), and set V := Span(v1, . . . , vk) Then

f −1[V ] =
{

x ∈ Fm | ∃y ∈ Fk s.t.
[

A v1 . . . vk
] [

x
y

]
= 0

}

=
{

x ∈ Fm | ∃y ∈ Fk s.t.
[

x
y

]
∈ Nul

( [
A v1 . . . vk

] )}
.

Proof.

Set A =
[

a1 . . . am
]
. Then for all vectors

x =
[

x1 . . . xm
]T

in Fm, we have the following sequence of
equivalent statements (next slide):
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Proof (continued).

x ∈ f −1[V ]

⇐⇒ f (x) ∈ Span(v1, . . . , vk)︸ ︷︷ ︸
=V

(∗)⇐⇒ Ax ∈ Span(v1, . . . , vk)

⇐⇒ x1a1 + · · · + xmam︸ ︷︷ ︸
=Ax

∈ Span(v1, . . . , vk)

(∗∗)⇐⇒ ∃α1, . . . , αk ∈ F s.t. x1a1 + · · · + xmam = α1v1 + · · · + αkvk

⇐⇒ ∃α1, . . . , αk ∈ F s.t. x1a1 + · · · + xmam − α1v1 − · · · − αkvk = 0,

where (*) follows from the fact that A is the standard matrix of f ,
and (**) follows from the definition of span.



Proof (continued).

x ∈ f −1[V ]

previous
slide⇐⇒ ∃α1, . . . , αk ∈ F s.t. x1a1 + · · · + xmam − α1v1 − · · · − αkvk = 0

(∗∗∗)⇐⇒ ∃y1, . . . , yk ∈ F s.t. x1a1 + · · · + xmam + y1v1 + · · · + ykvk = 0

⇐⇒ ∃y1, . . . , yk ∈ F s.t.
[

a1 . . . am v1 . . . vk
]



x1
...

xm
y1
...

yk


= 0

⇐⇒ ∃y ∈ Fk s.t.
[

A v1 . . . vk
] [

x
y

]
= 0,

where (***) follows via substitution yi := −αi ∀i ∈ {1, . . . , k}.



Proof (continued).

x ∈ f −1[V ]

previous
slide⇐⇒ ∃y ∈ Fk s.t.

[
A v1 . . . vk

] [
x
y

]
= 0

(∗∗∗∗)⇐⇒ ∃y ∈ Fk s.t.
[

x
y

]
∈ Nul

( [
A v1 . . . vk

] )
,

where (****) follows from the definition of the null space. The
result is now immediate. □



3 Linear functions and bases

Reminder:

Theorem 1.10.5
Let F be a field, and let a1, . . . , am be any vectors in Fn. Then
there exists a unique linear function f : Fm → Fn that satisfies
f (e1) = a1, . . . , f (em) = am, where e1, . . . , em are the standard
basis vectors of Fm. Moreover, this linear function f is given by
f (x) = Ax for all x ∈ Fm, where A =

[
a1 . . . am

]
.

Our next goal is to generalize Theorem 1.10.5 to linear
functions f : U → V , where U and V are vector spaces over a
field F, and U is finite-dimensional.

Instead of using the standard basis Em = {e1, . . . , em}, we will
use an arbitrary basis of U.
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Suppose that V is a non-trivial, finite-dimensional vector
space over a field F, and that B = {v1, . . . , vn} is a basis of V .

By Theorem 3.2.7, every vector of V can be written as linear
combination of the vectors v1, . . . , vn in a unique way, that is,
∀v ∈ V ∃!α1, . . . , αn ∈ F s.t.

v := α1v1 + · · · + αnvn,

and the coordinate vector of v with respect to the basis B is
defined to be [

v
]

B :=

 α1
...

αn

 .

As our next proposition shows,
[

·
]

B
: V → Fn is an

isomorphism.
It essentially allows us to “translate” vectors of an
n-dimensional vector space (n ̸= 0) into vectors in Fn.



Suppose that V is a non-trivial, finite-dimensional vector
space over a field F, and that B = {v1, . . . , vn} is a basis of V .
By Theorem 3.2.7, every vector of V can be written as linear
combination of the vectors v1, . . . , vn in a unique way, that is,
∀v ∈ V ∃!α1, . . . , αn ∈ F s.t.

v := α1v1 + · · · + αnvn,

and the coordinate vector of v with respect to the basis B is
defined to be [

v
]

B :=

 α1
...

αn

 .

As our next proposition shows,
[

·
]

B
: V → Fn is an

isomorphism.
It essentially allows us to “translate” vectors of an
n-dimensional vector space (n ̸= 0) into vectors in Fn.



Suppose that V is a non-trivial, finite-dimensional vector
space over a field F, and that B = {v1, . . . , vn} is a basis of V .
By Theorem 3.2.7, every vector of V can be written as linear
combination of the vectors v1, . . . , vn in a unique way, that is,
∀v ∈ V ∃!α1, . . . , αn ∈ F s.t.

v := α1v1 + · · · + αnvn,

and the coordinate vector of v with respect to the basis B is
defined to be [

v
]

B :=

 α1
...

αn

 .

As our next proposition shows,
[

·
]

B
: V → Fn is an

isomorphism.
It essentially allows us to “translate” vectors of an
n-dimensional vector space (n ̸= 0) into vectors in Fn.



Proposition 4.3.1
Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {v1, . . . , vn} is a basis of V . Then

[
·

]
B

: V → Fn

is an isomorphism.

Proof.

We start by proving that
[

·
]

B
is linear.

1. Fix x, y ∈ V . WTS
[

x + y
]

B
=

[
x

]
B

+
[

y
]

B
. Set[

x
]

B
=

[
α1 . . . αn

]T
and

[
y

]
B

=
[

β1 . . . βn
]T

.
Then x = α1v1 + · · · + αnvn and y = β1v1 + · · · + βnvn;
consequently,

x + y = (α1 + β1)v1 + · · · + (αn + βn)vn,

and so
[

x + y
]

B
=

[
α1 + β1 . . . αn + βn

]T
. We now have

that (next slide):
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Proposition 4.3.1
Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {v1, . . . , vn} is a basis of V . Then
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: V → Fn

is an isomorphism.

Proof (continued).

[
x + y

]
B =

 α1 + β1
...

αn + βn



=

 α1
...

αn

 +

 β1
...

βn


=

[
x

]
B +

[
y

]
B .
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F, and let B = {v1, . . . , vn} is a basis of V . Then

[
·
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B

: V → Fn

is an isomorphism.

Proof (continued). Similarly (details: Lecture Notes):

2. ∀x ∈ V , α ∈ F:
[

αx
]

B
= α

[
x

]
B

.

So,
[

·
]

B
: V → Fn is linear.
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Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {v1, . . . , vn} is a basis of V . Then
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·

]
B

: V → Fn

is an isomorphism.

Proof (continued). It remains to show that
[

·
]

B
is a bijection,

i.e. that it is one-to-one and onto Fn.

Since V and Fn are both n dimensional, Corollary 4.2.10
guarantees that f is one-to-one iff f is onto Fn. So, it is enough to
show that f is onto Fn.

Fix
[

α1 . . . αn
]T

∈ Fn. Set v := α1v1 + · · · + αnvn. Then[
v

]
B

=
[

α1 . . . αn
]T

. So,
[

·
]

B
is onto Fn. This

completes the argument. □
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Theorem 1.10.5
Let F be a field, and let a1, . . . , am be any vectors in Fn. Then
there exists a unique linear function f : Fm → Fn that satisfies
f (e1) = a1, . . . , f (em) = am, where e1, . . . , em are the standard
basis vectors of Fm. Moreover, this linear function f is given by
f (x) = Ax for all x ∈ Fm, where A =

[
a1 . . . am

]
.

Let’s generalize this!
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f (x) = Ax for all x ∈ Fm, where A =

[
a1 . . . am

]
.

Let’s generalize this!



Theorem 4.3.2
Let U and V be vector spaces over a field F, and assume that U is
finite-dimensional. Let B = {u1, . . . , un} be a basis of U, and let
v1, . . . , vn ∈ V .a Then there exists a unique linear function
f : U → V s.t. f (u1) = v1, . . . , f (un) = vn. Moreover, if the vector
space U is non-trivial (i.e. n ̸= 0), then this unique linear function
f : U → V satisfies the following: for all u ∈ U, we have that

f (u) = α1v1 + · · · + αnvn,

where
[

u
]

B
=

[
α1 . . . αn

]T
. On the other hand, if U is

trivial (i.e. U = {0}),b then f : U → V is given by f (0) = 0.
aHere, v1, . . . , vn are arbitrary vectors in V . They are not necessarily

pairwise distinct.
bNote that in this case, we have that n = 0 and B = ∅.



Proof.

Suppose first that the vector space U is trivial, i.e. n = 0
and U = {0}. Then the function f : U → V given by f (0) = 0 is
obviously linear, and moreover, it vacuously satisfies
f (u1) = v1, . . . , f (un) = vn (because n = 0, and so both
u1, . . . , un and v1, . . . , vn are empty lists of vectors). The
uniqueness of f follows from Proposition 4.1.6.

From now on, we assume that the vector space U is non-trivial, i.e.
that n ̸= 0. We must prove the existence and the uniqueness of
the linear function f satisfying the required properties.
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Proof (continued). Existence. Let f : U → V be defined as in the
statement of the theorem, i.e. for all u ∈ U, we set

f (u) = α1v1 + · · · + αnvn,

where
[

u
]

B
=

[
α1 . . . αn

]T
.

Note that this means that for
all α1, . . . , αn ∈ F, we have that

f (α1u1 + · · · + αnun) = α1v1 + · · · + αnvn.

Let us show that f is linear and satisfies
f (u1) = v1, . . . , f (un) = vn. For the latter, we note that for all
i ∈ {1, . . . , n}, we have that

f (ui) = f (0u1 + · · · + 0ui−1 + 1ui + 0ui+1 + · · · + 0un)

= 0v1 + · · · + 0vi−1 + 1vi + 0vi+1 + · · · + 0vn

= vi .

This proves that f (u1) = v1, . . . , f (un) = vn.
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Proof (continued). Let us now show that f is linear. We verify that
f satisfies the two axioms from the definition of a linear function.

1. Fix x, y ∈ U. WTS f (x + y) = f (x) + f (y). Set[
x

]
B

=
[

α1 . . . αn
]T

and y =
[

β1 . . . βn
]T

. We then

have that
[

x + y
]

B
=

[
α1 + β1 . . . αn + βn

]T
, and we see

that

f (x + y) (∗)= (α1 + β1)v1 + · · · + (αn + βn)vn

= (α1v1 + · · · + αnvn) + (β1v1 + · · · + βnvn)

(∗∗)= f (x) + f (y),

where both (*) and (**) follow from the construction of f .
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Proof (continued). 2. Fix u ∈ U and α ∈ F. WTS f (αu) = αf (u).
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By 1. and 2., we see that f is linear. This completes the proof of
existence.
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Proof (continued). Uniqueness. Let f1, f2 : U → V be linear
functions that satisfy f1(u1) = v1, . . . , f1(un) = vn and
f2(u1) = v1, . . . , f2(un) = vn. WTS f1 = f2.

Fix u ∈ U. WTS
f1(u) = f2(u). Set

[
u

]
B

=
[

α1 . . . αn
]T

. Then

f1(u) = f1(α1u1 + · · · + αnun)

= α1f1(u1) + · · · + αnf1(un)
by the linearity of f1
(and more precisely,
by Proposition 4.1.5)

= α1v1 + · · · + αnvn
because
f1(u1) = v1, . . . , f1(un) = vn

= α1f2(u1) + · · · + αnf2(un) because
f2(u1) = v1, . . . , f2(un) = vn

= f2(α1u1 + · · · + αnun)
by the linearity of f2
(and more precisely,
by Proposition 4.1.5)

= f2(u).

Thus, f1 = f2. This proves uniqueness. □
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Theorem 4.3.2
Let U and V be vector spaces over a field F, and assume that U is
finite-dimensional. Let B = {u1, . . . , un} be a basis of U, and let
v1, . . . , vn ∈ V .a Then there exists a unique linear function
f : U → V s.t. f (u1) = v1, . . . , f (un) = vn. Moreover, if the vector
space U is non-trivial (i.e. n ̸= 0), then this unique linear function
f : U → V satisfies the following: for all u ∈ U, we have that

f (u) = α1v1 + · · · + αnvn,

where
[

u
]

B
=

[
α1 . . . αn

]T
. On the other hand, if U is

trivial (i.e. U = {0}),b then f : U → V is given by f (0) = 0.
aHere, v1, . . . , vn are arbitrary vectors in V . They are not necessarily

pairwise distinct.
bNote that in this case, we have that n = 0 and B = ∅.



Corollary 4.3.3
Let U and V be vector spaces over a field F, and assume that U is
finite-dimensional. Let {u1, . . . , uk} be a linearly independent set
of vectors in U, and let v1, . . . , vk ∈ V .a Then there exists a linear
function f : U → V s.t. f (u1) = v1, . . . , f (uk) = vk . Moreover, if
V is non-trivial, then this linear function f is unique iff
{u1, . . . , uk} is a basis of U.

aHere, v1, . . . , vk are arbitrary vectors in V . They are not necessarily
pairwise distinct.

Remark: If V is trivial (i.e. V = {0}, and consequently
v1 = · · · = vk = 0), then there exists exactly one function
from U to V , this function maps all elements of U to 0, and
obviously, it is linear.



Corollary 4.3.3
Let U and V be vector spaces over a field F, and assume that U is
finite-dimensional. Let {u1, . . . , uk} be a linearly independent set
of vectors in U, and let v1, . . . , vk ∈ V .a Then there exists a linear
function f : U → V s.t. f (u1) = v1, . . . , f (uk) = vk . Moreover, if
V is non-trivial, then this linear function f is unique iff
{u1, . . . , uk} is a basis of U.

aHere, v1, . . . , vk are arbitrary vectors in V . They are not necessarily
pairwise distinct.

Proof (outline).

Using Theorem 3.2.19, we extend {u1, . . . , uk} to
a basis of U, and then we apply Theorem 4.3.2. The details are
left as an exercise. □
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4 Isomorphisms

Recall that, for vector spaces U and V over a field F, a
function f : U → V is an isomorphism if it is linear and a
bijection.
Vector spaces U and V (over the same field F) are
isomorphic, and we write U ∼= V , if there exits an
isomorphism f : U → V .
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4 Isomorphisms
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function f : U → V is an isomorphism if it is linear and a
bijection.
Vector spaces U and V (over the same field F) are
isomorphic, and we write U ∼= V , if there exits an
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Proposition 4.4.1
Let U and V be vector spaces over a field F, and let f : U → V be
an isomorphism. Then f −1 : V → U is also an isomorphism.

U V

f

f−1

Proof. The same as for isomorphisms f : Fn → Fn (details:
Lecture Notes). □



Proposition 4.4.2
Let U, V , and W be vector spaces over a field F, and let
f : U → V and g : V → W be isomorphisms. Then
g ◦ f : U → W is an isomorphism.

U V W

f g

g ◦ f

Proof.

Since f : U → V and g : V → W are linear functions
(because they are isomorphisms), Proposition 4.1.7 guarantees
that their composition g ◦ f : U → W is also linear.

Since f : U → V and g : V → W are bijections,
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Theorem 4.4.3
Let U, V , and W be vector spaces over a field F. Then all the
following hold:

(a) U ∼= U;
(b) if U ∼= V , then V ∼= U;
(c) if U ∼= V and V ∼= W , then U ∼= W .

Proof.

(a) Clearly, IdU : U → U (the identity function on U) is an
isomorphism. So, U ∼= U.

(b) Suppose that U ∼= V . Then there exists an isomorphism
f : U → V . But then by Proposition 4.4.2, f −1 : V → U is also an
isomorphism. So, V ∼= U.

(c) Suppose that U ∼= V and V ∼= W . Then there exist
isomorphisms f : U → V and g : V → W . But then by
Proposition 4.4.2, g ◦ f : U → W is an isomorphism. So,
U ∼= W . □
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Reminder: Theorem 4.2.13 (schematically and informally):
f : U

linear−→ V

(a)-(b)
u1, . . . ,uk are
linearly independent

if f is 1-1
=⇒
⇐=
always

f(u1), . . . , f(uk) are
linearly independent

(c)-(d) u1, . . . ,uk span U

if f is onto
=⇒
⇐=

if f is 1-1

f(u1), . . . , f(uk) span V

Theorem 4.4.4
Let U and V be vector spaces over a field F, let f : U → V be an
isomorphism, and let u1, . . . , uk ∈ U. Then all the following hold:

(a) vectors u1, . . . , uk are linearly independent in U iff vectors
f (u1), . . . , f (uk) are linearly independent in V ;

(b) vectors u1, . . . , uk span U iff vectors f (u1), . . . , f (uk) span V ;
(c) {u1, . . . , uk} is a basis of U iff

{
f (u1), . . . , f (uk)

}
is a basis of

V .

Proof. This follows from Theorem 4.2.13 (details: Lecture Notes).
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Theorem 4.4.4
Let U and V be vector spaces over a field F, let f : U → V be an
isomorphism, and let u1, . . . , uk ∈ U. Then all the following hold:

(a) vectors u1, . . . , uk are linearly independent in U iff vectors
f (u1), . . . , f (uk) are linearly independent in V ;

(b) vectors u1, . . . , uk span U iff vectors f (u1), . . . , f (uk) span V ;
(c) {u1, . . . , uk} is a basis of U iff

{
f (u1), . . . , f (uk)

}
is a basis of

V .

Proposition 4.4.5 (next slide) is a converse of sorts of
Theorem 4.4.4(c).

It essentially states that any linear function that (injectively)
maps a basis onto a basis is an isomorphism.



Proposition 4.4.5
Let U and V be finite-dimensional vector spaces over a field F.
Assume that dim(U) = dim(V ) =: n. Let {u1, . . . , un} be a basis
for U, and let {v1, . . . , vn} be a basis for V . Then there exists a
unique linear function f : U → V s.t. f (u1) = v1, . . . , f (un) = vn.
Moreover, this linear function f is an isomorphism.
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u3

un

...

v1

v2
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vn

U V

f

Proof.

The existence and uniqueness of the linear function f
follows from Theorem 4.3.2. But by hypothesis, U and V are
finite-dimensional vector spaces satisfying dim(U) = dim(V ), and
so by Corollary 4.2.10, it is enough to show that f is onto.
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Proof (continued). Fix v ∈ V .

Since {v1, . . . , vn} is a basis for V ,
we know that there exist scalars α1, . . . , αn ∈ F s.t.
v = α1v1 + · · · + αnvn. But now

f (α1u1 + · · · + αnun) (∗)= α1f (u1) + · · · + αnf (un)

= α1v1 + · · · + αnvn

= v,

where (*) follows from the linearity of f (and more precisely, from
Proposition 4.1.5). So, f is onto, and we are done. □
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Reminder:

Theorem 4.2.14
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then all the following hold:

(a) if f is one-to-one, then dim(U) ≤ dim(V );
(b) if f is onto, then dim(U) ≥ dim(V );
(c) if f is an isomorphism, then dim(U) = dim(V ).

By Theorem 4.2.14(c), any two isomorphic vector spaces have
the same dimension.
Theorem 4.4.6 (next slide) guarantees that, in the case of
finite-dimensional vector spaces, the converse is also true:
any two vector spaces (over the same field) that have the
same finite dimension are isomorphic.

We give two proofs of Theorem 4.4.6!
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Theorem 4.4.6
Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V ).

Warning: This theorem is only true for finite-dimensional
vector spaces, and it becomes false for infinite-dimensional
ones.



Theorem 4.4.6
Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V ).

Proof#1.

If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V ).

Suppose, conversely, that dim(U) = dim(V ) =: n. Fix any basis
B = {b1, . . . , bn} of U and any basis C = {c1, . . . , cn} of V . By
Proposition 4.3.1,

[
·

]
B

: U → Fn and
[

·
]

C
: V → Fn are both

isomorphisms, and consequently, U ∼= Fn and V ∼= Fn. But now
Theorem 4.4.3 guarantees that U ∼= V . □
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Theorem 4.4.6
Let U and V be finite-dimensional vector spaces over a field F.
Then U and V are isomorphic iff dim(U) = dim(V ).

Proof#2.

If U and V are isomorphic, then Theorem 4.2.14(c)
guarantees that dim(U) = dim(V ). Suppose, conversely, that
dim(U) = dim(V ) =: n. Fix a basis B = {b1, . . . , bn} of U and a
basis C = {c1, . . . , cn} of V . Then by Proposition 4.4.5, there
exists a unique linear function f : U → V s.t.
f (b1) = c1, . . . , f (bn) = cn, and moreover, this linear function f is
an isomorphism.
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So, U and V are isomorphic. □
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Proposition 4.4.7
Let U and V be a vector spaces over a field F, and let f : U → V
be an isomorphism, and let U ′ ⊆ U. Then U ′ is a subspace of U iff
V ′ := f [U ′] is a subspace of V . Moreover, in this case, all the
following hold:

(a) the function f ′ : U ′ → V ′ given by f ′(u) = f (u) for all u ∈ U ′

is an isormophism;
(b) U ′ ∼= V ′;
(c) dim(U ′) = dim(V ′).

U ′ V ′ = f [U ′]

U V

f

Proof. Lecture Notes. □


