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This lecture has three parts:

1 Linear functions: definition, examples, and basic properties
2 The image and kernel of a linear function
3 The rank-nullity theorem for linear functions
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1 Linear functions: definition, examples, and basic properties

We have already studied linear functions from Fm to Fn, for a
field F.
The concept of a linear function can easily be extended to a
more general setting, that of arbitrary vector spaces, as
follows.

Definition
Given vector spaces U and V over a field F, we say that a function
f : U → V is linear provided it satisfies the following two
conditions (axioms):

1 ∀u1, u2 ∈ U: f (u1 + u2) = f (u1) + f (u2);
2 ∀u ∈ U, α ∈ F: f (αu) = αf (u).

If the linear function f is also a bijection, then we say that it is an
isomorphism, and that the vector spaces U and V are isomorphic.
Linear functions are also called linear transformations.
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Remark: In the definition of a linear function, the two vector
spaces (the domain and the codomain of the function) must
be over the same field F.
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Example 4.1.1
Let PR be the real vector space of all polynomials with coefficients
in R. Show that the function D : PR → PR given by

D
( n∑

k=0
akxk)

=
n∑

k=1
kakxk−1

for all integers n ≥ 0 and real numbers a0, . . . , ak , is linear.

Solution.

We need to check that D satisfies the two axioms from
the definition of a linear function. We show that D satisfies
axiom 1. The proof that it satisfies axiom 2 is similar (details:
Lecture Notes).

1. Fix p(x), q(x) ∈ PR. Then there exists an integer n ≥ 0 and real
numbers a0, . . . , an, b0, . . . , bn s.t.

p(x) =
n∑

k=0
akxk and q(x) =

n∑
k=0

bkxk .
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Solution (continued). We now compute:

D
(
p(x) + q(x)

)
= D

(( n∑
k=0

akxk)
+

( n∑
k=0

bkxk))

= D
( n∑

k=0
(ak + bk)xk

)

=
n∑

k=1
k(ak + bk)xk−1

=
( n∑

k=1
kakxk−1

)
+

( n∑
k=1

kbkxk−1
)

= D
( n∑

k=0
akxk

)
+ D

( n∑
k=0

akxk
)

= D
(
p(x)

)
+ D

(
q(x)

)
. □



Here is another example, for those who have studied calculus.

Example 4.1.2
Let Diff(R) be the real vector space of all differentiable functions
from R to R, and let Func(R) be the real vector space of all
functions from R to R. Show that the function
D : Diff(R) → Func(R) given by D(f ) = f ′ for all f ∈ Diff(R) is
linear. (As usual, f ′ denotes the derivative of f .)

Solution. 1. Fix f , g ∈ Diff(R). Then by the properties of the
derivative, we have that
D(f + g) = (f + g)′ = f ′ + g ′ = D(f ) + D(g).

2. Fix f ∈ Diff(R) and α ∈ R. Then by the properties of the
derivative, we have that D(αf ) = (αf )′ = αf ′ = αD(f ).

From 1. and 2., we conclude that D is linear. □
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We now give a few basic properties of linear functions.
We give some proofs here, skip others (but give them in the
Lecture Notes), and leave still others as exercises.

For the most part (though not exclusively), these are
generalizations of the results that we proved previously for
linear functions f : Fm → Fn (where F is a field).
Most of the results readily generalize to linear functions
between arbitrary vectors spaces (over the same field), with
one exception: linear functions between general vector spaces
do not have standard matrices.

It is in fact possible to define the matrix of a linear function
between non-trivial, finite-dimensional vectors spaces, but such
matrices depend on the particular choice of basis for the
domain and codomain.
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Theorem 4.1.3
Let U and V be vector spaces over a field F, and let f : U → V be
a function. Then the following are equivalent:

(i) f is linear;
(ii) for all vectors u1, u2 ∈ U and scalars α1, α2 ∈ F, we have that

f (α1u1 + α2u2) = α1f (u1) + α2f (u2).

Proof. Exercise. □

Proposition 4.1.4
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then for all u1, u2 ∈ U, we have that

f (u1 − u2) = f (u1) − f (u2).

Proof. Lecture Notes. □
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Proposition 4.1.5
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then for all vectors u1, . . . , uk ∈ U and all
scalars α1, . . . , αk ∈ F, we have that

f
( k∑

i=1
αiui

)
=

k∑
i=1

αi f (ui),

of, written in another way, that

f
(
α1u1 + · · · + αkuk

)
= α1f (u1) + · · · + αk f (uk).

Proof.

This follows from the definition of a linear function via an
easy induction on k. The details are left as an exercise. □
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Proposition 4.1.6
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then f (0) = 0.

Proof. We observe that

f (0) (∗)= f (0 · 0) (∗∗)= 0f (0) (∗)= 0,

where both instances of (*) follows from Proposition 3.1.3(a), and
(**) follows from the fact that f is linear. □



Proposition 4.1.7
Let U, V , and W be vector spaces over a field F. Then all the
following hold:

(a) for all linear functions f , g : U → V , the function f + g is
linear;a

(b) for all linear functions f : U → V and scalars α ∈ F, the
function αf : U → V is linear;b

(c) for all linear functions f : U → V and g : V → W , the
function g ◦ f is liner.c

U V W

f g

g ◦ f

aAs usual, the function f + g : U → V is defined by
(f + g)(u) = f (u) + g(u) for all u ∈ U.

bAs usual, the function αf : U → V is defined by (αf )(u) = α
(
f (u)

)
for all

u ∈ U.
cAs usual, the function g ◦ f : U → W is defined by (g ◦ f )(u) = g

(
f (u)

)
for all u ∈ U.



Proposition 4.1.7
Let U, V , and W be vector spaces over a field F. Then all the
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The proofs of (a) and (b) are left as an exercise.
The proof of (c) relies on the appropriate definitions and is in
the Lecture Notes.
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Given vector spaces U and V over a field F, the set of all
linear functions from U to V is denoted by Hom(U, V ).

Linear functions are sometimes called “homomorphisms,”
which is where the notation Hom(U, V ) comes from.

We note that Hom(U, V ) is a vector space over F.

The vector addition and scalar multiplication operations in
Hom(U, V ) are the addition and scalar multiplication of
functions; by parts (a) and (b) of Proposition 4.1.7,
Hom(U, V ) is indeed closed under the addition and scalar
multiplication of functions.
The zero vector in Hom(U, V ) is the zero function, i.e. the
function f0 : U → V given by f0(u) = 0V for all u ∈ U, where
0V is the zero of the vector space V .
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2 The image and kernel of a linear function

Suppose we are given a function f : A → B (not necessarily
linear). Then we define the following:

for all subsets A′ ⊆ A, the set f [A′] := {f (a) | a ∈ A′} is called
the image of A′ under the function f ;
the set Im(f ) := f [A] is called the image of f ;
for all subsets B′ ⊆ B, the set f −1[B′] := {a ∈ A | f (a) ∈ B′}
is called the preimage of B′ under f .

We note that in some texts, the image of f is called the
“range of f .”

Remark: If f : A → B is a bijection, then it has an inverse
function f −1 : B → A.

In this case, for B′ ⊆ B, the notation f −1[B′] can be
interpreted in two ways: as the preimage of B′ under f , and as
the image of B′ under the inverse function f −1.
However, in both cases, f −1[B′] is the same subset of A, which
is why we usually do not need to specify which interpretation
we have in mind.



2 The image and kernel of a linear function

Suppose we are given a function f : A → B (not necessarily
linear). Then we define the following:

for all subsets A′ ⊆ A, the set f [A′] := {f (a) | a ∈ A′} is called
the image of A′ under the function f ;
the set Im(f ) := f [A] is called the image of f ;
for all subsets B′ ⊆ B, the set f −1[B′] := {a ∈ A | f (a) ∈ B′}
is called the preimage of B′ under f .

We note that in some texts, the image of f is called the
“range of f .”

Remark: If f : A → B is a bijection, then it has an inverse
function f −1 : B → A.

In this case, for B′ ⊆ B, the notation f −1[B′] can be
interpreted in two ways: as the preimage of B′ under f , and as
the image of B′ under the inverse function f −1.
However, in both cases, f −1[B′] is the same subset of A, which
is why we usually do not need to specify which interpretation
we have in mind.



2 The image and kernel of a linear function

Suppose we are given a function f : A → B (not necessarily
linear). Then we define the following:

for all subsets A′ ⊆ A, the set f [A′] := {f (a) | a ∈ A′} is called
the image of A′ under the function f ;

the set Im(f ) := f [A] is called the image of f ;
for all subsets B′ ⊆ B, the set f −1[B′] := {a ∈ A | f (a) ∈ B′}
is called the preimage of B′ under f .

We note that in some texts, the image of f is called the
“range of f .”

Remark: If f : A → B is a bijection, then it has an inverse
function f −1 : B → A.

In this case, for B′ ⊆ B, the notation f −1[B′] can be
interpreted in two ways: as the preimage of B′ under f , and as
the image of B′ under the inverse function f −1.
However, in both cases, f −1[B′] is the same subset of A, which
is why we usually do not need to specify which interpretation
we have in mind.



2 The image and kernel of a linear function

Suppose we are given a function f : A → B (not necessarily
linear). Then we define the following:

for all subsets A′ ⊆ A, the set f [A′] := {f (a) | a ∈ A′} is called
the image of A′ under the function f ;
the set Im(f ) := f [A] is called the image of f ;

for all subsets B′ ⊆ B, the set f −1[B′] := {a ∈ A | f (a) ∈ B′}
is called the preimage of B′ under f .

We note that in some texts, the image of f is called the
“range of f .”

Remark: If f : A → B is a bijection, then it has an inverse
function f −1 : B → A.

In this case, for B′ ⊆ B, the notation f −1[B′] can be
interpreted in two ways: as the preimage of B′ under f , and as
the image of B′ under the inverse function f −1.
However, in both cases, f −1[B′] is the same subset of A, which
is why we usually do not need to specify which interpretation
we have in mind.



2 The image and kernel of a linear function

Suppose we are given a function f : A → B (not necessarily
linear). Then we define the following:

for all subsets A′ ⊆ A, the set f [A′] := {f (a) | a ∈ A′} is called
the image of A′ under the function f ;
the set Im(f ) := f [A] is called the image of f ;
for all subsets B′ ⊆ B, the set f −1[B′] := {a ∈ A | f (a) ∈ B′}
is called the preimage of B′ under f .

We note that in some texts, the image of f is called the
“range of f .”

Remark: If f : A → B is a bijection, then it has an inverse
function f −1 : B → A.

In this case, for B′ ⊆ B, the notation f −1[B′] can be
interpreted in two ways: as the preimage of B′ under f , and as
the image of B′ under the inverse function f −1.
However, in both cases, f −1[B′] is the same subset of A, which
is why we usually do not need to specify which interpretation
we have in mind.



2 The image and kernel of a linear function

Suppose we are given a function f : A → B (not necessarily
linear). Then we define the following:

for all subsets A′ ⊆ A, the set f [A′] := {f (a) | a ∈ A′} is called
the image of A′ under the function f ;
the set Im(f ) := f [A] is called the image of f ;
for all subsets B′ ⊆ B, the set f −1[B′] := {a ∈ A | f (a) ∈ B′}
is called the preimage of B′ under f .

We note that in some texts, the image of f is called the
“range of f .”

Remark: If f : A → B is a bijection, then it has an inverse
function f −1 : B → A.

In this case, for B′ ⊆ B, the notation f −1[B′] can be
interpreted in two ways: as the preimage of B′ under f , and as
the image of B′ under the inverse function f −1.
However, in both cases, f −1[B′] is the same subset of A, which
is why we usually do not need to specify which interpretation
we have in mind.



2 The image and kernel of a linear function

Suppose we are given a function f : A → B (not necessarily
linear). Then we define the following:

for all subsets A′ ⊆ A, the set f [A′] := {f (a) | a ∈ A′} is called
the image of A′ under the function f ;
the set Im(f ) := f [A] is called the image of f ;
for all subsets B′ ⊆ B, the set f −1[B′] := {a ∈ A | f (a) ∈ B′}
is called the preimage of B′ under f .

We note that in some texts, the image of f is called the
“range of f .”

Remark: If f : A → B is a bijection, then it has an inverse
function f −1 : B → A.

In this case, for B′ ⊆ B, the notation f −1[B′] can be
interpreted in two ways: as the preimage of B′ under f , and as
the image of B′ under the inverse function f −1.
However, in both cases, f −1[B′] is the same subset of A, which
is why we usually do not need to specify which interpretation
we have in mind.



2 The image and kernel of a linear function

Suppose we are given a function f : A → B (not necessarily
linear). Then we define the following:

for all subsets A′ ⊆ A, the set f [A′] := {f (a) | a ∈ A′} is called
the image of A′ under the function f ;
the set Im(f ) := f [A] is called the image of f ;
for all subsets B′ ⊆ B, the set f −1[B′] := {a ∈ A | f (a) ∈ B′}
is called the preimage of B′ under f .

We note that in some texts, the image of f is called the
“range of f .”

Remark: If f : A → B is a bijection, then it has an inverse
function f −1 : B → A.

In this case, for B′ ⊆ B, the notation f −1[B′] can be
interpreted in two ways: as the preimage of B′ under f , and as
the image of B′ under the inverse function f −1.

However, in both cases, f −1[B′] is the same subset of A, which
is why we usually do not need to specify which interpretation
we have in mind.



2 The image and kernel of a linear function

Suppose we are given a function f : A → B (not necessarily
linear). Then we define the following:

for all subsets A′ ⊆ A, the set f [A′] := {f (a) | a ∈ A′} is called
the image of A′ under the function f ;
the set Im(f ) := f [A] is called the image of f ;
for all subsets B′ ⊆ B, the set f −1[B′] := {a ∈ A | f (a) ∈ B′}
is called the preimage of B′ under f .

We note that in some texts, the image of f is called the
“range of f .”

Remark: If f : A → B is a bijection, then it has an inverse
function f −1 : B → A.

In this case, for B′ ⊆ B, the notation f −1[B′] can be
interpreted in two ways: as the preimage of B′ under f , and as
the image of B′ under the inverse function f −1.
However, in both cases, f −1[B′] is the same subset of A, which
is why we usually do not need to specify which interpretation
we have in mind.



Definition
Given a linear function f : U → V , where U and V are vector
spaces over a field F, the kernel of f is defined to be the set

Ker(f ) := {u ∈ U | f (u) = 0}.

Note that this means that Ker(f ) = f −1[{0}], i.e. Ker(f ) is
the preimage of the set {0} under f .
We further note the kernel is only defined for linear functions,
and not for general functions.

Proposition 4.2.1 (next slide) gives the correspondence
between the image and kernel of the linear function on the
one hand, and the column and null space of the standard
matrix on the other hand.

Note, however, that the image and kernel are defined for all
linear functions, not just those from Fm to Fn.
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Proposition 4.2.1
Let F be a field, let f : Fm → Fn be a linear function, and let
A ∈ Fn×m be the standard matrix of f . Then both the following
hold:

(a) Im(f ) = Col(A);
(b) Ker(f ) = Nul(A).

Proof.

For (a), we observe that

Col(A) (∗)= {Ax | x ∈ Fm} (∗∗)= {f (x) | x ∈ Fm} = Im(f ),

where (*) follows from Proposition 3.3.2(a), and (**) follows from
the fact that A is the standard matrix of f .
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Proposition 4.2.1
Let F be a field, let f : Fm → Fn be a linear function, and let
A ∈ Fn×m be the standard matrix of f . Then both the following
hold:

(a) Im(f ) = Col(A);
(b) Ker(f ) = Nul(A).

Proof (continued). For (b), we observe that

Nul(A) = {x ∈ Fm | Ax = 0}

(∗)= {x ∈ Fm | f (x) = 0}

= Ker(f ),

where (*) follows from the fact that A is the standard matrix of
f . □



Example 4.2.2
Let PR be the real vector space of all polynomials with coefficients
in R. Consider the function D : PR → PR given by

D(
n∑

k=0
akxk) =

n∑
k=1

kakxk−1

for all integers n ≥ 0 and real numbers a0, . . . , ak . By
Example 4.1.1, D is linear. Clearly, Ker(D) is the set of all
constant polynomials, and Im(D) is the set of all polynomials (i.e.
Im(D) = PR).



Theorem 4.2.3
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then all the following hold:

(a) for all subspaces U ′ of U, we have that f [U ′] is a subspace of
V ;

(b) Im(f ) is a subspace of V ;
(c) for all subspaces V ′ of V , we have that f −1[V ′] is a subspace

of U;
(d) Ker(f ) is a subspace of U.

U ′ f [U ′] V ′f−1[V ′]
f f

U V U V

(a) (c)

The proof relies on Theorem 3.1.7.
So, let us recall Theorem 3.1.7 (next slide).
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Theorem 3.1.7
Let V be a vector space over a field F, and let U ⊆ V . Then U is
a subspace of V iff the following three conditions are satisfied:

(i) 0 ∈ U;a
(ii) U is closed under vector addition, that is, for all u, v ∈ U, we

have that u + v ∈ U;
(iii) U is closed under scalar multiplication, that is, for all u ∈ U

and α ∈ F, we have that αu ∈ U.
aHere, 0 is the zero vector in the vector space V .
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Proof.

Since U is a subspace of itself, (a) implies (b). Similarly,
since Ker(f ) = f −1[{0}] and {0} is a subspace of V , we have
that (c) implies (d). So, it suffices to prove (a) and (c).

We prove (a). The proof of (c) is similar (see the Lecture Notes).
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Proof of (a).

Fix a subspace U ′ of U. WTS f [U ′] is a subspace of
V . Since f : U → V and U ′ ⊆ U, we have that f [U ′] ⊆ V . In view
of Theorem 3.1.7, it now suffices to prove the following:

(i) 0V ∈ f [U ′];
(ii) for all v1, v2 ∈ f [U ′], we have that v1 + v2 ∈ f [U ′];
(iii) for all v ∈ f [U ′] and α ∈ F, we have that αv ∈ f [U ′].

We first prove (i). Since U ′ is a subspace of U, Theorem 3.1.7
guarantees that 0U ∈ U ′. On the other hand, by Proposition 4.1.6,
we have that f (0U) = 0V , and it follows that 0V ∈ f [U ′]. This
proves (i).



Theorem 4.2.3
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then all the following hold:

(a) for all subspaces U ′ of U, we have that f [U ′] is a subspace of
V ;

Proof of (a). Fix a subspace U ′ of U. WTS f [U ′] is a subspace of
V .

Since f : U → V and U ′ ⊆ U, we have that f [U ′] ⊆ V . In view
of Theorem 3.1.7, it now suffices to prove the following:

(i) 0V ∈ f [U ′];
(ii) for all v1, v2 ∈ f [U ′], we have that v1 + v2 ∈ f [U ′];
(iii) for all v ∈ f [U ′] and α ∈ F, we have that αv ∈ f [U ′].

We first prove (i). Since U ′ is a subspace of U, Theorem 3.1.7
guarantees that 0U ∈ U ′. On the other hand, by Proposition 4.1.6,
we have that f (0U) = 0V , and it follows that 0V ∈ f [U ′]. This
proves (i).



Theorem 4.2.3
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then all the following hold:

(a) for all subspaces U ′ of U, we have that f [U ′] is a subspace of
V ;

Proof of (a). Fix a subspace U ′ of U. WTS f [U ′] is a subspace of
V . Since f : U → V and U ′ ⊆ U, we have that f [U ′] ⊆ V .

In view
of Theorem 3.1.7, it now suffices to prove the following:

(i) 0V ∈ f [U ′];
(ii) for all v1, v2 ∈ f [U ′], we have that v1 + v2 ∈ f [U ′];
(iii) for all v ∈ f [U ′] and α ∈ F, we have that αv ∈ f [U ′].

We first prove (i). Since U ′ is a subspace of U, Theorem 3.1.7
guarantees that 0U ∈ U ′. On the other hand, by Proposition 4.1.6,
we have that f (0U) = 0V , and it follows that 0V ∈ f [U ′]. This
proves (i).



Theorem 4.2.3
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then all the following hold:

(a) for all subspaces U ′ of U, we have that f [U ′] is a subspace of
V ;

Proof of (a). Fix a subspace U ′ of U. WTS f [U ′] is a subspace of
V . Since f : U → V and U ′ ⊆ U, we have that f [U ′] ⊆ V . In view
of Theorem 3.1.7, it now suffices to prove the following:

(i) 0V ∈ f [U ′];
(ii) for all v1, v2 ∈ f [U ′], we have that v1 + v2 ∈ f [U ′];
(iii) for all v ∈ f [U ′] and α ∈ F, we have that αv ∈ f [U ′].

We first prove (i). Since U ′ is a subspace of U, Theorem 3.1.7
guarantees that 0U ∈ U ′. On the other hand, by Proposition 4.1.6,
we have that f (0U) = 0V , and it follows that 0V ∈ f [U ′]. This
proves (i).



Theorem 4.2.3
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then all the following hold:

(a) for all subspaces U ′ of U, we have that f [U ′] is a subspace of
V ;

Proof of (a). Fix a subspace U ′ of U. WTS f [U ′] is a subspace of
V . Since f : U → V and U ′ ⊆ U, we have that f [U ′] ⊆ V . In view
of Theorem 3.1.7, it now suffices to prove the following:

(i) 0V ∈ f [U ′];
(ii) for all v1, v2 ∈ f [U ′], we have that v1 + v2 ∈ f [U ′];
(iii) for all v ∈ f [U ′] and α ∈ F, we have that αv ∈ f [U ′].

We first prove (i).

Since U ′ is a subspace of U, Theorem 3.1.7
guarantees that 0U ∈ U ′. On the other hand, by Proposition 4.1.6,
we have that f (0U) = 0V , and it follows that 0V ∈ f [U ′]. This
proves (i).



Theorem 4.2.3
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then all the following hold:

(a) for all subspaces U ′ of U, we have that f [U ′] is a subspace of
V ;

Proof of (a). Fix a subspace U ′ of U. WTS f [U ′] is a subspace of
V . Since f : U → V and U ′ ⊆ U, we have that f [U ′] ⊆ V . In view
of Theorem 3.1.7, it now suffices to prove the following:

(i) 0V ∈ f [U ′];
(ii) for all v1, v2 ∈ f [U ′], we have that v1 + v2 ∈ f [U ′];
(iii) for all v ∈ f [U ′] and α ∈ F, we have that αv ∈ f [U ′].

We first prove (i). Since U ′ is a subspace of U, Theorem 3.1.7
guarantees that 0U ∈ U ′.

On the other hand, by Proposition 4.1.6,
we have that f (0U) = 0V , and it follows that 0V ∈ f [U ′]. This
proves (i).



Theorem 4.2.3
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then all the following hold:

(a) for all subspaces U ′ of U, we have that f [U ′] is a subspace of
V ;

Proof of (a). Fix a subspace U ′ of U. WTS f [U ′] is a subspace of
V . Since f : U → V and U ′ ⊆ U, we have that f [U ′] ⊆ V . In view
of Theorem 3.1.7, it now suffices to prove the following:

(i) 0V ∈ f [U ′];
(ii) for all v1, v2 ∈ f [U ′], we have that v1 + v2 ∈ f [U ′];
(iii) for all v ∈ f [U ′] and α ∈ F, we have that αv ∈ f [U ′].

We first prove (i). Since U ′ is a subspace of U, Theorem 3.1.7
guarantees that 0U ∈ U ′. On the other hand, by Proposition 4.1.6,
we have that f (0U) = 0V , and it follows that 0V ∈ f [U ′].

This
proves (i).



Theorem 4.2.3
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then all the following hold:

(a) for all subspaces U ′ of U, we have that f [U ′] is a subspace of
V ;

Proof of (a). Fix a subspace U ′ of U. WTS f [U ′] is a subspace of
V . Since f : U → V and U ′ ⊆ U, we have that f [U ′] ⊆ V . In view
of Theorem 3.1.7, it now suffices to prove the following:

(i) 0V ∈ f [U ′];
(ii) for all v1, v2 ∈ f [U ′], we have that v1 + v2 ∈ f [U ′];
(iii) for all v ∈ f [U ′] and α ∈ F, we have that αv ∈ f [U ′].

We first prove (i). Since U ′ is a subspace of U, Theorem 3.1.7
guarantees that 0U ∈ U ′. On the other hand, by Proposition 4.1.6,
we have that f (0U) = 0V , and it follows that 0V ∈ f [U ′]. This
proves (i).



Theorem 4.2.3
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then all the following hold:

(a) for all subspaces U ′ of U, we have that f [U ′] is a subspace of
V ;

Proof of (a) (continued). Next, we prove (ii).
(ii) for all v1, v2 ∈ f [U ′], we have that v1 + v2 ∈ f [U ′]

Fix v1, v2 ∈ f [U ′]; WTS v1 + v2 ∈ f [U ′]. Since v1, v2 ∈ f [U ′], we
know that ∃u1, u2 ∈ U ′ s.t. v1 = f (u1) and v2 = f (u2). Since U ′ is
a subspace of U, we have that u1 + u2 ∈ U ′. But now we have that

v1 + v2 = f (u1) + f (u2) (∗)= f (u1 + u2)
(∗∗)
∈ f [U ′],

where (*) follows from the fact that f is linear, and (**) follows
from the fact that u1 + u2 ∈ U ′. This proves (ii).
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note that
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where (*) follows from Proposition 4.1.4, and (**) follows from
the fact that f (u1) = f (u2). So, u1 − u2 ∈ Ker(f ). Since
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u1 = u2. This proves that f is one-to-one. □
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3 The rank-nullity theorem for linear functions

Suppose that U and V are vector spaces over a field F, and
that f : U → V is a linear function.
By Theorem 4.2.3, Im(f ) is a subspace of V , and Ker(f ) is a
subspace of U.

Im(f )
f

U V

Ker(f )

0

The rank of f is defined to be

rank(f ) := dim
(
Im(f )

)
,

and the nullity of f is dim(Ker(f )).
We note that both the rank and the nullity of f may possibly
be infinite.
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Proposition 4.2.5
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then rank(f ) ≤ dim(V ).

Proof.

We may assume that n := dim(V ) is finite, for otherwise,
this is immediate. By Theorem 4.2.3, Im(f ) is a subspace of V ,
and so by Theorem 3.2.21, we have that dim

(
Im(f )

)
≤ dim(V ),

i.e. rank(f ) ≤ dim(V ). □



Im(f )
f

U V

Ker(f )

0

Proposition 4.2.5
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then rank(f ) ≤ dim(V ).

Proof. We may assume that n := dim(V ) is finite, for otherwise,
this is immediate.

By Theorem 4.2.3, Im(f ) is a subspace of V ,
and so by Theorem 3.2.21, we have that dim

(
Im(f )

)
≤ dim(V ),

i.e. rank(f ) ≤ dim(V ). □



Im(f )
f

U V

Ker(f )

0

Proposition 4.2.5
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then rank(f ) ≤ dim(V ).

Proof. We may assume that n := dim(V ) is finite, for otherwise,
this is immediate. By Theorem 4.2.3, Im(f ) is a subspace of V ,

and so by Theorem 3.2.21, we have that dim
(
Im(f )

)
≤ dim(V ),

i.e. rank(f ) ≤ dim(V ). □



Im(f )
f

U V

Ker(f )

0

Proposition 4.2.5
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then rank(f ) ≤ dim(V ).

Proof. We may assume that n := dim(V ) is finite, for otherwise,
this is immediate. By Theorem 4.2.3, Im(f ) is a subspace of V ,
and so by Theorem 3.2.21, we have that dim

(
Im(f )

)
≤ dim(V ),

i.e. rank(f ) ≤ dim(V ). □



Im(f )
f

U V

Ker(f )

0

Reminder:
Theorem 4.2.4
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then f is one-to-one iff Ker(f ) = {0}.

For onto-ness, we have the following theorem (when the
codomain is finite-dimensional):

Proposition 4.2.6
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Assume that V is finite-dimensional. Then f is
onto iff rank(f ) = dim(V ).
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Proposition 4.2.6
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Assume that V is finite-dimensional. Then f is
onto iff rank(f ) = dim(V ).

Proof.

We have the following sequence of equivalent statements:

f is onto (∗)⇐⇒ Im(f ) = V

(∗∗)⇐⇒ dim
(
Im(f )

)
= dim(V )

(∗∗∗)⇐⇒ rank(f ) = dim(V ),

where (*) follows from the definition of an onto function, (**)
follows from Theorem 3.2.21 (since Im(f ) is a subspace of V , and
V is finite-dimensional), and (***) follows from the definition of
rank. □
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Do not apply Proposition 4.2.6 to linear functions with an
infinite-dimensional codomain!
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Reminder:

Proposition 4.2.1
Let F be a field, let f : Fm → Fn be a linear function, and let
A ∈ Fn×m be the standard matrix of f . Then both the following
hold:

(a) Im(f ) = Col(A);
(b) Ker(f ) = Nul(A).

Proposition 4.2.7
Let F be a field, let f : Fm → Fn be a linear function, and let
A ∈ Fn×m be the standard matrix of f . Then both the following
hold:

(a) rank(f ) = rank(A);
(b) dim

(
Ker(f )

)
= dim

(
Nul(A)

)
.
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The rank–nullity theorem (linear function version)
Let U and V be vector spaces over a field F, and assume that U is
finite-dimensional. Then every linear function f : U → V satisfies

rank(f ) + dim
(
Ker(f )

)
= dim(U),

and in particular, both Ker(f ) and Im(f ) are finite-dimensional.

Proof: Later!
First, we show how the rank-nullity theorem for linear
functions implies the rank-nullity theorem for matrices.
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The rank–nullity theorem (matrix version)
Let F be a field, and let A ∈ Fn×m. Then

rank(A) + dim
(
Nul(A)

)
= m︸︷︷︸

= number of
columns of A

.

Proof (using the rank-nullity theorem for linear functions).

Let
f : Fm → Fn be given by f (u) = Au for all u ∈ Fm. By
Proposition 1.10.4, f is linear, and obviously, A is the standard
matrix of f . We now have that

rank(A) + dim
(
Nul(A)

) (∗)= rank(f ) + dim
(
Ker(f )

)
(∗∗)= dim(Fm) = m,

where (*) follows from Proposition 4.2.7, and (**) follows from
the rank-nullity theorem for linear functions. □
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The rank–nullity theorem (linear function version)
Let U and V be vector spaces over a field F, and assume that U is
finite-dimensional. Then every linear function f : U → V satisfies

rank(f ) + dim
(
Ker(f )

)
= dim(U),

and in particular, both Ker(f ) and Im(f ) are finite-dimensional.

Proof.

By Theorem 4.2.3, Ker(f ) is a subspace of U, and Im(f ) is
a subspace of V . Next, since U is finite-dimensional,
Theorem 3.2.21 guarantees that its subspace Ker(f ) is
finite-dimensional and satisfies dim

(
Ker(f )

)
≤ dim(U). Set

k := dim
(
Ker(f )

)
and m := dim(U) (so, k ≤ m). By definition, we

have that rank(f ) = dim
(
Im(f )

)
. Thus, to complete the proof, we

need only exhibit a basis of Im(f ) of size m − k. Indeed, this will
imply rank(f ) = dim

(
Im(f )

)
= m − k, and the result will follow

immediately.
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Proof (continued). Reminder: k = dim
(
Ker(f )

)
, m = dim(U),

k ≤ m. WTS Im(f ) has a basis of size m − k.
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We proceed as follows. Fix a basis {u1, . . . , uk} of Ker(f ). Then
{u1, . . . , uk} is a linearly independent set in a finite-dimensional
vector space U; so, by Theorem 3.2.19, {u1, . . . , uk} can be
extended to a basis {u1, . . . , uk , uk+1, . . . , um} of U. We will
complete the proof by showing that the (m − k)-element set{
f (uk+1), . . . , f (um)

}
is a basis of Im(f ).
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It suffices to prove the following two claims.

Claim 1. Vectors f (uk+1), . . . , f (um) are linearly indepen-
dent.

Claim 2. Im(f ) = Span
(
f (uk+1), . . . , f (um)

)
.

We prove them one by one.



Claim 1. Vectors f (uk+1), . . . , f (um) are linearly indepen-
dent.

Proof of Claim 1.

Fix scalars αk+1, . . . , αm ∈ F s.t.

αk+1f (uk+1) + · · · + αmf (um) = 0.

WTS αk+1 = · · · = αm = 0. Note that

f (αk+1uk+1 + · · · + αmum) (∗)= αk+1f (uk+1) + · · · + αmf (um) = 0,

where (*) follows from the fact that f is linear (and more
precisely, from Proposition 4.1.5). But now we have that
αk+1uk+1 + · · · + αmum ∈ Ker(f ).

Since {u1, . . . , uk} is a basis of Ker(f ), we have that
αk+1uk+1 + · · · + αmum is a linear combination of the vectors
u1, . . . , uk , i.e. ∃α1, . . . , αk ∈ F s.t.

αk+1uk+1 + · · · + αmum = α1u1 + · · · + αkuk .
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Proof of Claim 1 (continued). Reminder:
αk+1uk+1 + · · · + αmum = α1u1 + · · · + αkuk .
WTS αk+1 = · · · = αm = 0.

But this implies that

−α1u1 − · · · − αkuk + αk+1uk+1 + · · · + αmum = 0.

Since vectors u1, . . . , uk , uk+1, . . . , um are linearly independent
(because they form a basis of U), we deduce that
−α1 = · · · = −αk = αk+1 = · · · = αm = 0.

In particular, αk+1 = · · · = αm = 0, and it follows that vectors
f (uk+1), . . . , f (um) are indeed linearly independent, which is what
we needed to show. ♦
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The rank–nullity theorem (linear function version)
Let U and V be vector spaces over a field F, and assume that U is
finite-dimensional. Then every linear function f : U → V satisfies

rank(f ) + dim
(
Ker(f )

)
= dim(U),

and in particular, both Ker(f ) and Im(f ) are finite-dimensional.

The rank-nullity theorem for linear functions has a few easy
dimension-related corollaries, which we now turn to.
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Corollary 4.2.8
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then

rank(f ) ≤ min
{
dim(U), dim(V )

}
.

Remark: By definition, rank(f ) = dim
(
Im(f )

)
.

So, Corollary 4.2.8 states that the dimension of the image of a
linear function is at most the dimension of the domain and
also at most the dimension of the codomain.
We note that in Corollary 4.2.8, vector spaces U and V may
possibly be infinite-dimensional.



Im(f )
f

U V

Ker(f )

0

Corollary 4.2.8
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then

rank(f ) ≤ min
{
dim(U), dim(V )

}
.

Remark: By definition, rank(f ) = dim
(
Im(f )

)
.

So, Corollary 4.2.8 states that the dimension of the image of a
linear function is at most the dimension of the domain and
also at most the dimension of the codomain.
We note that in Corollary 4.2.8, vector spaces U and V may
possibly be infinite-dimensional.



Im(f )
f

U V

Ker(f )

0

Corollary 4.2.8
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then

rank(f ) ≤ min
{
dim(U), dim(V )

}
.

Remark: By definition, rank(f ) = dim
(
Im(f )

)
.

So, Corollary 4.2.8 states that the dimension of the image of a
linear function is at most the dimension of the domain and
also at most the dimension of the codomain.

We note that in Corollary 4.2.8, vector spaces U and V may
possibly be infinite-dimensional.



Im(f )
f

U V

Ker(f )

0

Corollary 4.2.8
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then

rank(f ) ≤ min
{
dim(U), dim(V )

}
.

Remark: By definition, rank(f ) = dim
(
Im(f )

)
.

So, Corollary 4.2.8 states that the dimension of the image of a
linear function is at most the dimension of the domain and
also at most the dimension of the codomain.
We note that in Corollary 4.2.8, vector spaces U and V may
possibly be infinite-dimensional.



Im(f )
f

U V

Ker(f )

0

Corollary 4.2.8
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then

rank(f ) ≤ min
{
dim(U), dim(V )

}
.

Proof.

The fact that rank(f ) ≤ dim(V ) follows from
Proposition 4.2.5. It remains to show that rank(f ) ≤ dim(U). If
dim(U) = ∞, then this is immediate. So, let us assume that U is
finite-dimensional. Then

rank(f ) ≤ rank(f ) + dim
(
Ker(f )

) (∗)= dim(U),

where (*) follows from the rank-nullity theorem for linear
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Corollary 4.2.9
Let U and V be vector spaces over a field F, and let f : U → V be
a linear function. Then for any subspace U ′ of U, we have that
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Consider the function f ′ := f ↾ U ′ (the restriction of f to
U ′). Since U ′ is a subspace of U and f : U → V is linear, we have
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Geometric considerations:

First of all, recall that subspaces of a Euclidean space Rk are
{0}, lines through the origin, planes through the origin, and
higher dimensional generalizations.
Now, suppose that f : Rm → Rn is a linear function.
By Theorem 4.2.3(c), for any subspace U of the domain Rm,
we have that f [U] is a subspace of the codomain Rn, and by
Corollary 4.2.9, dim

(
f [U]

)
≤ dim(U).

This implies that f maps {0} onto {0}, maps any line through
the origin onto either a line through the origin or {0}, maps
planes through the origin onto either planes through the origin
or lines through the origin or {0}.
Similar remarks apply to higher-dimensional generalizations of
subspaces of Rm and Rn.
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Linear functions between vector spaces of the same
finite dimension:

By the Invertible Matrix Theorem, for a linear function
f : Fn → Fn (where F is a field), the following are equivalent:

f is one-to-one;
f is onto;
f is an isomorphism.

Here, we assumed that the domain and the codomain of f are
the same (namely, Fn).
Using Theorem 4.2.4 (which states that a linear function is
one-to-one iff its kernel is {0}) and the rank-nullity theorem
for linear functions, we can generalize this to linear functions
between two vector spaces of the same finite dimension (next
slide).
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Corollary 4.2.10
Let U and V be finite-dimensional vector spaces over a field F,
and assume that dim(U) = dim(V ). Let f : U → V be a linear
function. Then the following are equivalent:

(i) f is one-to-one;
(ii) f is onto;
(iii) f is a bijection (and therefore an isomorphism).

Warning: Corollary 4.2.10 only works if U and V (the
domain and codomain of our linear function f ) are of the
same finite dimension. Do not attempt to apply the corollary
to linear functions between infinite-dimensional vector spaces,
or between vector spaces of different dimension.



Corollary 4.2.10
Let U and V be finite-dimensional vector spaces over a field F,
and assume that dim(U) = dim(V ). Let f : U → V be a linear
function. Then the following are equivalent:

(i) f is one-to-one;
(ii) f is onto;
(iii) f is a bijection (and therefore an isomorphism).

Proof.

By definition, (i) and (ii) together are equivalent to (iii).
So, it suffices to prove that (i) and (ii) are equivalent. By
Theorem 4.2.4, we have that f is one-to-one iff Ker(f ) = {0}, and
by the rank-nullity theorem for linear functions, we have that

rank(f ) + dim
(
Ker(f )

)
= dim(U).

We now have the following sequence of equivalent statements
(next slide):
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Proof (continued).

f is one-to-one ⇐⇒ Ker(f ) = {0} by Theorem 4.2.4

⇐⇒ dim
(
Ker(f )

)
= 0

⇐⇒ rank(f ) = dim(U) by the rank-nullity
theorem

⇐⇒ dim
(
Im(f )

)
= dim(U) by the definition

of rank(f )

⇐⇒ dim
(
Im(f )

)
= dim(V ) because

dim(U) = dim(V )

⇐⇒ Im(f ) = V by Theorem 3.2.21,
since V is fin.-dim.

⇐⇒ f is onto V .

So, (i) and (ii) are equivalent. This completes the argument. □



Corollary 4.2.10
Let U and V be finite-dimensional vector spaces over a field F,
and assume that dim(U) = dim(V ). Let f : U → V be a linear
function. Then the following are equivalent:
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(ii) f is onto;
(iii) f is a bijection (and therefore an isomorphism).


