Linear Algebra 1

Lecture #9

Vector spaces (part II)

Irena Penev

December 4, 2023

• In this lecture, we examine the relationship between the sizes of linearly independent sets, spanning sets, and bases of a finite-dimensional vector space.

- In this lecture, we examine the relationship between the sizes of linearly independent sets, spanning sets, and bases of a finite-dimensional vector space.
- In particular, we will prove the following two theorems.

- In this lecture, we examine the relationship between the sizes of linearly independent sets, spanning sets, and bases of a finite-dimensional vector space.
- In particular, we will prove the following two theorems.

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F} . Then all bases of V are of the same size.

- In this lecture, we examine the relationship between the sizes of linearly independent sets, spanning sets, and bases of a finite-dimensional vector space.
- In particular, we will prove the following two theorems.

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F} . Then all bases of V are of the same size.

Theorem 3.2.17

Let V be a finite-dimensional vector space over a field \mathbb{F} , and set $n := \dim(V)$. Then both the following hold:

- every linearly independent set of vectors in V has at most n vectors;
- every spanning set of V has at least n vectors.
 - Informally, Theorem 3.2.17 says: $|\text{linearly independent set of } V| \leq \dim(V) \leq |\text{spanning set of } V|.$

Let V be a vector space over a field \mathbb{F} , and let $\mathbf{a}_1, \ldots, \mathbf{a}_k \in V$. Set $A := {\mathbf{a}_1, \ldots, \mathbf{a}_k}$. Then the following hold:

- A is linearly independent if and only if no vector in A is a linear combination of the other vectors in A;^a
- If A is a spanning set of V, and some vector a_i ∈ A is a linear combination of the other vectors in A, then A \ {a_i} is a spanning set of V.^b

^aIf A contains more than one copy of the same vector, then we treat each copy as distinct. So, when expressing a vector \mathbf{v} in A as a linear combination of the "other" vectors in A, we are allowed to use any additional copies of \mathbf{v} (if there are any) in that linear combination.

^{*b*}If \mathbf{a}_i appears more than once in A, then $A \setminus {\mathbf{a}_i}$ is understood to be the set obtained from A by removing only one copy of \mathbf{a}_i .

Proof.

Let V be a vector space over a field \mathbb{F} , and let $\mathbf{a}_1, \ldots, \mathbf{a}_k \in V$. Set $A := {\mathbf{a}_1, \ldots, \mathbf{a}_k}$. Then the following hold:

- A is linearly independent if and only if no vector in A is a linear combination of the other vectors in A;^a
- If A is a spanning set of V, and some vector a_i ∈ A is a linear combination of the other vectors in A, then A \ {a_i} is a spanning set of V.^b

^aIf A contains more than one copy of the same vector, then we treat each copy as distinct. So, when expressing a vector \mathbf{v} in A as a linear combination of the "other" vectors in A, we are allowed to use any additional copies of \mathbf{v} (if there are any) in that linear combination.

^{*b*}If \mathbf{a}_i appears more than once in A, then $A \setminus {\mathbf{a}_i}$ is understood to be the set obtained from A by removing only one copy of \mathbf{a}_i .

Proof. We prove (b). The proof of (a) is in the Lecture Notes.

Let V be a vector space over a field \mathbb{F} , and let $\mathbf{a}_1, \ldots, \mathbf{a}_k \in V$. Set $A := {\mathbf{a}_1, \ldots, \mathbf{a}_k}$. Then the following hold:

If A is a spanning set of V, and some vector a_i ∈ A is a linear combination of the other vectors in A, then A \ {a_i} is a spanning set of V.

Proof of (b).

Let V be a vector space over a field \mathbb{F} , and let $\mathbf{a}_1, \ldots, \mathbf{a}_k \in V$. Set $A := {\mathbf{a}_1, \ldots, \mathbf{a}_k}$. Then the following hold:

If A is a spanning set of V, and some vector a_i ∈ A is a linear combination of the other vectors in A, then A \ {a_i} is a spanning set of V.

Proof of (b). Assume that A is a spanning set of V, and that some $\mathbf{a}_i \in A$ is a linear combination of the other vectors in A.

Let V be a vector space over a field \mathbb{F} , and let $\mathbf{a}_1, \ldots, \mathbf{a}_k \in V$. Set $A := {\mathbf{a}_1, \ldots, \mathbf{a}_k}$. Then the following hold:

If A is a spanning set of V, and some vector a_i ∈ A is a linear combination of the other vectors in A, then A \ {a_i} is a spanning set of V.

Proof of (b). Assume that A is a spanning set of V, and that some $\mathbf{a}_i \in A$ is a linear combination of the other vectors in A. Then there exist scalars $\alpha_1, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_k \in \mathbb{F}$ such that

$$\mathbf{a}_i = \alpha_1 \mathbf{a}_1 + \cdots + \alpha_{i-1} \mathbf{a}_{i-1} + \alpha_{i+1} \mathbf{a}_{i+1} + \cdots + \alpha_k \mathbf{a}_k.$$

Let V be a vector space over a field \mathbb{F} , and let $\mathbf{a}_1, \ldots, \mathbf{a}_k \in V$. Set $A := {\mathbf{a}_1, \ldots, \mathbf{a}_k}$. Then the following hold:

If A is a spanning set of V, and some vector a_i ∈ A is a linear combination of the other vectors in A, then A \ {a_i} is a spanning set of V.

Proof of (b). Assume that A is a spanning set of V, and that some $\mathbf{a}_i \in A$ is a linear combination of the other vectors in A. Then there exist scalars $\alpha_1, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_k \in \mathbb{F}$ such that

$$\mathbf{a}_i = \alpha_1 \mathbf{a}_1 + \cdots + \alpha_{i-1} \mathbf{a}_{i-1} + \alpha_{i+1} \mathbf{a}_{i+1} + \cdots + \alpha_k \mathbf{a}_k.$$

Now, fix any vector $\mathbf{v} \in V$. WTS \mathbf{v} is a linear combination of vectors in $A \setminus {\mathbf{a}_i} = {\mathbf{a}_1, \dots, \mathbf{a}_{i-1}, \mathbf{a}_{i+1}, \dots, \mathbf{a}_k}$.

Let V be a vector space over a field \mathbb{F} , and let $\mathbf{a}_1, \ldots, \mathbf{a}_k \in V$. Set $A := {\mathbf{a}_1, \ldots, \mathbf{a}_k}$. Then the following hold:

If A is a spanning set of V, and some vector a_i ∈ A is a linear combination of the other vectors in A, then A \ {a_i} is a spanning set of V.

Proof of (b). Assume that A is a spanning set of V, and that some $\mathbf{a}_i \in A$ is a linear combination of the other vectors in A. Then there exist scalars $\alpha_1, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_k \in \mathbb{F}$ such that

$$\mathbf{a}_i = \alpha_1 \mathbf{a}_1 + \cdots + \alpha_{i-1} \mathbf{a}_{i-1} + \alpha_{i+1} \mathbf{a}_{i+1} + \cdots + \alpha_k \mathbf{a}_k.$$

Now, fix any vector $\mathbf{v} \in V$. WTS \mathbf{v} is a linear combination of vectors in $A \setminus {\mathbf{a}_i} = {\mathbf{a}_1, \dots, \mathbf{a}_{i-1}, \mathbf{a}_{i+1}, \dots, \mathbf{a}_k}$. Since $A = {\mathbf{a}_1, \dots, \mathbf{a}_k}$ is a spanning set of V, we know that there exist scalars $\beta_1, \dots, \beta_k \in \mathbb{F}$ such that $\mathbf{v} = \beta_1 \mathbf{a}_1 + \dots + \beta_k \mathbf{a}_k$.

Let V be a vector space over a field \mathbb{F} , and let $\mathbf{a}_1, \ldots, \mathbf{a}_k \in V$. Set $A := {\mathbf{a}_1, \ldots, \mathbf{a}_k}$. Then the following hold:

If A is a spanning set of V, and some vector a_i ∈ A is a linear combination of the other vectors in A, then A \ {a_i} is a spanning set of V.

Proof of (b). Assume that A is a spanning set of V, and that some $\mathbf{a}_i \in A$ is a linear combination of the other vectors in A. Then there exist scalars $\alpha_1, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_k \in \mathbb{F}$ such that

$$\mathbf{a}_i = \alpha_1 \mathbf{a}_1 + \cdots + \alpha_{i-1} \mathbf{a}_{i-1} + \alpha_{i+1} \mathbf{a}_{i+1} + \cdots + \alpha_k \mathbf{a}_k.$$

Now, fix any vector $\mathbf{v} \in V$. WTS \mathbf{v} is a linear combination of vectors in $A \setminus {\mathbf{a}_i} = {\mathbf{a}_1, \dots, \mathbf{a}_{i-1}, \mathbf{a}_{i+1}, \dots, \mathbf{a}_k}$. Since $A = {\mathbf{a}_1, \dots, \mathbf{a}_k}$ is a spanning set of V, we know that there exist scalars $\beta_1, \dots, \beta_k \in \mathbb{F}$ such that $\mathbf{v} = \beta_1 \mathbf{a}_1 + \dots + \beta_k \mathbf{a}_k$. We now compute (next slide):

Let V be a vector space over a field \mathbb{F} , and let $\mathbf{a}_1, \ldots, \mathbf{a}_k \in V$. Set $A := {\mathbf{a}_1, \ldots, \mathbf{a}_k}$. Then the following hold:

• if A is a spanning set of V, and some vector $\mathbf{a}_i \in A$ is a linear combination of the other vectors in A, then $A \setminus {\mathbf{a}_i}$ is a spanning set of V.

Proof of (b) (continued).

$$\mathbf{v} = \beta_1 \mathbf{a}_1 + \dots + \beta_{i-1} \mathbf{a}_{i-1} + \beta_i \mathbf{a}_i + \beta_{i+1} \mathbf{a}_{i+1} + \dots + \beta_k \mathbf{a}_k$$

$$= \beta_1 \mathbf{a}_1 + \dots + \beta_{i-1} \mathbf{a}_{i-1} + + \beta_i (\alpha_1 \mathbf{a}_1 + \dots + \alpha_{i-1} \mathbf{a}_{i-1} + \alpha_{i+1} \mathbf{a}_{i+1} + \dots + \alpha_k \mathbf{a}_k) + \beta_{i+1} \mathbf{a}_{i+1} + \dots + \beta_k \mathbf{a}_k$$

$$= (\beta_1 + \beta_i \alpha_1) \mathbf{a}_1 + \dots + (\beta_{i-1} + \beta_i \alpha_{i-1}) \mathbf{a}_{i-1} + (\beta_{i+1} + \beta_i \alpha_{i+1}) \mathbf{a}_{i+1} + \dots + (\beta_k + \beta_i \alpha_k) \mathbf{a}_k.$$

So, **v** is a linear combination of vectors $\mathbf{a}_1, \ldots, \mathbf{a}_{i-1}, \mathbf{a}_{i+1}, \ldots, \mathbf{a}_k$, and (b) follows. \Box

Let V be a vector space over a field \mathbb{F} , and let $\mathbf{a}_1, \ldots, \mathbf{a}_k \in V$. Set $A := {\mathbf{a}_1, \ldots, \mathbf{a}_k}$. Then the following hold:

- A is linearly independent if and only if no vector in A is a linear combination of the other vectors in A;^a
- if A is a spanning set of V, and some vector a_i ∈ A is a linear combination of the other vectors in A, then A \ {a_i} is a spanning set of V.^b

^aIf A contains more than one copy of the same vector, then we treat each copy as distinct. So, when expressing a vector \mathbf{v} in A as a linear combination of the "other" vectors in A, we are allowed to use any additional copies of \mathbf{v} (if there are any) in that linear combination.

^{*b*}If \mathbf{a}_i appears more than once in A, then $A \setminus \{\mathbf{a}_i\}$ is understood to be the set obtained from A by removing only one copy of \mathbf{a}_i .

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Let $B' \subseteq B$ be such that every vector in $B \setminus B'$ is a linear combination of vectors in B'. Then B' is a spanning set of V.

Proof.

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Let $B' \subseteq B$ be such that every vector in $B \setminus B'$ is a linear combination of vectors in B'. Then B' is a spanning set of V.

Proof. Choose a set \widetilde{B} such that

- $B' \subseteq \widetilde{B} \subseteq B$,
- \tilde{B} is a spanning set of V;
- subject to the above, \widetilde{B} is as small as possible.

(The fact that \tilde{B} exists follows from the fact that $B' \subseteq B \subseteq B$, and B is a spanning set of V.)

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Let $B' \subseteq B$ be such that every vector in $B \setminus B'$ is a linear combination of vectors in B'. Then B' is a spanning set of V.

Proof. Choose a set \widetilde{B} such that

- $B' \subseteq \widetilde{B} \subseteq B$,
- \tilde{B} is a spanning set of V;
- subject to the above, \widetilde{B} is as small as possible.

(The fact that \tilde{B} exists follows from the fact that $B' \subseteq B \subseteq B$, and B is a spanning set of V.)

If $\widetilde{B} = B'$, then we are done.

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Let $B' \subseteq B$ be such that every vector in $B \setminus B'$ is a linear combination of vectors in B'. Then B' is a spanning set of V.

Proof. Choose a set \widetilde{B} such that

- $B' \subseteq \widetilde{B} \subseteq B$,
- \tilde{B} is a spanning set of V;
- subject to the above, \widetilde{B} is as small as possible.

(The fact that \tilde{B} exists follows from the fact that $B' \subseteq B \subseteq B$, and B is a spanning set of V.)

If $\widetilde{B} = B'$, then we are done. So, assume that $B' \subsetneqq \widetilde{B}$, and fix some $\mathbf{v} \in \widetilde{B} \setminus B'$.

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Let $B' \subseteq B$ be such that every vector in $B \setminus B'$ is a linear combination of vectors in B'. Then B' is a spanning set of V.

Proof. Choose a set \widetilde{B} such that

- $B' \subseteq \widetilde{B} \subseteq B$,
- \tilde{B} is a spanning set of V;
- subject to the above, \tilde{B} is as small as possible.

(The fact that \tilde{B} exists follows from the fact that $B' \subseteq B \subseteq B$, and B is a spanning set of V.)

If $\widetilde{B} = B'$, then we are done. So, assume that $B' \subsetneq \widetilde{B}$, and fix some $\mathbf{v} \in \widetilde{B} \setminus B'$. Then \mathbf{v} is a linear combination of the other vectors in \widetilde{B} (because \mathbf{v} is a linear combination of the vectors in B'),

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Let $B' \subseteq B$ be such that every vector in $B \setminus B'$ is a linear combination of vectors in B'. Then B' is a spanning set of V.

Proof. Choose a set \widetilde{B} such that

- $B' \subseteq \widetilde{B} \subseteq B$,
- \tilde{B} is a spanning set of V;
- subject to the above, \tilde{B} is as small as possible.

(The fact that \tilde{B} exists follows from the fact that $B' \subseteq B \subseteq B$, and B is a spanning set of V.)

If $\widetilde{B} = B'$, then we are done. So, assume that $B' \subsetneq \widetilde{B}$, and fix some $\mathbf{v} \in \widetilde{B} \setminus B'$. Then \mathbf{v} is a linear combination of the other vectors in \widetilde{B} (because \mathbf{v} is a linear combination of the vectors in B'), and so by Proposition 3.2.11(b), $\widetilde{B} \setminus \{\mathbf{v}\}$ is a spanning set of V.

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Let $B' \subseteq B$ be such that every vector in $B \setminus B'$ is a linear combination of vectors in B'. Then B' is a spanning set of V.

Proof. Choose a set \widetilde{B} such that

- $B' \subseteq \widetilde{B} \subseteq B$,
- \tilde{B} is a spanning set of V;
- subject to the above, \tilde{B} is as small as possible.

(The fact that \tilde{B} exists follows from the fact that $B' \subseteq B \subseteq B$, and B is a spanning set of V.)

If $\widetilde{B} = B'$, then we are done. So, assume that $B' \subsetneq \widetilde{B}$, and fix some $\mathbf{v} \in \widetilde{B} \setminus B'$. Then \mathbf{v} is a linear combination of the other vectors in \widetilde{B} (because \mathbf{v} is a linear combination of the vectors in B'), and so by Proposition 3.2.11(b), $\widetilde{B} \setminus \{\mathbf{v}\}$ is a spanning set of V. But now $\widetilde{B} \setminus \mathbf{v}$ contradicts the minimality of \widetilde{B} . \Box

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Let $B' \subseteq B$ be such that every vector in $B \setminus B'$ is a linear combination of vectors in B'. Then B' is a spanning set of V.

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \ldots, \mathbf{b}_k}$ be a spanning set of V. Let $B' \subseteq B$ be such that every vector in $B \setminus B'$ is a linear combination of vectors in B'. Then B' is a spanning set of V.

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Then some subset of B is a basis of V.

Proof.

Let V be a vector space over a field \mathbb{F} , and let $B = \{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ be a spanning set of V. Let $B' \subseteq B$ be such that every vector in $B \setminus B'$ is a linear combination of vectors in B'. Then B' is a spanning set of V.

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Then some subset of B is a basis of V.

Proof. Let $B' \subseteq B$ be a spanning set of V that has as few elements as possible. WTS B' is a basis of V. It suffices to show that B' is linearly independent.

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \ldots, \mathbf{b}_k}$ be a spanning set of V. Let $B' \subseteq B$ be such that every vector in $B \setminus B'$ is a linear combination of vectors in B'. Then B' is a spanning set of V.

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Then some subset of B is a basis of V.

Proof. Let $B' \subseteq B$ be a spanning set of V that has as few elements as possible. WTS B' is a basis of V. It suffices to show that B' is linearly independent. Suppose otherwise.

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \ldots, \mathbf{b}_k}$ be a spanning set of V. Let $B' \subseteq B$ be such that every vector in $B \setminus B'$ is a linear combination of vectors in B'. Then B' is a spanning set of V.

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Then some subset of B is a basis of V.

Proof. Let $B' \subseteq B$ be a spanning set of V that has as few elements as possible. WTS B' is a basis of V. It suffices to show that B' is linearly independent. Suppose otherwise. Then Proposition 3.2.11(a) guarantees that some $\mathbf{b} \in B'$ is a linear combination of the other vectors in B';

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \ldots, \mathbf{b}_k}$ be a spanning set of V. Let $B' \subseteq B$ be such that every vector in $B \setminus B'$ is a linear combination of vectors in B'. Then B' is a spanning set of V.

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Then some subset of B is a basis of V.

Proof. Let $B' \subseteq B$ be a spanning set of V that has as few elements as possible. WTS B' is a basis of V. It suffices to show that B' is linearly independent. Suppose otherwise. Then Proposition 3.2.11(a) guarantees that some $\mathbf{b} \in B'$ is a linear combination of the other vectors in B'; but then by Proposition 3.2.11(b), $B' \setminus \{\mathbf{b}\}$ is a spanning set of V, contrary to the minimality of B'. \Box

The Steinitz exchange lemma

Let V be a vector space over a field \mathbb{F} , let $\mathbf{a}_1, \ldots, \mathbf{a}_k, \mathbf{b}_1, \ldots, \mathbf{b}_\ell \in V$, and assume that $\mathbf{a}_1, \ldots, \mathbf{a}_k$ are pairwise distinct and that $\mathbf{b}_1, \ldots, \mathbf{b}_\ell$ are pairwise distinct. Assume furthermore that $A := \{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ is a linearly independent set in V, and assume that $B := \{\mathbf{b}_1, \ldots, \mathbf{b}_\ell\}$ is a spanning set of V. Then $k \leq \ell$ (i.e. $|A| \leq |B|$). Moreover, there exists a set $B' \subseteq B \setminus A$ such that $|B'| = |B| - |A| = \ell - k$ and $A \cup B'$ is a spanning set of V.

The Steinitz exchange lemma

Let V be a vector space over a field \mathbb{F} , let $\mathbf{a}_1, \ldots, \mathbf{a}_k, \mathbf{b}_1, \ldots, \mathbf{b}_\ell \in V$, and assume that $\mathbf{a}_1, \ldots, \mathbf{a}_k$ are pairwise distinct and that $\mathbf{b}_1, \ldots, \mathbf{b}_\ell$ are pairwise distinct. Assume furthermore that $A := \{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ is a linearly independent set in V, and assume that $B := \{\mathbf{b}_1, \ldots, \mathbf{b}_\ell\}$ is a spanning set of V. Then $k \leq \ell$ (i.e. $|A| \leq |B|$). Moreover, there exists a set $B' \subseteq B \setminus A$ such that $|B'| = |B| - |A| = \ell - k$ and $A \cup B'$ is a spanning set of V.

• First, some remarks. Then, a proof.

• For technical reasons (in order to get the set *B*'), the Steinitz exchange lemma assumes that the sets *A* and *B* contain no repetitions.

- For technical reasons (in order to get the set *B*'), the Steinitz exchange lemma assumes that the sets *A* and *B* contain no repetitions.
 - Actually, it would be possible to state and prove a version of the Steinitz exchange lemma that allows repetitions.

- For technical reasons (in order to get the set *B*'), the Steinitz exchange lemma assumes that the sets *A* and *B* contain no repetitions.
 - Actually, it would be possible to state and prove a version of the Steinitz exchange lemma that allows repetitions.
 - However, this would be notationally messy.

- For technical reasons (in order to get the set B'), the Steinitz exchange lemma assumes that the sets A and B contain no repetitions.
 - Actually, it would be possible to state and prove a version of the Steinitz exchange lemma that allows repetitions.
 - However, this would be notationally messy.
- However, if we only care about the "|A| ≤ |B|" part of the Steinitz exchange lemma (which is what we usually care about), then this assumption is not necessary.

- For technical reasons (in order to get the set B'), the Steinitz exchange lemma assumes that the sets A and B contain no repetitions.
 - Actually, it would be possible to state and prove a version of the Steinitz exchange lemma that allows repetitions.
 - However, this would be notationally messy.
- However, if we only care about the "|A| ≤ |B|" part of the Steinitz exchange lemma (which is what we usually care about), then this assumption is not necessary.
- Indeed, suppose that V is a vector space over a field 𝔽, and suppose that A is a linearly independent set of vectors in V and that B is a spanning set of V (with repetitions allowed).

- For technical reasons (in order to get the set B'), the Steinitz exchange lemma assumes that the sets A and B contain no repetitions.
 - Actually, it would be possible to state and prove a version of the Steinitz exchange lemma that allows repetitions.
 - However, this would be notationally messy.
- However, if we only care about the "|A| ≤ |B|" part of the Steinitz exchange lemma (which is what we usually care about), then this assumption is not necessary.
- Indeed, suppose that V is a vector space over a field 𝔽, and suppose that A is a linearly independent set of vectors in V and that B is a spanning set of V (with repetitions allowed).
- Since A is linearly independent, it contains no repetitions; however, B may possibly contain repetitions.

- For technical reasons (in order to get the set B'), the Steinitz exchange lemma assumes that the sets A and B contain no repetitions.
 - Actually, it would be possible to state and prove a version of the Steinitz exchange lemma that allows repetitions.
 - However, this would be notationally messy.
- However, if we only care about the "|A| ≤ |B|" part of the Steinitz exchange lemma (which is what we usually care about), then this assumption is not necessary.
- Indeed, suppose that V is a vector space over a field 𝔽, and suppose that A is a linearly independent set of vectors in V and that B is a spanning set of V (with repetitions allowed).
- Since A is linearly independent, it contains no repetitions; however, B may possibly contain repetitions.
- But then we let \tilde{B} be the set obtained from B by eliminating repetitions.

- For technical reasons (in order to get the set B'), the Steinitz exchange lemma assumes that the sets A and B contain no repetitions.
 - Actually, it would be possible to state and prove a version of the Steinitz exchange lemma that allows repetitions.
 - However, this would be notationally messy.
- However, if we only care about the "|A| ≤ |B|" part of the Steinitz exchange lemma (which is what we usually care about), then this assumption is not necessary.
- Indeed, suppose that V is a vector space over a field 𝔽, and suppose that A is a linearly independent set of vectors in V and that B is a spanning set of V (with repetitions allowed).
- Since A is linearly independent, it contains no repetitions; however, B may possibly contain repetitions.
- But then we let \tilde{B} be the set obtained from B by eliminating repetitions.
- Then \widetilde{B} is still a spanning set of V, and by the Steinitz exchange lemma, we get that $|A| \leq |\widetilde{B}| \leq |B|$.

The Steinitz exchange lemma

Let V be a vector space over a field \mathbb{F} , let $\mathbf{a}_1, \ldots, \mathbf{a}_k, \mathbf{b}_1, \ldots, \mathbf{b}_\ell \in V$, and assume that $\mathbf{a}_1, \ldots, \mathbf{a}_k$ are pairwise distinct and that $\mathbf{b}_1, \ldots, \mathbf{b}_\ell$ are pairwise distinct. Assume furthermore that $A := \{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ is a linearly independent set in V, and assume that $B := \{\mathbf{b}_1, \ldots, \mathbf{b}_\ell\}$ is a spanning set of V. Then $k \leq \ell$ (i.e. $|A| \leq |B|$). Moreover, there exists a set $B' \subseteq B \setminus A$ such that $|B'| = |B| - |A| = \ell - k$ and $A \cup B'$ is a spanning set of V.

- The most important corollary of the Steinitz exchange lemma is Theorem 3.2.16 (next slide).
- We first prove Theorem 3.2.16 (using the Steinitz exchange lemma), and then we prove the Steinitz exchange lemma.

Let V be a finite-dimensional vector space over a field \mathbb{F} . Then all bases of V are of the same size.

Proof (assuming the Steinitz exchange lemma).

Let V be a finite-dimensional vector space over a field \mathbb{F} . Then all bases of V are of the same size.

Proof (assuming the Steinitz exchange lemma). We apply the Steinitz exchange lemma twice.

Let V be a finite-dimensional vector space over a field \mathbb{F} . Then all bases of V are of the same size.

Proof (assuming the Steinitz exchange lemma). We apply the Steinitz exchange lemma twice.

Fix bases $\{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ and $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ of V.

Let V be a finite-dimensional vector space over a field \mathbb{F} . Then all bases of V are of the same size.

Proof (assuming the Steinitz exchange lemma). We apply the Steinitz exchange lemma twice.

Fix bases $\{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ and $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ of V.

Since $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ is linearly independent and $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a spanning set of V, the Steinitz exchange lemma guarantees that $m \leq n$.

Let V be a finite-dimensional vector space over a field \mathbb{F} . Then all bases of V are of the same size.

Proof (assuming the Steinitz exchange lemma). We apply the Steinitz exchange lemma twice.

Fix bases $\{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ and $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ of V.

Since $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ is linearly independent and $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a spanning set of V, the Steinitz exchange lemma guarantees that $m \leq n$.

On the other hand, since $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a linearly independent set and $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ is a spanning set of V, the Steinitz exchange lemma guarantees that $n \leq m$.

Let V be a finite-dimensional vector space over a field \mathbb{F} . Then all bases of V are of the same size.

Proof (assuming the Steinitz exchange lemma). We apply the Steinitz exchange lemma twice.

Fix bases $\{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ and $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ of V.

Since $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ is linearly independent and $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a spanning set of V, the Steinitz exchange lemma guarantees that $m \leq n$.

On the other hand, since $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a linearly independent set and $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ is a spanning set of V, the Steinitz exchange lemma guarantees that $n \leq m$.

So, m = n. \Box

The Steinitz exchange lemma

Let V be a vector space over a field \mathbb{F} , let $\mathbf{a}_1, \ldots, \mathbf{a}_k, \mathbf{b}_1, \ldots, \mathbf{b}_\ell \in V$, and assume that $\mathbf{a}_1, \ldots, \mathbf{a}_k$ are pairwise distinct and that $\mathbf{b}_1, \ldots, \mathbf{b}_\ell$ are pairwise distinct. Assume furthermore that $A := \{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ is a linearly independent set in V, and assume that $B := \{\mathbf{b}_1, \ldots, \mathbf{b}_\ell\}$ is a spanning set of V. Then $k \leq \ell$ (i.e. $|A| \leq |B|$). Moreover, there exists a set $B' \subseteq B \setminus A$ such that $|B'| = |B| - |A| = \ell - k$ and $A \cup B'$ is a spanning set of V.

• Let's prove the Steinitz exchange lemma!

The Steinitz exchange lemma

Let V be a vector space over a field \mathbb{F} , let $\mathbf{a}_1, \ldots, \mathbf{a}_k, \mathbf{b}_1, \ldots, \mathbf{b}_\ell \in V$, and assume that $\mathbf{a}_1, \ldots, \mathbf{a}_k$ are pairwise distinct and that $\mathbf{b}_1, \ldots, \mathbf{b}_\ell$ are pairwise distinct. Assume furthermore that $A := \{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ is a linearly independent set in V, and assume that $B := \{\mathbf{b}_1, \ldots, \mathbf{b}_\ell\}$ is a spanning set of V. Then $k \leq \ell$ (i.e. $|A| \leq |B|$). Moreover, there exists a set $B' \subseteq B \setminus A$ such that $|B'| = |B| - |A| = \ell - k$ and $A \cup B'$ is a spanning set of V.

- Let's prove the Steinitz exchange lemma!
- The proof proceeds by induction using the following lemma (next slide).

Let V be a vector space over a field \mathbb{F} . Let $\mathbf{a}_1, \ldots, \mathbf{a}_k, \mathbf{b}_1, \ldots, \mathbf{b}_\ell \in V$, and assume that $\mathbf{a}_1, \ldots, \mathbf{a}_k$ are pairwise distinct and that $\mathbf{b}_1, \ldots, \mathbf{b}_\ell$ are pairwise distinct. Assume furthermore that $A := \{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ is a linearly independent set in V, and that $B := \{\mathbf{b}_1, \ldots, \mathbf{b}_\ell\}$ is a spanning set of V. Then for all $\mathbf{a} \in A \setminus B$, there exists some $\mathbf{b} \in B \setminus A$ such that $(B \setminus \{\mathbf{b}\}) \cup \{\mathbf{a}\}$ is a spanning set of V.

Proof.

Proof. WMA $A \not\subseteq B$, for otherwise, the lemma is vacuously true.

Proof. WMA $A \not\subseteq B$, for otherwise, the lemma is vacuously true. Fix any $\mathbf{a} \in A \setminus B$.

Proof. WMA $A \not\subseteq B$, for otherwise, the lemma is vacuously true. Fix any $\mathbf{a} \in A \setminus B$. Then there exists an index $i \in \{1, \ldots, k\}$ such that $\mathbf{a} = \mathbf{a}_i$. Since $\mathbf{a}_i \in V = \text{Span}(B)$, we know that there exist scalars $\alpha_1, \ldots, \alpha_\ell \in \mathbb{F}$ such that

$$\mathbf{a}_i = \alpha_1 \mathbf{b}_1 + \dots + \alpha_\ell \mathbf{b}_\ell.$$

Proof. WMA $A \not\subseteq B$, for otherwise, the lemma is vacuously true. Fix any $\mathbf{a} \in A \setminus B$. Then there exists an index $i \in \{1, \ldots, k\}$ such that $\mathbf{a} = \mathbf{a}_i$. Since $\mathbf{a}_i \in V = \text{Span}(B)$, we know that there exist scalars $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$ such that

$$\mathbf{a}_i = \alpha_1 \mathbf{b}_1 + \dots + \alpha_\ell \mathbf{b}_\ell.$$

Claim. There exists an index $j \in \{1, ..., \ell\}$ such that $\alpha_j \neq 0$ and $\mathbf{b}_j \in B \setminus A$.

Proof of the Claim.

Proof. WMA $A \not\subseteq B$, for otherwise, the lemma is vacuously true. Fix any $\mathbf{a} \in A \setminus B$. Then there exists an index $i \in \{1, \ldots, k\}$ such that $\mathbf{a} = \mathbf{a}_i$. Since $\mathbf{a}_i \in V = \text{Span}(B)$, we know that there exist scalars $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$ such that

 $\mathbf{a}_i = \alpha_1 \mathbf{b}_1 + \dots + \alpha_\ell \mathbf{b}_\ell.$

Claim. There exists an index $j \in \{1, ..., \ell\}$ such that $\alpha_j \neq 0$ and $\mathbf{b}_j \in B \setminus A$.

Proof of the Claim. Suppose otherwise. Then for all $j \in \{1, ..., \ell\}$ such that $\alpha_j \neq 0$, we have that $\mathbf{b}_j \in B \cap A \subseteq A \setminus \{\mathbf{a}_i\}$. But now \mathbf{a}_i is a linear combination of the other vectors in the linearly independent set A, contrary to Proposition 3.2.11(a).

Proof (continued). Reminder: $\mathbf{a} = \mathbf{a}_j = \alpha_1 \mathbf{b}_1 + \cdots + \alpha_\ell \mathbf{b}_\ell$. **Claim.** There exists an index $j \in \{1, \ldots, \ell\}$ such that $\alpha_j \neq 0$ and $\mathbf{b}_j \in B \setminus A$.

Proof (continued). Reminder: $\mathbf{a} = \mathbf{a}_i = \alpha_1 \mathbf{b}_1 + \cdots + \alpha_\ell \mathbf{b}_\ell$. *Claim.* There exists an index $j \in \{1, \ldots, \ell\}$ such that $\alpha_j \neq 0$ and $\mathbf{b}_j \in B \setminus A$.

Using the Claim, we fix an index $j \in \{1, ..., \ell\}$ such that $\alpha_j \neq 0$ and $\mathbf{b}_j \in B \setminus A$.

Proof (continued). Reminder: $\mathbf{a} = \mathbf{a}_i = \alpha_1 \mathbf{b}_1 + \cdots + \alpha_\ell \mathbf{b}_\ell$. *Claim.* There exists an index $j \in \{1, \ldots, \ell\}$ such that $\alpha_j \neq 0$ and $\mathbf{b}_j \in B \setminus A$.

Using the Claim, we fix an index $j \in \{1, ..., \ell\}$ such that $\alpha_j \neq 0$ and $\mathbf{b}_j \in B \setminus A$. We will show that $(B \setminus \{\mathbf{b}_j\}) \cup \{\mathbf{a}_i\}$ is a spanning set of V (this will complete the proof of the lemma).

Proof (continued). Reminder: $\mathbf{a} = \mathbf{a}_i = \alpha_1 \mathbf{b}_1 + \cdots + \alpha_\ell \mathbf{b}_\ell$. *Claim.* There exists an index $j \in \{1, \ldots, \ell\}$ such that $\alpha_i \neq 0$ and $\mathbf{b}_i \in B \setminus A$.

Using the Claim, we fix an index $j \in \{1, ..., \ell\}$ such that $\alpha_j \neq 0$ and $\mathbf{b}_j \in B \setminus A$. We will show that $(B \setminus \{\mathbf{b}_j\}) \cup \{\mathbf{a}_i\}$ is a spanning set of V (this will complete the proof of the lemma).

Since $\mathbf{b}_j \neq \mathbf{a}_i$, we see that $(B \setminus \{\mathbf{b}_j\}) \cup \{\mathbf{a}_i\} = (B \cup \{\mathbf{a}_i\}) \setminus \{\mathbf{b}_j\}$,

Proof (continued). Reminder: $\mathbf{a} = \mathbf{a}_i = \alpha_1 \mathbf{b}_1 + \cdots + \alpha_\ell \mathbf{b}_\ell$. *Claim.* There exists an index $j \in \{1, \ldots, \ell\}$ such that $\alpha_i \neq 0$ and $\mathbf{b}_i \in B \setminus A$.

Using the Claim, we fix an index $j \in \{1, ..., \ell\}$ such that $\alpha_j \neq 0$ and $\mathbf{b}_j \in B \setminus A$. We will show that $(B \setminus \{\mathbf{b}_j\}) \cup \{\mathbf{a}_i\}$ is a spanning set of V (this will complete the proof of the lemma).

Since $\mathbf{b}_j \neq \mathbf{a}_i$, we see that $(B \setminus \{\mathbf{b}_j\}) \cup \{\mathbf{a}_i\} = (B \cup \{\mathbf{a}_i\}) \setminus \{\mathbf{b}_j\}$, and we need to show that $(B \cup \{\mathbf{a}_i\}) \setminus \{\mathbf{b}_j\}$ is a spanning set of *V*.

Proof (continued). Reminder: $\mathbf{a} = \mathbf{a}_i = \alpha_1 \mathbf{b}_1 + \cdots + \alpha_\ell \mathbf{b}_\ell$. *Claim.* There exists an index $j \in \{1, \ldots, \ell\}$ such that $\alpha_i \neq 0$ and $\mathbf{b}_i \in B \setminus A$.

Using the Claim, we fix an index $j \in \{1, ..., \ell\}$ such that $\alpha_j \neq 0$ and $\mathbf{b}_j \in B \setminus A$. We will show that $(B \setminus \{\mathbf{b}_j\}) \cup \{\mathbf{a}_i\}$ is a spanning set of V (this will complete the proof of the lemma).

Since $\mathbf{b}_j \neq \mathbf{a}_i$, we see that $(B \setminus \{\mathbf{b}_j\}) \cup \{\mathbf{a}_i\} = (B \cup \{\mathbf{a}_i\}) \setminus \{\mathbf{b}_j\}$, and we need to show that $(B \cup \{\mathbf{a}_i\}) \setminus \{\mathbf{b}_j\}$ is a spanning set of *V*. Since *B* is a spanning set of *V*, so is $B \cup \{\mathbf{a}_i\}$.

Proof (continued). Reminder: $\mathbf{a} = \mathbf{a}_i = \alpha_1 \mathbf{b}_1 + \cdots + \alpha_\ell \mathbf{b}_\ell$. *Claim.* There exists an index $j \in \{1, \ldots, \ell\}$ such that $\alpha_j \neq 0$ and $\mathbf{b}_j \in B \setminus A$.

Using the Claim, we fix an index $j \in \{1, ..., \ell\}$ such that $\alpha_j \neq 0$ and $\mathbf{b}_j \in B \setminus A$. We will show that $(B \setminus \{\mathbf{b}_j\}) \cup \{\mathbf{a}_i\}$ is a spanning set of V (this will complete the proof of the lemma).

Since $\mathbf{b}_j \neq \mathbf{a}_i$, we see that $(B \setminus \{\mathbf{b}_j\}) \cup \{\mathbf{a}_i\} = (B \cup \{\mathbf{a}_i\}) \setminus \{\mathbf{b}_j\}$, and we need to show that $(B \cup \{\mathbf{a}_i\}) \setminus \{\mathbf{b}_j\}$ is a spanning set of *V*. Since *B* is a spanning set of *V*, so is $B \cup \{\mathbf{a}_i\}$.

In view of Proposition 3.2.11(b), it now suffices to show that \mathbf{b}_j is a linear combination of the other vectors in $B \cup \{\mathbf{a}_i\}$.

Proof (continued). Reminder: $\mathbf{a} = \mathbf{a}_i = \alpha_1 \mathbf{b}_1 + \cdots + \alpha_\ell \mathbf{b}_\ell$; $\alpha_j \neq 0$ and $\mathbf{b}_j \in B \setminus A$. WTS \mathbf{b}_j is a linear combination of the other vectors in $B \cup \{\mathbf{a}_i\}$.

Proof (continued). Reminder: $\mathbf{a} = \mathbf{a}_i = \alpha_1 \mathbf{b}_1 + \cdots + \alpha_\ell \mathbf{b}_\ell$; $\alpha_j \neq 0$ and $\mathbf{b}_j \in B \setminus A$. WTS \mathbf{b}_j is a linear combination of the other vectors in $B \cup \{\mathbf{a}_i\}$.

Since $\mathbf{a}_i = \alpha_1 \mathbf{b}_1 + \cdots + \alpha_\ell \mathbf{b}_\ell$, we see that

 $\alpha_j \mathbf{b}_j = \mathbf{a}_i - \alpha_1 \mathbf{b}_1 - \dots - \alpha_{j-1} \mathbf{b}_{j-1} - \alpha_{j+1} \mathbf{b}_{j+1} - \dots - \alpha_\ell \mathbf{b}_\ell.$

Proof (continued). Reminder: $\mathbf{a} = \mathbf{a}_i = \alpha_1 \mathbf{b}_1 + \dots + \alpha_\ell \mathbf{b}_\ell$; $\alpha_j \neq 0$ and $\mathbf{b}_j \in B \setminus A$. WTS \mathbf{b}_j is a linear combination of the other vectors in $B \cup {\mathbf{a}_i}$.

Since
$$\mathbf{a}_i = \alpha_1 \mathbf{b}_1 + \cdots + \alpha_\ell \mathbf{b}_\ell$$
, we see that

$$\alpha_j \mathbf{b}_j = \mathbf{a}_i - \alpha_1 \mathbf{b}_1 - \dots - \alpha_{j-1} \mathbf{b}_{j-1} - \alpha_{j+1} \mathbf{b}_{j+1} - \dots - \alpha_{\ell} \mathbf{b}_{\ell}.$$

Since $\alpha_j \neq 0$, we know that α_j has a multiplicative inverse α_j^{-1} , and we deduce that

$$\mathbf{b}_{j} = \alpha_{j}^{-1} \mathbf{a}_{i} - \alpha_{j}^{-1} \alpha_{1} \mathbf{b}_{1} - \dots - \alpha_{j}^{-1} \alpha_{j-1} \mathbf{b}_{j-1} - \alpha_{j}^{-1} \alpha_{j+1} \mathbf{b}_{j+1} - \dots - \alpha_{j}^{-1} \alpha_{\ell} \mathbf{b}_{\ell}.$$

Proof (continued). Reminder: $\mathbf{a} = \mathbf{a}_i = \alpha_1 \mathbf{b}_1 + \cdots + \alpha_\ell \mathbf{b}_\ell$; $\alpha_j \neq 0$ and $\mathbf{b}_j \in B \setminus A$. WTS \mathbf{b}_j is a linear combination of the other vectors in $B \cup \{\mathbf{a}_i\}$.

Since
$$\mathbf{a}_i = \alpha_1 \mathbf{b}_1 + \cdots + \alpha_\ell \mathbf{b}_\ell$$
, we see that

$$\alpha_j \mathbf{b}_j = \mathbf{a}_i - \alpha_1 \mathbf{b}_1 - \dots - \alpha_{j-1} \mathbf{b}_{j-1} - \alpha_{j+1} \mathbf{b}_{j+1} - \dots - \alpha_\ell \mathbf{b}_\ell.$$

Since $\alpha_j \neq 0$, we know that α_j has a multiplicative inverse α_j^{-1} , and we deduce that

$$\mathbf{b}_{j} = \alpha_{j}^{-1} \mathbf{a}_{i} - \alpha_{j}^{-1} \alpha_{1} \mathbf{b}_{1} - \dots - \alpha_{j}^{-1} \alpha_{j-1} \mathbf{b}_{j-1} - \alpha_{j}^{-1} \alpha_{j+1} \mathbf{b}_{j+1} - \dots - \alpha_{j}^{-1} \alpha_{\ell} \mathbf{b}_{\ell}.$$

So, \mathbf{b}_j is indeed a linear combination of the other vectors in $B \cup \{\mathbf{a}_i\}$, and we are done. \Box

Let V be a vector space over a field \mathbb{F} . Let $\mathbf{a}_1, \ldots, \mathbf{a}_k, \mathbf{b}_1, \ldots, \mathbf{b}_\ell \in V$, and assume that $\mathbf{a}_1, \ldots, \mathbf{a}_k$ are pairwise distinct and that $\mathbf{b}_1, \ldots, \mathbf{b}_\ell$ are pairwise distinct. Assume furthermore that $A := \{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ is a linearly independent set in V, and that $B := \{\mathbf{b}_1, \ldots, \mathbf{b}_\ell\}$ is a spanning set of V. Then for all $\mathbf{a} \in A \setminus B$, there exists some $\mathbf{b} \in B \setminus A$ such that $(B \setminus \{\mathbf{b}\}) \cup \{\mathbf{a}\}$ is a spanning set of V.

Let V be a vector space over a field \mathbb{F} . Let $\mathbf{a}_1, \ldots, \mathbf{a}_k, \mathbf{b}_1, \ldots, \mathbf{b}_\ell \in V$, and assume that $\mathbf{a}_1, \ldots, \mathbf{a}_k$ are pairwise distinct and that $\mathbf{b}_1, \ldots, \mathbf{b}_\ell$ are pairwise distinct. Assume furthermore that $A := \{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ is a linearly independent set in V, and that $B := \{\mathbf{b}_1, \ldots, \mathbf{b}_\ell\}$ is a spanning set of V. Then for all $\mathbf{a} \in A \setminus B$, there exists some $\mathbf{b} \in B \setminus A$ such that $(B \setminus \{\mathbf{b}\}) \cup \{\mathbf{a}\}$ is a spanning set of V.

• The proof of the Steinitz exchange lemma consists of repeated applications of Lemma 3.2.15 (technically, an induction).

Let V be a vector space over a field \mathbb{F} . Let $\mathbf{a}_1, \ldots, \mathbf{a}_k, \mathbf{b}_1, \ldots, \mathbf{b}_\ell \in V$, and assume that $\mathbf{a}_1, \ldots, \mathbf{a}_k$ are pairwise distinct and that $\mathbf{b}_1, \ldots, \mathbf{b}_\ell$ are pairwise distinct. Assume furthermore that $A := \{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ is a linearly independent set in V, and that $B := \{\mathbf{b}_1, \ldots, \mathbf{b}_\ell\}$ is a spanning set of V. Then for all $\mathbf{a} \in A \setminus B$, there exists some $\mathbf{b} \in B \setminus A$ such that $(B \setminus \{\mathbf{b}\}) \cup \{\mathbf{a}\}$ is a spanning set of V.

- The proof of the Steinitz exchange lemma consists of repeated applications of Lemma 3.2.15 (technically, an induction).
 - The formal proof is in the Lecture Notes.
 - Here, we give an informal outline.

The Steinitz exchange lemma

Let V be a vector space over a field \mathbb{F} , let $\mathbf{a}_1, \ldots, \mathbf{a}_k, \mathbf{b}_1, \ldots, \mathbf{b}_\ell \in V$, and assume that $\mathbf{a}_1, \ldots, \mathbf{a}_k$ are pairwise distinct and that $\mathbf{b}_1, \ldots, \mathbf{b}_\ell$ are pairwise distinct. Assume furthermore that $A := \{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ is a linearly independent set in V, and assume that $B := \{\mathbf{b}_1, \ldots, \mathbf{b}_\ell\}$ is a spanning set of V. Then $k \leq \ell$ (i.e. $|A| \leq |B|$). Moreover, there exists a set $B' \subseteq B \setminus A$ such that $|B'| = |B| - |A| = \ell - k$ and $A \cup B'$ is a spanning set of V.

Proof (outline).

Proof (outline). Using Lemma 3.2.15, we "throw in" vertices of $A \setminus B$ into B one by one, and at each step, we remove one vertex of $B \setminus A$ from B.

By Lemma 3.2.15, at each step, the set that we create remains a spanning set of V.

Proof (outline). Using Lemma 3.2.15, we "throw in" vertices of $A \setminus B$ into B one by one, and at each step, we remove one vertex of $B \setminus A$ from B.

By Lemma 3.2.15, at each step, the set that we create remains a spanning set of V. In the end, we obtain a spanning set of V that includes A (as a subset) and is of the same set as B.

Proof (outline). Using Lemma 3.2.15, we "throw in" vertices of $A \setminus B$ into B one by one, and at each step, we remove one vertex of $B \setminus A$ from B.

By Lemma 3.2.15, at each step, the set that we create remains a spanning set of V. In the end, we obtain a spanning set of V that includes A (as a subset) and is of the same set as B.

B' is the set of all vertices of $B \setminus A$ that we did not "throw out" in the process. \Box

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F} . Then all bases of V are of the same size.

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F} . Then all bases of V are of the same size.

Definition

The *dimension* of a finite-dimensional vector space V over a field \mathbb{F} , denoted by dim(V), is the number of elements in any basis of V (by Theorem 3.2.16, this is well-defined).

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F} . Then all bases of V are of the same size.

Definition

The *dimension* of a finite-dimensional vector space V over a field \mathbb{F} , denoted by dim(V), is the number of elements in any basis of V (by Theorem 3.2.16, this is well-defined).

• Remarks:

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F} . Then all bases of V are of the same size.

Definition

The *dimension* of a finite-dimensional vector space V over a field \mathbb{F} , denoted by dim(V), is the number of elements in any basis of V (by Theorem 3.2.16, this is well-defined).

• Remarks:

Note that dim({0}) = 0 (where {0} is understood to be a vector space over an arbitrary field 𝔅), because ∅ is a basis of {0}.

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F} . Then all bases of V are of the same size.

Definition

The *dimension* of a finite-dimensional vector space V over a field \mathbb{F} , denoted by dim(V), is the number of elements in any basis of V (by Theorem 3.2.16, this is well-defined).

• Remarks:

- Note that dim({0}) = 0 (where {0} is understood to be a vector space over an arbitrary field 𝔅), because ∅ is a basis of {0}.
- For any field \mathbb{F} , we have that dim $(\mathbb{F}^n) = n$, because the standard basis of \mathbb{F}^n has *n* elements.
 - However, the standard basis is not the only basis of \mathbb{F}^n (except in some very special cases).

Let V be a finite-dimensional vector space over a field \mathbb{F} , and set $n := \dim(V)$. Then both the following hold:

- every linearly independent set of vectors in V has at most n vectors;
- \bigcirc every spanning set of V has at least n vectors.

Proof.

Let V be a finite-dimensional vector space over a field \mathbb{F} , and set $n := \dim(V)$. Then both the following hold:

- every linearly independent set of vectors in V has at most n vectors;
- \bigcirc every spanning set of V has at least n vectors.

Proof. Fix a basis $B = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ of V.

Let V be a finite-dimensional vector space over a field \mathbb{F} , and set $n := \dim(V)$. Then both the following hold:

- every linearly independent set of vectors in V has at most n vectors;
- every spanning set of V has at least n vectors.

Proof. Fix a basis $B = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ of V. Then B is both a linearly independent set and a spanning set of V.

Let V be a finite-dimensional vector space over a field \mathbb{F} , and set $n := \dim(V)$. Then both the following hold:

- every linearly independent set of vectors in V has at most n vectors;
 - every spanning set of V has at least n vectors.

Proof. Fix a basis $B = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ of V. Then B is both a linearly independent set and a spanning set of V.

Now, by the Steinitz exchange lemma, the number of vectors in any linearly independent set of V is at most the number of vectors in the spanning set B of V, which is n; so, (a) holds.

Let V be a finite-dimensional vector space over a field \mathbb{F} , and set $n := \dim(V)$. Then both the following hold:

- every linearly independent set of vectors in V has at most n vectors;
 - every spanning set of V has at least n vectors.

Proof. Fix a basis $B = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ of V. Then B is both a linearly independent set and a spanning set of V.

Now, by the Steinitz exchange lemma, the number of vectors in any linearly independent set of V is at most the number of vectors in the spanning set B of V, which is n; so, (a) holds.

On the other hand, by the Steinitz exchange lemma, any spanning set of V has at least as many vectors as the linearly independent set B; so, (b) holds. \Box

Let V be a finite-dimensional vector space over a field \mathbb{F} . Then all bases of V are of the same size.

Definition

The *dimension* of a finite-dimensional vector space V over a field \mathbb{F} , denoted by dim(V), is the number of elements in any basis of V (by Theorem 3.2.16, this is well-defined).

Theorem 3.2.17

- every linearly independent set of vectors in V has at most n vectors;
- set of V has at least n vectors.
 - Informally, Theorem 3.2.17 says: $|\text{linearly independent set of } V| \leq \dim(V) \leq |\text{spanning set of } V|.$

- every linearly independent set of vectors in V has at most n vectors;
- 0 every spanning set of V has at least n vectors.

- every linearly independent set of vectors in V has at most n vectors;
- 0 every spanning set of V has at least n vectors.
 - By Theorem 3.2.17(a), linearly independent sets in any finite-dimensional vector space have bounded size (bounded above by the dimension of the vector space in question).

- every linearly independent set of vectors in V has at most n vectors;
- 0 every spanning set of V has at least n vectors.
 - By Theorem 3.2.17(a), linearly independent sets in any finite-dimensional vector space have bounded size (bounded above by the dimension of the vector space in question).
 - On the other hand, by Proposition 3.2.18 (next slide), infinite-dimensional vector spaces have linearly independent sets of arbitrarily large (finite) size.

- every linearly independent set of vectors in V has at most n vectors;
- 0 every spanning set of V has at least n vectors.
 - By Theorem 3.2.17(a), linearly independent sets in any finite-dimensional vector space have bounded size (bounded above by the dimension of the vector space in question).
 - On the other hand, by Proposition 3.2.18 (next slide), infinite-dimensional vector spaces have linearly independent sets of arbitrarily large (finite) size.
 - For instance, if 𝔅 is a field, then for any positive integer n, {1, x, x²,..., xⁿ} is a linearly independent set in 𝔅_𝔅 (the vector space of all polynomials with coefficients in 𝔅).

Let V be an infinite-dimensional vector space over a field \mathbb{F} . Then for every non-negative integer n, V has a linearly independent set of size n.

Proof (outline).

Let V be an infinite-dimensional vector space over a field \mathbb{F} . Then for every non-negative integer n, V has a linearly independent set of size n.

Proof (outline). We proceed by induction on *n*.

Let V be an infinite-dimensional vector space over a field \mathbb{F} . Then for every non-negative integer n, V has a linearly independent set of size n.

Proof (outline). We proceed by induction on *n*.

For n = 0, we observe that \emptyset is a linearly independent set of size 0 in V.

Let V be an infinite-dimensional vector space over a field \mathbb{F} . Then for every non-negative integer n, V has a linearly independent set of size n.

Proof (outline). We proceed by induction on *n*.

For n = 0, we observe that \emptyset is a linearly independent set of size 0 in V.

Next, fix a non-negative integer n, and assume that V has a linearly independent set of size n, say $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$.

Let V be an infinite-dimensional vector space over a field \mathbb{F} . Then for every non-negative integer n, V has a linearly independent set of size n.

Proof (outline). We proceed by induction on *n*.

For n = 0, we observe that \emptyset is a linearly independent set of size 0 in V.

Next, fix a non-negative integer n, and assume that V has a linearly independent set of size n, say $\{a_1, \ldots, a_n\}$. Then $\{a_1, \ldots, a_n\}$ is not a spanning set of V, for otherwise, it would be a basis of V, contrary to the fact that V is infinite-dimensional.

Proof (outline). We proceed by induction on n.

For n = 0, we observe that \emptyset is a linearly independent set of size 0 in V.

Next, fix a non-negative integer *n*, and assume that *V* has a linearly independent set of size *n*, say $\{a_1, \ldots, a_n\}$. Then $\{a_1, \ldots, a_n\}$ is not a spanning set of *V*, for otherwise, it would be a basis of *V*, contrary to the fact that *V* is infinite-dimensional. Thus, Span $(a_1, \ldots, a_n) \subseteq V$;

Proof (outline). We proceed by induction on n.

For n = 0, we observe that \emptyset is a linearly independent set of size 0 in V.

Next, fix a non-negative integer *n*, and assume that *V* has a linearly independent set of size *n*, say $\{a_1, \ldots, a_n\}$. Then $\{a_1, \ldots, a_n\}$ is not a spanning set of *V*, for otherwise, it would be a basis of *V*, contrary to the fact that *V* is infinite-dimensional. Thus, Span $(a_1, \ldots, a_n) \subsetneq V$; fix some $a_{n+1} \in V \setminus \text{Span}(a_1, \ldots, a_n)$.

Proof (outline). We proceed by induction on n.

For n = 0, we observe that \emptyset is a linearly independent set of size 0 in V.

Next, fix a non-negative integer *n*, and assume that *V* has a linearly independent set of size *n*, say $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$. Then $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$ is not a spanning set of *V*, for otherwise, it would be a basis of *V*, contrary to the fact that *V* is infinite-dimensional. Thus, $\text{Span}(\mathbf{a}_1, \ldots, \mathbf{a}_n) \subsetneq V$; fix some $\mathbf{a}_{n+1} \in V \setminus \text{Span}(\mathbf{a}_1, \ldots, \mathbf{a}_n)$. Then $\{\mathbf{a}_1, \ldots, \mathbf{a}_n, \mathbf{a}_{n+1}\}$ is a linearly independent set in *V* (details: Lecture Notes).

Proof (outline). We proceed by induction on n.

For n = 0, we observe that \emptyset is a linearly independent set of size 0 in V.

Next, fix a non-negative integer *n*, and assume that *V* has a linearly independent set of size *n*, say $\{a_1, \ldots, a_n\}$. Then $\{a_1, \ldots, a_n\}$ is not a spanning set of *V*, for otherwise, it would be a basis of *V*, contrary to the fact that *V* is infinite-dimensional. Thus, $\text{Span}(a_1, \ldots, a_n) \subsetneq V$; fix some $a_{n+1} \in V \setminus \text{Span}(a_1, \ldots, a_n)$. Then $\{a_1, \ldots, a_n, a_{n+1}\}$ is a linearly independent set in *V* (details: Lecture Notes). This completes the induction. \Box

• Reminder:

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Then some subset of B is a basis of V.

• Reminder:

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Then some subset of B is a basis of V.

• For linearly independent sets, we have the following analog of Theorem 3.2.14:

Theorem 3.2.19

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

• We first make some remarks and then give a proof.

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Then some subset of B is a basis of V.

Theorem 3.2.19

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Then some subset of B is a basis of V.

Theorem 3.2.19

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

• Suppose that V is a vector space over a field \mathbb{F} .

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Then some subset of B is a basis of V.

Theorem 3.2.19

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

- Suppose that V is a vector space over a field \mathbb{F} .
 - By Theorem 3.2.14, any (finite) spanning set of V contains a subset that is a basis of V; in particular, if a vector space has a (finite) spanning set, then it is finite-dimensional.

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Then some subset of B is a basis of V.

Theorem 3.2.19

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

- Suppose that V is a vector space over a field \mathbb{F} .
 - By Theorem 3.2.14, any (finite) spanning set of V contains a subset that is a basis of V; in particular, if a vector space has a (finite) spanning set, then it is finite-dimensional.
 - On the other hand, by Theorem 3.2.19, if *V* is **finite-dimensional**, then any linearly independent set in *V* can be extended to a basis of *V*.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Proof.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Proof. Set $n := \dim(V)$.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Proof. Set $n := \dim(V)$. By Theorem 3.2.17, any linearly independent set of vectors in V has at most n vectors; in particular, $k \le n$ (because $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ is linearly independent).

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Proof. Set $n := \dim(V)$. By Theorem 3.2.17, any linearly independent set of vectors in V has at most n vectors; in particular, $k \le n$ (because $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ is linearly independent).

Now, let A be a linearly independent set that contains vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$, and subject to that, is of maximum possible size.

• Let us explain why A exists.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Proof. Set $n := \dim(V)$. By Theorem 3.2.17, any linearly independent set of vectors in V has at most n vectors; in particular, $k \le n$ (because $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ is linearly independent).

Now, let A be a linearly independent set that contains vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$, and subject to that, is of maximum possible size.

- Let us explain why A exists.
- There exists at least one linearly independent set that contains vectors **a**₁,..., **a**_k, namely, the set {**a**₁,..., **a**_k}.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Proof. Set $n := \dim(V)$. By Theorem 3.2.17, any linearly independent set of vectors in V has at most n vectors; in particular, $k \le n$ (because $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ is linearly independent).

Now, let A be a linearly independent set that contains vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$, and subject to that, is of maximum possible size.

- Let us explain why A exists.
- There exists at least one linearly independent set that contains vectors **a**₁,..., **a**_k, namely, the set {**a**₁,..., **a**_k}.
- On the other hand, all linearly independent sets are of size at most n, and in particular, there is an upper bound on the size of linearly independent sets containing a₁,..., a_k.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Proof. Set $n := \dim(V)$. By Theorem 3.2.17, any linearly independent set of vectors in V has at most n vectors; in particular, $k \le n$ (because $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ is linearly independent).

Now, let A be a linearly independent set that contains vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$, and subject to that, is of maximum possible size.

- Let us explain why A exists.
- There exists at least one linearly independent set that contains vectors **a**₁,..., **a**_k, namely, the set {**a**₁,..., **a**_k}.
- On the other hand, all linearly independent sets are of size at most n, and in particular, there is an upper bound on the size of linearly independent sets containing a₁,..., a_k.
- So, A exists.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Proof (continued). Reminder: A is a linearly independent set that contains vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$, and subject to that, is of maximum possible size.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Proof (continued). Reminder: A is a linearly independent set that contains vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$, and subject to that, is of maximum possible size.

Set $A = \{a_1, ..., a_k, a_{k+1}, ..., a_{k+\ell}\}.$

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Proof (continued). Reminder: A is a linearly independent set that contains vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$, and subject to that, is of maximum possible size.

Set $A = {\mathbf{a}_1, \dots, \mathbf{a}_k, \mathbf{a}_{k+1}, \dots, \mathbf{a}_{k+\ell}}$. WTS is a basis of V.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Proof (continued). Reminder: A is a linearly independent set that contains vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$, and subject to that, is of maximum possible size.

Set $A = {\mathbf{a}_1, \dots, \mathbf{a}_k, \mathbf{a}_{k+1}, \dots, \mathbf{a}_{k+\ell}}$. WTS is a basis of V.

Since A is linearly independent, it suffices to show that A is a spanning set of V.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Proof (continued). Reminder: A is a linearly independent set that contains vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$, and subject to that, is of maximum possible size.

Set $A = {\mathbf{a}_1, \dots, \mathbf{a}_k, \mathbf{a}_{k+1}, \dots, \mathbf{a}_{k+\ell}}$. WTS is a basis of V.

Since A is linearly independent, it suffices to show that A is a spanning set of V. Fix $\mathbf{v} \in V$; WTS \mathbf{v} is a linear combination of vectors in A.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Proof (continued). Reminder: A is a linearly independent set that contains vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$, and subject to that, is of maximum possible size.

Set $A = {\mathbf{a}_1, \dots, \mathbf{a}_k, \mathbf{a}_{k+1}, \dots, \mathbf{a}_{k+\ell}}$. WTS is a basis of V.

Since A is linearly independent, it suffices to show that A is a spanning set of V. Fix $\mathbf{v} \in V$; WTS \mathbf{v} is a linear combination of vectors in A. If $\mathbf{v} \in A$, then this is immediate. So, assume that $\mathbf{v} \notin A$.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Proof (continued). Reminder: A is a linearly independent set that contains vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$, and subject to that, is of maximum possible size.

Set $A = {\mathbf{a}_1, \dots, \mathbf{a}_k, \mathbf{a}_{k+1}, \dots, \mathbf{a}_{k+\ell}}$. WTS is a basis of V.

Since A is linearly independent, it suffices to show that A is a spanning set of V. Fix $\mathbf{v} \in V$; WTS \mathbf{v} is a linear combination of vectors in A. If $\mathbf{v} \in A$, then this is immediate. So, assume that $\mathbf{v} \notin A$. Then by the maximality of A, the set $\{\mathbf{v}\} \cup A$ is not linearly independent.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Proof (continued). Reminder: A is a linearly independent set that contains vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$, and subject to that, is of maximum possible size.

Set $A = {\mathbf{a}_1, \dots, \mathbf{a}_k, \mathbf{a}_{k+1}, \dots, \mathbf{a}_{k+\ell}}$. WTS is a basis of V.

Since A is linearly independent, it suffices to show that A is a spanning set of V. Fix $\mathbf{v} \in V$; WTS \mathbf{v} is a linear combination of vectors in A. If $\mathbf{v} \in A$, then this is immediate. So, assume that $\mathbf{v} \notin A$. Then by the maximality of A, the set $\{\mathbf{v}\} \cup A$ is not linearly independent. So, there exist scalars $\alpha_0, \alpha_1, \ldots, \alpha_{k+\ell} \in \mathbb{F}$, not all zero, such that

$$\alpha_0 \mathbf{v} + \alpha_1 \mathbf{a}_1 + \cdots + \alpha_{k+\ell} \mathbf{a}_{k+\ell} = \mathbf{0}.$$

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Proof (continued). Reminder: $\alpha_0 \mathbf{v} + \alpha_1 \mathbf{a}_1 + \cdots + \alpha_{k+\ell} \mathbf{a}_{k+\ell} = \mathbf{0}$. WTS \mathbf{v} is a linear combination of the vectors in $A = \{\mathbf{a}_1, \dots, \mathbf{a}_k, \mathbf{a}_{k+1}, \dots, \mathbf{a}_{k+\ell}\}.$

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Proof (continued). Reminder: $\alpha_0 \mathbf{v} + \alpha_1 \mathbf{a}_1 + \cdots + \alpha_{k+\ell} \mathbf{a}_{k+\ell} = \mathbf{0}$. WTS \mathbf{v} is a linear combination of the vectors in $A = \{\mathbf{a}_1, \dots, \mathbf{a}_k, \mathbf{a}_{k+1}, \dots, \mathbf{a}_{k+\ell}\}.$

If $\alpha_0 = 0$, then at least one of $\alpha_1, \ldots, \alpha_{k+\ell}$ is non-zero and $\alpha_1 \mathbf{a}_1 + \cdots + \alpha_{k+\ell} \mathbf{a}_{k+\ell} = \mathbf{0}$, contrary to the fact that A is linearly independent.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Proof (continued). Reminder: $\alpha_0 \mathbf{v} + \alpha_1 \mathbf{a}_1 + \cdots + \alpha_{k+\ell} \mathbf{a}_{k+\ell} = \mathbf{0}$. WTS \mathbf{v} is a linear combination of the vectors in $A = \{\mathbf{a}_1, \dots, \mathbf{a}_k, \mathbf{a}_{k+1}, \dots, \mathbf{a}_{k+\ell}\}.$

If $\alpha_0 = 0$, then at least one of $\alpha_1, \ldots, \alpha_{k+\ell}$ is non-zero and $\alpha_1 \mathbf{a}_1 + \cdots + \alpha_{k+\ell} \mathbf{a}_{k+\ell} = \mathbf{0}$, contrary to the fact that A is linearly independent.

So, $\alpha_0 \neq 0$, it follows that

$$\mathbf{v} = (-\alpha_0^{-1}\alpha_1)\mathbf{a}_1 + \dots + (-\alpha_0^{-1}\alpha_{k+\ell})\mathbf{a}_{k+\ell},$$

and we see that \mathbf{v} is a linear combination of vectors in A.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Proof (continued). Reminder: $\alpha_0 \mathbf{v} + \alpha_1 \mathbf{a}_1 + \cdots + \alpha_{k+\ell} \mathbf{a}_{k+\ell} = \mathbf{0}$. WTS \mathbf{v} is a linear combination of the vectors in $A = \{\mathbf{a}_1, \dots, \mathbf{a}_k, \mathbf{a}_{k+1}, \dots, \mathbf{a}_{k+\ell}\}.$

If $\alpha_0 = 0$, then at least one of $\alpha_1, \ldots, \alpha_{k+\ell}$ is non-zero and $\alpha_1 \mathbf{a}_1 + \cdots + \alpha_{k+\ell} \mathbf{a}_{k+\ell} = \mathbf{0}$, contrary to the fact that A is linearly independent.

So, $\alpha_0 \neq 0$, it follows that

$$\mathbf{v} = (-\alpha_0^{-1}\alpha_1)\mathbf{a}_1 + \dots + (-\alpha_0^{-1}\alpha_{k+\ell})\mathbf{a}_{k+\ell},$$

and we see that \mathbf{v} is a linear combination of vectors in A. This proves that A is a basis of V, and we are done. \Box

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Then some subset of B is a basis of V.

Theorem 3.2.19

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Then some subset of B is a basis of V.

Theorem 3.2.19

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

• Theorems 3.2.14 and 3.2.19 together yield the following corollary:

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F} , and set $n := \dim(V)$. Then both the following hold:

- (a) any linearly independent set of n vectors of V is a basis of V;
- **(a)** any set of n vectors of V that spans V is a basis of V.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F} , and set $n := \dim(V)$. Then both the following hold:

- (a) any linearly independent set of n vectors of V is a basis of V;
- (a) any set of n vectors of V that spans V is a basis of V.

Proof of (a).

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F} , and set $n := \dim(V)$. Then both the following hold:

- (a) any linearly independent set of n vectors of V is a basis of V;
- (a) any set of n vectors of V that spans V is a basis of V.

Proof of (a). Let A be any linearly independent set of vectors in V such that |A| = n.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F} , and set $n := \dim(V)$. Then both the following hold:

- (a) any linearly independent set of n vectors of V is a basis of V;
- (a) any set of n vectors of V that spans V is a basis of V.

Proof of (a). Let A be any linearly independent set of vectors in V such that |A| = n. By Theorem 3.2.19, V has a basis A' such that $A \subseteq A'$.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F} , and set $n := \dim(V)$. Then both the following hold:

- (a) any linearly independent set of n vectors of V is a basis of V;
- (a) any set of n vectors of V that spans V is a basis of V.

Proof of (a). Let A be any linearly independent set of vectors in V such that |A| = n. By Theorem 3.2.19, V has a basis A' such that $A \subseteq A'$. Since dim(V) = n, we see that |A'| = n.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F} , and set $n := \dim(V)$. Then both the following hold:

- (a) any linearly independent set of n vectors of V is a basis of V;
- **(a)** any set of n vectors of V that spans V is a basis of V.

Proof of (a). Let A be any linearly independent set of vectors in V such that |A| = n. By Theorem 3.2.19, V has a basis A' such that $A \subseteq A'$. Since dim(V) = n, we see that |A'| = n. Since |A| = n and $A \subseteq A'$, it follows that A = A'.

Let V be a **finite-dimensional** vector space over a field \mathbb{F} , and let $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_1, \ldots, \mathbf{a}_k$.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F} , and set $n := \dim(V)$. Then both the following hold:

- (a) any linearly independent set of n vectors of V is a basis of V;
- **(a)** any set of n vectors of V that spans V is a basis of V.

Proof of (a). Let A be any linearly independent set of vectors in V such that |A| = n. By Theorem 3.2.19, V has a basis A' such that $A \subseteq A'$. Since dim(V) = n, we see that |A'| = n. Since |A| = n and $A \subseteq A'$, it follows that A = A'. So, A is a basis of V (because A' is). This proves (a). \Box

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Then some subset of B is a basis of V.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F} , and set $n := \dim(V)$. Then both the following hold:

- (a) any linearly independent set of n vectors of V is a basis of V;
- (a) any set of n vectors of V that spans V is a basis of V.

Proof of (b).

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Then some subset of B is a basis of V.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F} , and set $n := \dim(V)$. Then both the following hold:

- (a) any linearly independent set of n vectors of V is a basis of V;
- (any set of n vectors of V that spans V is a basis of V.

Proof of (b). Let *B* be any set of *n* vectors of *V* such that V = Span(B).

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Then some subset of B is a basis of V.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F} , and set $n := \dim(V)$. Then both the following hold:

- (a) any linearly independent set of n vectors of V is a basis of V;
- (a) any set of n vectors of V that spans V is a basis of V.

Proof of (b). Let *B* be any set of *n* vectors of *V* such that V = Span(B). Then by Theorem 3.2.14, *V* has a basis *B'* such that $B' \subseteq B$.

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Then some subset of B is a basis of V.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F} , and set $n := \dim(V)$. Then both the following hold:

- (a) any linearly independent set of n vectors of V is a basis of V;
- (a) any set of n vectors of V that spans V is a basis of V.

Proof of (b). Let *B* be any set of *n* vectors of *V* such that V = Span(B). Then by Theorem 3.2.14, *V* has a basis *B'* such that $B' \subseteq B$. Since dim(V) = n, we see that |B'| = n.

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Then some subset of B is a basis of V.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F} , and set $n := \dim(V)$. Then both the following hold:

- any linearly independent set of n vectors of V is a basis of V;
- (a) any set of n vectors of V that spans V is a basis of V.

Proof of (b). Let *B* be any set of *n* vectors of *V* such that V = Span(B). Then by Theorem 3.2.14, *V* has a basis *B'* such that $B' \subseteq B$. Since dim(V) = n, we see that |B'| = n. Since |B| = n and $B' \subseteq B$, it follows that B' = B.

Let V be a vector space over a field \mathbb{F} , and let $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ be a spanning set of V. Then some subset of B is a basis of V.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F} , and set $n := \dim(V)$. Then both the following hold:

- (a) any linearly independent set of n vectors of V is a basis of V;
- (a) any set of n vectors of V that spans V is a basis of V.

Proof of (b). Let *B* be any set of *n* vectors of *V* such that V = Span(B). Then by Theorem 3.2.14, *V* has a basis *B'* such that $B' \subseteq B$. Since dim(V) = n, we see that |B'| = n. Since |B| = n and $B' \subseteq B$, it follows that B' = B. So, *B* is a basis of *V* (because *B'* is). This proves (b). \Box

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U be a subspace of V. Then all the following hold:

- U is finite-dimensional;
- $(u) \leq \dim(V);$
- If dim $(U) = \dim(V)$, then U = V.

Proof.

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U be a subspace of V. Then all the following hold:

- U is finite-dimensional;
- $(u) \quad \dim(U) \leq \dim(V);$
- If dim $(U) = \dim(V)$, then U = V.

Proof. Set $n := \dim(V)$.

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U be a subspace of V. Then all the following hold:

- U is finite-dimensional;
- $(u) \leq \dim(V);$
- If dim $(U) = \dim(V)$, then U = V.

Proof. Set $n := \dim(V)$. Since U is a subspace in V, any linearly independent set of vectors in U is also linearly independent in V, and by Theorem 3.2.17(a), any such set contains at most n vectors.

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U be a subspace of V. Then all the following hold:

- U is finite-dimensional;
- $(u) \leq \dim(V);$
- If dim $(U) = \dim(V)$, then U = V.

Proof. Set $n := \dim(V)$. Since U is a subspace in V, any linearly independent set of vectors in U is also linearly independent in V, and by Theorem 3.2.17(a), any such set contains at most n vectors. Now, let $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ be a linearly independent set of vectors in U of maximum possible size. (Then $k \le n$.)

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U be a subspace of V. Then all the following hold:

- U is finite-dimensional;
- $(u) \leq \dim(V);$
- If dim $(U) = \dim(V)$, then U = V.

Proof. Set $n := \dim(V)$. Since U is a subspace in V, any linearly independent set of vectors in U is also linearly independent in V, and by Theorem 3.2.17(a), any such set contains at most n vectors. Now, let $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ be a linearly independent set of vectors in U of maximum possible size. (Then $k \le n$.) WTS $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ spans U.

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U be a subspace of V. Then all the following hold:

- U is finite-dimensional;
- $(u) \leq \dim(V);$
- If dim $(U) = \dim(V)$, then U = V.

Proof. Set $n := \dim(V)$. Since U is a subspace in V, any linearly independent set of vectors in U is also linearly independent in V, and by Theorem 3.2.17(a), any such set contains at most n vectors. Now, let $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ be a linearly independent set of vectors in U of maximum possible size. (Then $k \le n$.) WTS $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ spans U.

This will imply that {u₁,..., u_k} is a basis of U, and consequently, that dim(U) = k ≠ n, which is enough to prove (a) and (b).

Proof (continued). Reminder: $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a linearly independent set in U of maximum possible size. WTS it spans U.

Proof (continued). Reminder: $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a linearly independent set in U of maximum possible size. WTS it spans U. Fix $\mathbf{u} \in U$; WTS \mathbf{u} is a linear combination of $\mathbf{u}_1, \ldots, \mathbf{u}_k$. *Proof (continued).* Reminder: $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a linearly independent set in U of maximum possible size. WTS it spans U. Fix $\mathbf{u} \in U$; WTS \mathbf{u} is a linear combination of $\mathbf{u}_1, \ldots, \mathbf{u}_k$. If $\mathbf{u} \in \{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$, then this is immediate.

Fix $\mathbf{u} \in U$; WTS \mathbf{u} is a linear combination of $\mathbf{u}_1, \ldots, \mathbf{u}_k$. If $\mathbf{u} \in {\mathbf{u}_1, \ldots, \mathbf{u}_k}$, then this is immediate. So, assume that $\mathbf{u} \notin {\mathbf{u}_1, \ldots, \mathbf{u}_k}$.

By the maximality of $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$, we see that $\{\mathbf{u}, \mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is linearly dependent. So, there exist scalars $\alpha_0, \alpha_1, \ldots, \alpha_k$, not all zero, such that

$$\alpha_0 \mathbf{u} + \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k = \mathbf{0}.$$

Fix $\mathbf{u} \in U$; WTS \mathbf{u} is a linear combination of $\mathbf{u}_1, \ldots, \mathbf{u}_k$. If $\mathbf{u} \in {\mathbf{u}_1, \ldots, \mathbf{u}_k}$, then this is immediate. So, assume that $\mathbf{u} \notin {\mathbf{u}_1, \ldots, \mathbf{u}_k}$.

By the maximality of $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$, we see that $\{\mathbf{u}, \mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is linearly dependent. So, there exist scalars $\alpha_0, \alpha_1, \ldots, \alpha_k$, not all zero, such that

$$\alpha_0 \mathbf{u} + \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k = \mathbf{0}.$$

If $\alpha_0 = 0$, then $\alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k = \mathbf{0}$ and at least one of the scalars $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$ is non-zero, contrary to the fact that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is linearly independent.

Fix $\mathbf{u} \in U$; WTS \mathbf{u} is a linear combination of $\mathbf{u}_1, \ldots, \mathbf{u}_k$. If $\mathbf{u} \in {\mathbf{u}_1, \ldots, \mathbf{u}_k}$, then this is immediate. So, assume that $\mathbf{u} \notin {\mathbf{u}_1, \ldots, \mathbf{u}_k}$.

By the maximality of $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$, we see that $\{\mathbf{u}, \mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is linearly dependent. So, there exist scalars $\alpha_0, \alpha_1, \ldots, \alpha_k$, not all zero, such that

$$\alpha_0 \mathbf{u} + \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k = \mathbf{0}.$$

If $\alpha_0 = 0$, then $\alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k = \mathbf{0}$ and at least one of the scalars $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$ is non-zero, contrary to the fact that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is linearly independent.

So, $\alpha_0 \neq 0$, and we deduce that

$$\mathbf{u} = (-\alpha_0^{-1}\alpha_1)\mathbf{u}_1 + \cdots + (-\alpha_0^{-1}\alpha_k)\mathbf{u}_k.$$

Fix $\mathbf{u} \in U$; WTS \mathbf{u} is a linear combination of $\mathbf{u}_1, \ldots, \mathbf{u}_k$. If $\mathbf{u} \in {\mathbf{u}_1, \ldots, \mathbf{u}_k}$, then this is immediate. So, assume that $\mathbf{u} \notin {\mathbf{u}_1, \ldots, \mathbf{u}_k}$.

By the maximality of $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$, we see that $\{\mathbf{u}, \mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is linearly dependent. So, there exist scalars $\alpha_0, \alpha_1, \ldots, \alpha_k$, not all zero, such that

$$\alpha_0 \mathbf{u} + \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k = \mathbf{0}.$$

If $\alpha_0 = 0$, then $\alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k = \mathbf{0}$ and at least one of the scalars $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$ is non-zero, contrary to the fact that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is linearly independent.

So, $\alpha_0 \neq 0$, and we deduce that

$$\mathbf{u} = (-\alpha_0^{-1}\alpha_1)\mathbf{u}_1 + \cdots + (-\alpha_0^{-1}\alpha_k)\mathbf{u}_k.$$

So, $\mathbf{u} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$, and we deduce that $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is a spanning set of U.

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U be a subspace of V. Then all the following hold:

- (a) U is finite-dimensional;
- $(u) \leq \dim(V);$
- If dim $(U) = \dim(V)$, then U = V.

Proof (continued). We have now shown that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a basis of U, and consequently, (a) and (b) hold.

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U be a subspace of V. Then all the following hold:

- (a) U is finite-dimensional;
- $(u) \leq \dim(V);$
- If dim $(U) = \dim(V)$, then U = V.

Proof (continued). We have now shown that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a basis of U, and consequently, (a) and (b) hold.

It remains to prove (c).

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U be a subspace of V. Then all the following hold:

- (a) U is finite-dimensional;
- $(u) \leq \dim(V);$
- If dim $(U) = \dim(V)$, then U = V.

Proof (continued). We have now shown that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a basis of U, and consequently, (a) and (b) hold.

It remains to prove (c). Suppose that $\dim(U) = \dim(V)$, i.e. k = n.

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U be a subspace of V. Then all the following hold:

- (a) U is finite-dimensional;
- (a) $\dim(U) \leq \dim(V);$
- If dim $(U) = \dim(V)$, then U = V.

Proof (continued). We have now shown that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a basis of U, and consequently, (a) and (b) hold.

It remains to prove (c). Suppose that $\dim(U) = \dim(V)$, i.e. k = n.

But now $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a linearly independent set of *n* vectors in *V*, and so Corollary 3.2.20 guarantees that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a basis of *V*.

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U be a subspace of V. Then all the following hold:

- (a) U is finite-dimensional;
- $(u) \leq \dim(V);$
- If dim $(U) = \dim(V)$, then U = V.

Proof (continued). We have now shown that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a basis of U, and consequently, (a) and (b) hold.

It remains to prove (c). Suppose that $\dim(U) = \dim(V)$, i.e. k = n.

But now $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a linearly independent set of *n* vectors in *V*, and so Corollary 3.2.20 guarantees that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a basis of *V*. So, $U = \text{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k) = V$, and we are done. \Box

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U be a subspace of V. Then all the following hold:

U is finite-dimensional;

$$\ \, \texttt{dim}(U) \leq \mathsf{dim}(V);$$

If dim
$$(U) = \dim(V)$$
, then $U = V$.

• Warning: Theorem 3.2.21(c) fails if V is infinite-dimensional!

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U be a subspace of V. Then all the following hold:

U is finite-dimensional;

$$\ \, \texttt{dim}(U) \leq \mathsf{dim}(V);$$

If dim
$$(U) = \dim(V)$$
, then $U = V$.

- Warning: Theorem 3.2.21(c) fails if V is infinite-dimensional!
 - Infinite-dimensional vector spaces can have proper subspaces that are infinite-dimensional.

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U be a subspace of V. Then all the following hold:

U is finite-dimensional;

$$\bigcirc$$
 dim $(U) \leq \dim(V);$

- If dim $(U) = \dim(V)$, then U = V.
 - Warning: Theorem 3.2.21(c) fails if V is infinite-dimensional!
 - Infinite-dimensional vector spaces can have proper subspaces that are infinite-dimensional.
 - For example, {p(x) ∈ P_ℝ | p(0) = 0} is an infinite-dimensional proper subspace of P_ℝ.

• Let us consider a geometric interpretation of subspaces in \mathbb{R}^n .

- Let us consider a geometric interpretation of subspaces in \mathbb{R}^n .
- The only 0-dimensional subspace of \mathbb{R}^n is $\{\mathbf{0}\}$.
 - This holds for any vector space V (not just ℝⁿ), as long as the zero vector is from the vector space V in question. Recall that we defined Span(Ø) = {0}, and obviously, Ø is linearly independent.

- 1-dimensional subspaces of ℝⁿ are lines though the origin. Indeed, suppose that {a} is a basis of a subspace U of ℝⁿ. Then a ≠ 0 (by linear independence), and we see that U = Span(a) is the line through the origin and a.
 - This is illustrated below for the case of \mathbb{R}^2 .

So, 1-dimensional subspaces of \mathbb{R}^n essentially look like copies of \mathbb{R}^1 inside of \mathbb{R}^n .

• 2-dimensional subspaces of \mathbb{R}^n are planes through the origin.

- 2-dimensional subspaces of \mathbb{R}^n are planes through the origin.
 - Indeed, suppose that $\{a_1, a_2\}$ is a basis of a subspace U of \mathbb{R}^n .

- 2-dimensional subspaces of \mathbb{R}^n are planes through the origin.
 - Indeed, suppose that $\{a_1, a_2\}$ is a basis of a subspace U of \mathbb{R}^n .
 - By linear independence, **a**₁, **a**₂ are both non-zero and are not scalar multiples of each other.

- 2-dimensional subspaces of \mathbb{R}^n are planes through the origin.
 - Indeed, suppose that $\{\mathbf{a}_1, \mathbf{a}_2\}$ is a basis of a subspace U of \mathbb{R}^n .
 - By linear independence, $\mathbf{a}_1, \mathbf{a}_2$ are both non-zero and are not scalar multiples of each other.
 - So, $U = \text{Span}(\mathbf{a}_1, \mathbf{a}_2)$ is the plane through the origin and through \mathbf{a}_1 and \mathbf{a}_2 .

- 2-dimensional subspaces of \mathbb{R}^n are planes through the origin.
 - Indeed, suppose that $\{\mathbf{a}_1, \mathbf{a}_2\}$ is a basis of a subspace U of \mathbb{R}^n .
 - By linear independence, **a**₁, **a**₂ are both non-zero and are not scalar multiples of each other.
 - So, $U = \text{Span}(\mathbf{a}_1, \mathbf{a}_2)$ is the plane through the origin and through \mathbf{a}_1 and \mathbf{a}_2 .
 - For example, the subspace of \mathbb{R}^3 whose basis is $\{\mathbf{e}_1, \mathbf{e}_2\}$ is simply the x_1x_2 -plane in \mathbb{R}^3 (illustrated below).

- 2-dimensional subspaces of \mathbb{R}^n are planes through the origin.
 - Indeed, suppose that $\{\mathbf{a}_1, \mathbf{a}_2\}$ is a basis of a subspace U of \mathbb{R}^n .
 - By linear independence, **a**₁, **a**₂ are both non-zero and are not scalar multiples of each other.
 - So, $U = \text{Span}(\mathbf{a}_1, \mathbf{a}_2)$ is the plane through the origin and through \mathbf{a}_1 and \mathbf{a}_2 .
 - For example, the subspace of \mathbb{R}^3 whose basis is $\{\mathbf{e}_1, \mathbf{e}_2\}$ is simply the x_1x_2 -plane in \mathbb{R}^3 (illustrated below).

In general, 2-dimensional subspaces of ℝⁿ look like copies of ℝ² inside of ℝⁿ (of course, those copies of ℝ², i.e. planes, may possibly be "tilted," i.e. not formed by any two of the coordinate axes of ℝⁿ); however, they must all pass through the origin.

In general, for a positive integer m ≤ n, an m-dimensional subspace of ℝⁿ looks like a copy of ℝ^m inside of ℝⁿ.

- In general, for a positive integer m ≤ n, an m-dimensional subspace of ℝⁿ looks like a copy of ℝ^m inside of ℝⁿ.
 - Again, our copy of ℝ^m may possibly be "tilted," i.e. not be formed by any m of the n axes of ℝⁿ.
 - However, it must pass through the origin.

- Recall that if U and W are vector spaces over a field 𝔽, then U × W is also a vector space over 𝔽, with vector addition and scalar multiplication defined in a natural way, as follows:
 - $(u_1, w_1) + (u_2, w_2) := (u_1 + u_2, w_1 + w_2)$ for all $u_1, u_2 \in U$ and $w_1, w_2 \in W$;
 - $\alpha(\mathbf{u}, \mathbf{w}) := (\alpha \mathbf{u}, \alpha \mathbf{w})$ for all $\alpha \in \mathbb{F}$, $\mathbf{u} \in U$, and $\mathbf{w} \in W$.

- Recall that if U and W are vector spaces over a field 𝔽, then U × W is also a vector space over 𝔽, with vector addition and scalar multiplication defined in a natural way, as follows:
 - $(u_1, w_1) + (u_2, w_2) := (u_1 + u_2, w_1 + w_2)$ for all $u_1, u_2 \in U$ and $w_1, w_2 \in W$;

•
$$\alpha(\mathbf{u}, \mathbf{w}) := (\alpha \mathbf{u}, \alpha \mathbf{w})$$
 for all $\alpha \in \mathbb{F}$, $\mathbf{u} \in U$, and $\mathbf{w} \in W$.

• We then have the following proposition:

Proposition 3.2.22

Let U and W be finite-dimensional vector spaces over a field \mathbb{F} . Then the vector space $U \times W$ is finite-dimensional, and moreover, $\dim(U \times W) = \dim(U) + \dim(W).$

Let U and W be finite-dimensional vector spaces over a field \mathbb{F} . Then the vector space $U \times W$ is finite-dimensional, and moreover,

 $\dim(U \times W) = \dim(U) + \dim(W).$

Proof (outline).

Let U and W be finite-dimensional vector spaces over a field \mathbb{F} . Then the vector space $U \times W$ is finite-dimensional, and moreover,

 $\dim(U \times W) = \dim(U) + \dim(W).$

Proof (outline). Let $\mathbf{0}_U$ be the zero vector of the vector space U, and let $\mathbf{0}_W$ be the zero of the vector space W.

Let U and W be finite-dimensional vector spaces over a field \mathbb{F} . Then the vector space $U \times W$ is finite-dimensional, and moreover,

 $\dim(U \times W) = \dim(U) + \dim(W).$

Proof (outline). Let $\mathbf{0}_U$ be the zero vector of the vector space U, and let $\mathbf{0}_W$ be the zero of the vector space W. Set $m := \dim(U)$ and $n := \dim(W)$, and fix a basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ of U and a basis $\{\mathbf{w}_1, \ldots, \mathbf{w}_n\}$ of W.

Let U and W be finite-dimensional vector spaces over a field \mathbb{F} . Then the vector space $U \times W$ is finite-dimensional, and moreover,

 $\dim(U \times W) = \dim(U) + \dim(W).$

Proof (outline). Let $\mathbf{0}_U$ be the zero vector of the vector space U, and let $\mathbf{0}_W$ be the zero of the vector space W. Set $m := \dim(U)$ and $n := \dim(W)$, and fix a basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ of U and a basis $\{\mathbf{w}_1, \ldots, \mathbf{w}_n\}$ of W. It is then straightforward to check that

$$\left\{ (\mathbf{u}_1, \mathbf{0}_W), \dots, (\mathbf{u}_m, \mathbf{0}_W), (\mathbf{0}_U, \mathbf{w}_1), \dots, (\mathbf{0}_U, \mathbf{w}_n) \right\}$$

is a basis of $U \times W$ (the details are left as an exercise),

Let U and W be finite-dimensional vector spaces over a field \mathbb{F} . Then the vector space $U \times W$ is finite-dimensional, and moreover,

 $\dim(U \times W) = \dim(U) + \dim(W).$

Proof (outline). Let $\mathbf{0}_U$ be the zero vector of the vector space U, and let $\mathbf{0}_W$ be the zero of the vector space W. Set $m := \dim(U)$ and $n := \dim(W)$, and fix a basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ of U and a basis $\{\mathbf{w}_1, \ldots, \mathbf{w}_n\}$ of W. It is then straightforward to check that

$$\left\{(\mathbf{u}_1,\mathbf{0}_W),\ldots,(\mathbf{u}_m,\mathbf{0}_W),(\mathbf{0}_U,\mathbf{w}_1),\ldots,(\mathbf{0}_U,\mathbf{w}_n)\right\}$$

is a basis of $U \times W$ (the details are left as an exercise), and consequently, $\dim(U \times W) = m + n = \dim(U) + \dim(W)$. \Box

Theorem 3.2.23

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U and W be subspaces of V. Then $U \cap W$ and U + W are also finite-dimensional subspaces of V. Moreover, U, W, $U \cap W$, and U + W are all finite-dimensional and satisfy

$$\dim(U+W) + \dim(U \cap W) = \dim(U) + \dim(W).$$

Proof (outline).

Theorem 3.2.23

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U and W be subspaces of V. Then $U \cap W$ and U + W are also finite-dimensional subspaces of V. Moreover, U, W, $U \cap W$, and U + W are all finite-dimensional and satisfy

$$\dim(U+W) + \dim(U \cap W) = \dim(U) + \dim(W).$$

Proof (outline). The proof of the fact that $U \cap W$ and U + W are subspaces of V was an exercise.

Theorem 3.2.23

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U and W be subspaces of V. Then $U \cap W$ and U + W are also finite-dimensional subspaces of V. Moreover, U, W, $U \cap W$, and U + W are all finite-dimensional and satisfy

$$\dim(U+W) + \dim(U \cap W) = \dim(U) + \dim(W).$$

Proof (outline). The proof of the fact that $U \cap W$ and U + W are subspaces of V was an exercise. Since V is finite-dimensional, Theorem 3.2.21 guarantees that all its subspaces are finite dimensional; in particular, U, W, $U \cap W$, and U + W are all finite-dimensional.

 $\dim(U+W) + \dim(U \cap W) = \dim(U) + \dim(W).$

Proof (continued). Set $m := \dim(U)$, $n := \dim(W)$, and $p := \dim(U \cap W)$.

 $\dim(U+W) + \dim(U \cap W) = \dim(U) + \dim(W).$

Proof (continued). Set $m := \dim(U)$, $n := \dim(W)$, and $p := \dim(U \cap W)$. Fix a basis $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of $U \cap W$.

 $\dim(U+W) + \dim(U \cap W) = \dim(U) + \dim(W).$

Proof (continued). Set $m := \dim(U)$, $n := \dim(W)$, and $p := \dim(U \cap W)$. Fix a basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ of $U \cap W$. Then $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is a linearly independent set in the finite-dimensional vector space U, and so by Theorem 3.2.19, it can be extended to a basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_p, \mathbf{u}_1, \ldots, \mathbf{u}_{m-p}\}$ of U. Similarly, $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ can be extended to a basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_p, \mathbf{u}_1, \ldots, \mathbf{v}_p, \mathbf{w}_1, \ldots, \mathbf{w}_{n-p}\}$ of W.

$\dim(U+W) + \dim(U \cap W) = \dim(U) + \dim(W).$

Proof (continued).

It is now straightforward to check that

$$\left\{\mathbf{v}_1,\ldots,\mathbf{v}_p,\mathbf{u}_1,\ldots,\mathbf{u}_{m-p},\mathbf{w}_1,\ldots,\mathbf{w}_{n-p}\right\}$$

is a basis of U + W (details: exercise).

$\dim(U+W) + \dim(U \cap W) = \dim(U) + \dim(W).$

Proof (continued).

It is now straightforward to check that

<

$$\left\{\mathbf{v}_1,\ldots,\mathbf{v}_p,\mathbf{u}_1,\ldots,\mathbf{u}_{m-p},\mathbf{w}_1,\ldots,\mathbf{w}_{n-p}\right\}$$

is a basis of U + W (details: exercise). So,

$$\dim(U+W) = p + (m-p) + (n-p) = m+n-p.$$

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U and W be subspaces of V. Then $U \cap W$ and U + W are also finite-dimensional subspaces of V. Moreover, U, W, $U \cap W$, and U + W are all finite-dimensional and satisfy

 $\dim(U+W) + \dim(U \cap W) = \dim(U) + \dim(W).$

Proof (continued). It now follows that

$$\dim(U+W) + \dim(U \cap W) = (m+n-p) + p$$

$$= m + n$$

$$= \dim(U) + \dim(W),$$

which is what we needed to show. \Box

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U and W be subspaces of V. Then $U \cap W$ and U + W are also finite-dimensional subspaces of V. Moreover, U, W, $U \cap W$, and U + W are all finite-dimensional and satisfy

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U and W be subspaces of V. Then $U \cap W$ and U + W are also finite-dimensional subspaces of V. Moreover, U, W, $U \cap W$, and U + W are all finite-dimensional and satisfy

 $\dim(U+W) + \dim(U \cap W) = \dim(U) + \dim(W).$

If V is a vector space over a field 𝔽 and U and V are its subspaces such that U ∩ W = {0} and V = U + W, then we say that V is the *direct sum* of U and W, and we write V = U ⊕ W.

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U and W be subspaces of V. Then $U \cap W$ and U + W are also finite-dimensional subspaces of V. Moreover, U, W, $U \cap W$, and U + W are all finite-dimensional and satisfy

- If V is a vector space over a field 𝔽 and U and V are its subspaces such that U ∩ W = {0} and V = U + W, then we say that V is the *direct sum* of U and W, and we write V = U ⊕ W.
 - If V = U ⊕ W is also finite-dimensional, then Theorem 3.2.23 immediately implies that dim(V) = dim(U) + dim(W).

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U and W be subspaces of V. Then $U \cap W$ and U + W are also finite-dimensional subspaces of V. Moreover, U, W, $U \cap W$, and U + W are all finite-dimensional and satisfy

- If V is a vector space over a field 𝔽 and U and V are its subspaces such that U ∩ W = {0} and V = U + W, then we say that V is the *direct sum* of U and W, and we write V = U ⊕ W.
 - If $V = U \oplus W$ is also finite-dimensional, then Theorem 3.2.23 immediately implies that $\dim(V) = \dim(U) + \dim(W)$.
 - This is because $\dim(U \cap W) = 0$.

Let V be a finite-dimensional vector space over a field \mathbb{F} , and let U and W be subspaces of V. Then $U \cap W$ and U + W are also finite-dimensional subspaces of V. Moreover, U, W, $U \cap W$, and U + W are all finite-dimensional and satisfy

- If V is a vector space over a field 𝔽 and U and V are its subspaces such that U ∩ W = {0} and V = U + W, then we say that V is the *direct sum* of U and W, and we write V = U ⊕ W.
 - If $V = U \oplus W$ is also finite-dimensional, then Theorem 3.2.23 immediately implies that $\dim(V) = \dim(U) + \dim(W)$.
 - This is because $\dim(U \cap W) = 0$.
- Moreover, we have the following theorem (next slide).

Let V be a vector space over a field \mathbb{F} , and let U and W be subspaces of V such that $V = U \oplus W$. Then for all $\mathbf{v} \in V$, there exist unique $\mathbf{u} \in U$ and $\mathbf{w} \in W$ such that $\mathbf{v} = \mathbf{u} + \mathbf{w}$.

Proof. Exercise.

• Optional reading: subsection 3.2.7 from the Lecture Notes ("A very brief introduction to infinite bases").