Linear Algebra 1

Lecture \#9

Vector spaces (part II)

Irena Penev

December 4, 2023

- In this lecture, we examine the relationship between the sizes of linearly independent sets, spanning sets, and bases of a finite-dimensional vector space.
- In this lecture, we examine the relationship between the sizes of linearly independent sets, spanning sets, and bases of a finite-dimensional vector space.
- In particular, we will prove the following two theorems.
- In this lecture, we examine the relationship between the sizes of linearly independent sets, spanning sets, and bases of a finite-dimensional vector space.
- In particular, we will prove the following two theorems.

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F}. Then all bases of V are of the same size.

- In this lecture, we examine the relationship between the sizes of linearly independent sets, spanning sets, and bases of a finite-dimensional vector space.
- In particular, we will prove the following two theorems.

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F}. Then all bases of V are of the same size.

Theorem 3.2.17

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(a) every linearly independent set of vectors in V has at most n vectors;
(D) every spanning set of V has at least n vectors.

- Informally, Theorem 3.2.17 says:
\mid linearly independent set of $V|\leq \operatorname{dim}(V) \leq|$ spanning set of $V \mid$.

Proposition 3.2.11

Let V be a vector space over a field \mathbb{F}, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in V$. Set $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$. Then the following hold:
(0) A is linearly independent if and only if no vector in A is a linear combination of the other vectors in A^{a}
(b) if A is a spanning set of V, and some vector $\mathbf{a}_{i} \in A$ is a linear combination of the other vectors in A, then $A \backslash\left\{\mathbf{a}_{i}\right\}$ is a spanning set of $V .^{b}$
> ${ }^{a}$ If A contains more than one copy of the same vector, then we treat each copy as distinct. So, when expressing a vector \mathbf{v} in A as a linear combination of the "other" vectors in A, we are allowed to use any additional copies of \mathbf{v} (if there are any) in that linear combination.
> ${ }^{b}$ If \mathbf{a}_{i} appears more than once in A, then $A \backslash\left\{\mathbf{a}_{i}\right\}$ is understood to be the set obtained from A by removing only one copy of \mathbf{a}_{i}.

Proof.

Proposition 3.2.11

Let V be a vector space over a field \mathbb{F}, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in V$. Set $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$. Then the following hold:
(0) A is linearly independent if and only if no vector in A is a linear combination of the other vectors in A^{a}
(b) if A is a spanning set of V, and some vector $\mathbf{a}_{i} \in A$ is a linear combination of the other vectors in A, then $A \backslash\left\{\mathbf{a}_{i}\right\}$ is a spanning set of $V .^{b}$
> ${ }^{\text {a }}$ If A contains more than one copy of the same vector, then we treat each copy as distinct. So, when expressing a vector \mathbf{v} in A as a linear combination of the "other" vectors in A, we are allowed to use any additional copies of \mathbf{v} (if there are any) in that linear combination.
> ${ }^{b}$ If \mathbf{a}_{i} appears more than once in A, then $A \backslash\left\{\mathbf{a}_{i}\right\}$ is understood to be the set obtained from A by removing only one copy of \mathbf{a}_{i}.

Proof. We prove (b). The proof of (a) is in the Lecture Notes.

Proposition 3.2.11

Let V be a vector space over a field \mathbb{F}, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in V$. Set $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$. Then the following hold:
(b) if A is a spanning set of V, and some vector $\mathbf{a}_{i} \in A$ is a linear combination of the other vectors in A, then $A \backslash\left\{\mathbf{a}_{i}\right\}$ is a spanning set of V.

Proof of (b).

Proposition 3.2.11

Let V be a vector space over a field \mathbb{F}, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in V$. Set $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$. Then the following hold:
(D) if A is a spanning set of V, and some vector $\mathbf{a}_{i} \in A$ is a linear combination of the other vectors in A, then $A \backslash\left\{\mathbf{a}_{i}\right\}$ is a spanning set of V.

Proof of (b). Assume that A is a spanning set of V, and that some $\mathbf{a}_{i} \in A$ is a linear combination of the other vectors in A.

Proposition 3.2.11

Let V be a vector space over a field \mathbb{F}, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in V$. Set $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$. Then the following hold:
(b) if A is a spanning set of V, and some vector $\mathbf{a}_{i} \in A$ is a linear combination of the other vectors in A, then $A \backslash\left\{\mathbf{a}_{i}\right\}$ is a spanning set of V.

Proof of (b). Assume that A is a spanning set of V, and that some $\mathbf{a}_{i} \in A$ is a linear combination of the other vectors in A. Then there exist scalars $\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{k} \in \mathbb{F}$ such that

$$
\mathbf{a}_{i}=\alpha_{1} \mathbf{a}_{1}+\cdots+\alpha_{i-1} \mathbf{a}_{i-1}+\alpha_{i+1} \mathbf{a}_{i+1}+\cdots+\alpha_{k} \mathbf{a}_{k} .
$$

Proposition 3.2.11

Let V be a vector space over a field \mathbb{F}, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in V$. Set $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$. Then the following hold:
(b) if A is a spanning set of V, and some vector $\mathbf{a}_{i} \in A$ is a linear combination of the other vectors in A, then $A \backslash\left\{\mathbf{a}_{i}\right\}$ is a spanning set of V.

Proof of (b). Assume that A is a spanning set of V, and that some $\mathbf{a}_{i} \in A$ is a linear combination of the other vectors in A. Then there exist scalars $\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{k} \in \mathbb{F}$ such that

$$
\mathbf{a}_{i}=\alpha_{1} \mathbf{a}_{1}+\cdots+\alpha_{i-1} \mathbf{a}_{i-1}+\alpha_{i+1} \mathbf{a}_{i+1}+\cdots+\alpha_{k} \mathbf{a}_{k} .
$$

Now, fix any vector $\mathbf{v} \in V$. WTS \mathbf{v} is a linear combination of vectors in $A \backslash\left\{\mathbf{a}_{i}\right\}=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{i-1}, \mathbf{a}_{i+1}, \ldots, \mathbf{a}_{k}\right\}$.

Proposition 3.2.11

Let V be a vector space over a field \mathbb{F}, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in V$. Set $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$. Then the following hold:
(b) if A is a spanning set of V, and some vector $\mathbf{a}_{i} \in A$ is a linear combination of the other vectors in A, then $A \backslash\left\{\mathbf{a}_{i}\right\}$ is a spanning set of V.

Proof of (b). Assume that A is a spanning set of V, and that some $\mathbf{a}_{i} \in A$ is a linear combination of the other vectors in A. Then there exist scalars $\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{k} \in \mathbb{F}$ such that

$$
\mathbf{a}_{i}=\alpha_{1} \mathbf{a}_{1}+\cdots+\alpha_{i-1} \mathbf{a}_{i-1}+\alpha_{i+1} \mathbf{a}_{i+1}+\cdots+\alpha_{k} \mathbf{a}_{k} .
$$

Now, fix any vector $\mathbf{v} \in V$. WTS \mathbf{v} is a linear combination of vectors in $A \backslash\left\{\mathbf{a}_{i}\right\}=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{i-1}, \mathbf{a}_{i+1}, \ldots, \mathbf{a}_{k}\right\}$. Since $A=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ is a spanning set of V, we know that there exist scalars $\beta_{1}, \ldots, \beta_{k} \in \mathbb{F}$ such that $\mathbf{v}=\beta_{1} \mathbf{a}_{1}+\cdots+\beta_{k} \mathbf{a}_{k}$.

Proposition 3.2.11

Let V be a vector space over a field \mathbb{F}, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in V$. Set $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$. Then the following hold:
(b) if A is a spanning set of V, and some vector $\mathbf{a}_{i} \in A$ is a linear combination of the other vectors in A, then $A \backslash\left\{\mathbf{a}_{i}\right\}$ is a spanning set of V.

Proof of (b). Assume that A is a spanning set of V, and that some $\mathbf{a}_{i} \in A$ is a linear combination of the other vectors in A. Then there exist scalars $\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{k} \in \mathbb{F}$ such that

$$
\mathbf{a}_{i}=\alpha_{1} \mathbf{a}_{1}+\cdots+\alpha_{i-1} \mathbf{a}_{i-1}+\alpha_{i+1} \mathbf{a}_{i+1}+\cdots+\alpha_{k} \mathbf{a}_{k} .
$$

Now, fix any vector $\mathbf{v} \in V$. WTS \mathbf{v} is a linear combination of vectors in $A \backslash\left\{\mathbf{a}_{i}\right\}=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{i-1}, \mathbf{a}_{i+1}, \ldots, \mathbf{a}_{k}\right\}$. Since $A=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ is a spanning set of V, we know that there exist scalars $\beta_{1}, \ldots, \beta_{k} \in \mathbb{F}$ such that $\mathbf{v}=\beta_{1} \mathbf{a}_{1}+\cdots+\beta_{k} \mathbf{a}_{k}$. We now compute (next slide):

Proposition 3.2.11

Let V be a vector space over a field \mathbb{F}, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in V$. Set $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$. Then the following hold:
(D) if A is a spanning set of V, and some vector $\mathbf{a}_{i} \in A$ is a linear combination of the other vectors in A, then $A \backslash\left\{\mathbf{a}_{i}\right\}$ is a spanning set of V.

Proof of (b) (continued).

$$
\begin{aligned}
\mathbf{v}= & \beta_{1} \mathbf{a}_{1}+\cdots+\beta_{i-1} \mathbf{a}_{i-1}+\beta_{i} \mathbf{a}_{i}+\beta_{i+1} \mathbf{a}_{i+1}+\cdots+\beta_{k} \mathbf{a}_{k} \\
= & \beta_{1} \mathbf{a}_{1}+\cdots+\beta_{i-1} \mathbf{a}_{i-1}+ \\
& +\beta_{i}\left(\alpha_{1} \mathbf{a}_{1}+\cdots+\alpha_{i-1} \mathbf{a}_{i-1}+\alpha_{i+1} \mathbf{a}_{i+1}+\cdots+\alpha_{k} \mathbf{a}_{k}\right) \\
& +\beta_{i+1} \mathbf{a}_{i+1}+\cdots+\beta_{k} \mathbf{a}_{k} \\
= & \left(\beta_{1}+\beta_{i} \alpha_{1}\right) \mathbf{a}_{1}+\cdots+\left(\beta_{i-1}+\beta_{i} \alpha_{i-1}\right) \mathbf{a}_{i-1}+ \\
& +\left(\beta_{i+1}+\beta_{i} \alpha_{i+1}\right) \mathbf{a}_{i+1}+\cdots+\left(\beta_{k}+\beta_{i} \alpha_{k}\right) \mathbf{a}_{k} .
\end{aligned}
$$

So, \mathbf{v} is a linear combination of vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{i-1}, \mathbf{a}_{i+1}, \ldots, \mathbf{a}_{k}$, and (b) follows. \square

Proposition 3.2.11

Let V be a vector space over a field \mathbb{F}, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in V$. Set $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$. Then the following hold:
(0) A is linearly independent if and only if no vector in A is a linear combination of the other vectors in $A^{\text {a }}$
(D) if A is a spanning set of V, and some vector $\mathbf{a}_{i} \in A$ is a linear combination of the other vectors in A, then $A \backslash\left\{\mathbf{a}_{i}\right\}$ is a spanning set of $V .{ }^{b}$

[^0]
Proposition 3.2.13

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Let $B^{\prime} \subseteq B$ be such that every vector in $B \backslash B^{\prime}$ is a linear combination of vectors in B^{\prime}. Then B^{\prime} is a spanning set of V.

Proof.

Proposition 3.2.13

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Let $B^{\prime} \subseteq B$ be such that every vector in $B \backslash B^{\prime}$ is a linear combination of vectors in B^{\prime}. Then B^{\prime} is a spanning set of V.

Proof. Choose a set \widetilde{B} such that

- $B^{\prime} \subseteq \widetilde{B} \subseteq B$,
- \widetilde{B} is a spanning set of V;
- subject to the above, \widetilde{B} is as small as possible.
(The fact that \widetilde{B} exists follows from the fact that $B^{\prime} \subseteq B \subseteq B$, and B is a spanning set of V.)

Proposition 3.2.13

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Let $B^{\prime} \subseteq B$ be such that every vector in $B \backslash B^{\prime}$ is a linear combination of vectors in B^{\prime}. Then B^{\prime} is a spanning set of V.

Proof. Choose a set \widetilde{B} such that

- $B^{\prime} \subseteq \widetilde{B} \subseteq B$,
- \widetilde{B} is a spanning set of V;
- subject to the above, \widetilde{B} is as small as possible.
(The fact that \widetilde{B} exists follows from the fact that $B^{\prime} \subseteq B \subseteq B$, and B is a spanning set of V.)
If $\widetilde{B}=B^{\prime}$, then we are done.

Proposition 3.2.13

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Let $B^{\prime} \subseteq B$ be such that every vector in $B \backslash B^{\prime}$ is a linear combination of vectors in B^{\prime}. Then B^{\prime} is a spanning set of V.

Proof. Choose a set \widetilde{B} such that

- $B^{\prime} \subseteq \widetilde{B} \subseteq B$,
- \widetilde{B} is a spanning set of V;
- subject to the above, \widetilde{B} is as small as possible.
(The fact that \widetilde{B} exists follows from the fact that $B^{\prime} \subseteq B \subseteq B$, and B is a spanning set of V.)
If $\widetilde{B}=B^{\prime}$, then we are done. So, assume that $B^{\prime} \varsubsetneqq \widetilde{B}$, and fix some $\mathbf{v} \in \widetilde{B} \backslash B^{\prime}$.

Proposition 3.2.13

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Let $B^{\prime} \subseteq B$ be such that every vector in $B \backslash B^{\prime}$ is a linear combination of vectors in B^{\prime}. Then B^{\prime} is a spanning set of V.

Proof. Choose a set \widetilde{B} such that

- $B^{\prime} \subseteq \widetilde{B} \subseteq B$,
- \widetilde{B} is a spanning set of V;
- subject to the above, \widetilde{B} is as small as possible.
(The fact that \widetilde{B} exists follows from the fact that $B^{\prime} \subseteq B \subseteq B$, and B is a spanning set of V.)
If $\widetilde{B}=B^{\prime}$, then we are done. So, assume that $B^{\prime} \varsubsetneqq \widetilde{B}$, and fix some $\mathbf{v} \in \widetilde{B} \backslash B^{\prime}$. Then \mathbf{v} is a linear combination of the other vectors in \widetilde{B} (because \mathbf{v} is a linear combination of the vectors in B^{\prime}),

Proposition 3.2.13

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Let $B^{\prime} \subseteq B$ be such that every vector in $B \backslash B^{\prime}$ is a linear combination of vectors in B^{\prime}. Then B^{\prime} is a spanning set of V.

Proof. Choose a set \widetilde{B} such that

- $B^{\prime} \subseteq \widetilde{B} \subseteq B$,
- \widetilde{B} is a spanning set of V;
- subject to the above, \widetilde{B} is as small as possible.
(The fact that \widetilde{B} exists follows from the fact that $B^{\prime} \subseteq B \subseteq B$, and B is a spanning set of V.)
If $\widetilde{B}=B^{\prime}$, then we are done. So, assume that $B^{\prime} \varsubsetneqq \widetilde{B}$, and fix some $\mathbf{v} \in \widetilde{B} \backslash B^{\prime}$. Then \mathbf{v} is a linear combination of the other vectors in \widetilde{B} (because \mathbf{v} is a linear combination of the vectors in B^{\prime}), and so by Proposition 3.2.11(b), $\widetilde{B} \backslash\{\mathbf{v}\}$ is a spanning set of V.

Proposition 3.2.13

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Let $B^{\prime} \subseteq B$ be such that every vector in $B \backslash B^{\prime}$ is a linear combination of vectors in B^{\prime}. Then B^{\prime} is a spanning set of V.

Proof. Choose a set \widetilde{B} such that

- $B^{\prime} \subseteq \widetilde{B} \subseteq B$,
- \widetilde{B} is a spanning set of V;
- subject to the above, \widetilde{B} is as small as possible.
(The fact that \widetilde{B} exists follows from the fact that $B^{\prime} \subseteq B \subseteq B$, and B is a spanning set of V.)
If $\widetilde{B}=B^{\prime}$, then we are done. So, assume that $B^{\prime} \varsubsetneqq \widetilde{B}$, and fix some $\mathbf{v} \in \widetilde{B} \backslash B^{\prime}$. Then \mathbf{v} is a linear combination of the other vectors in \widetilde{B} (because \mathbf{v} is a linear combination of the vectors in B^{\prime}), and so by Proposition 3.2.11(b), $\widetilde{B} \backslash\{\mathbf{v}\}$ is a spanning set of V. But now $\widetilde{B} \backslash \mathbf{v}$ contradicts the minimality of \widetilde{B}. \square

Proposition 3.2.13

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Let $B^{\prime} \subseteq B$ be such that every vector in $B \backslash B^{\prime}$ is a linear combination of vectors in B^{\prime}. Then B^{\prime} is a spanning set of V.

Proposition 3.2.13

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Let $B^{\prime} \subseteq B$ be such that every vector in $B \backslash B^{\prime}$ is a linear combination of vectors in B^{\prime}. Then B^{\prime} is a spanning set of V.

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Then some subset of B is a basis of V.

Proof.

Proposition 3.2.13

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Let $B^{\prime} \subseteq B$ be such that every vector in $B \backslash B^{\prime}$ is a linear combination of vectors in B^{\prime}. Then B^{\prime} is a spanning set of V.

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Then some subset of B is a basis of V.

Proof. Let $B^{\prime} \subseteq B$ be a spanning set of V that has as few elements as possible. WTS B^{\prime} is a basis of V. It suffices to show that B^{\prime} is linearly independent.

Proposition 3.2.13

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Let $B^{\prime} \subseteq B$ be such that every vector in $B \backslash B^{\prime}$ is a linear combination of vectors in B^{\prime}. Then B^{\prime} is a spanning set of V.

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Then some subset of B is a basis of V.

Proof. Let $B^{\prime} \subseteq B$ be a spanning set of V that has as few elements as possible. WTS B^{\prime} is a basis of V. It suffices to show that B^{\prime} is linearly independent. Suppose otherwise.

Proposition 3.2.13

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Let $B^{\prime} \subseteq B$ be such that every vector in $B \backslash B^{\prime}$ is a linear combination of vectors in B^{\prime}. Then B^{\prime} is a spanning set of V.

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Then some subset of B is a basis of V.

Proof. Let $B^{\prime} \subseteq B$ be a spanning set of V that has as few elements as possible. WTS B^{\prime} is a basis of V. It suffices to show that B^{\prime} is linearly independent. Suppose otherwise. Then Proposition 3.2.11(a) guarantees that some $\mathbf{b} \in B^{\prime}$ is a linear combination of the other vectors in B^{\prime};

Proposition 3.2.13

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Let $B^{\prime} \subseteq B$ be such that every vector in $B \backslash B^{\prime}$ is a linear combination of vectors in B^{\prime}. Then B^{\prime} is a spanning set of V.

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Then some subset of B is a basis of V.

Proof. Let $B^{\prime} \subseteq B$ be a spanning set of V that has as few elements as possible. WTS B^{\prime} is a basis of V. It suffices to show that B^{\prime} is linearly independent. Suppose otherwise. Then Proposition 3.2.11(a) guarantees that some $\mathbf{b} \in B^{\prime}$ is a linear combination of the other vectors in B^{\prime}; but then by Proposition 3.2.11(b), $B^{\prime} \backslash\{\mathbf{b}\}$ is a spanning set of V, contrary to the minimality of B^{\prime}. \square

The Steinitz exchange lemma

Let V be a vector space over a field \mathbb{F}, let
$\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell} \in V$, and assume that $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$ are pairwise distinct and that $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}$ are pairwise distinct. Assume furthermore that $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ is a linearly independent set in V, and assume that $B:=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right\}$ is a spanning set of V.
Then $k \leq \ell$ (i.e. $|A| \leq|B|$). Moreover, there exists a set $B^{\prime} \subseteq B \backslash A$ such that $\left|B^{\prime}\right|=|B|-|A|=\ell-k$ and $A \cup B^{\prime}$ is a spanning set of V.

The Steinitz exchange lemma

Let V be a vector space over a field \mathbb{F}, let
$\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell} \in V$, and assume that $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$ are pairwise distinct and that $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}$ are pairwise distinct. Assume furthermore that $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ is a linearly independent set in V, and assume that $B:=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right\}$ is a spanning set of V.
Then $k \leq \ell$ (i.e. $|A| \leq|B|$). Moreover, there exists a set $B^{\prime} \subseteq B \backslash A$ such that $\left|B^{\prime}\right|=|B|-|A|=\ell-k$ and $A \cup B^{\prime}$ is a spanning set of V.

- First, some remarks. Then, a proof.
- For technical reasons (in order to get the set B^{\prime}), the Steinitz exchange lemma assumes that the sets A and B contain no repetitions.
- For technical reasons (in order to get the set B^{\prime}), the Steinitz exchange lemma assumes that the sets A and B contain no repetitions.
- Actually, it would be possible to state and prove a version of the Steinitz exchange lemma that allows repetitions.
- For technical reasons (in order to get the set B^{\prime}), the Steinitz exchange lemma assumes that the sets A and B contain no repetitions.
- Actually, it would be possible to state and prove a version of the Steinitz exchange lemma that allows repetitions.
- However, this would be notationally messy.
- For technical reasons (in order to get the set B^{\prime}), the Steinitz exchange lemma assumes that the sets A and B contain no repetitions.
- Actually, it would be possible to state and prove a version of the Steinitz exchange lemma that allows repetitions.
- However, this would be notationally messy.
- However, if we only care about the " $|A| \leq|B|$ " part of the Steinitz exchange lemma (which is what we usually care about), then this assumption is not necessary.
- For technical reasons (in order to get the set B^{\prime}), the Steinitz exchange lemma assumes that the sets A and B contain no repetitions.
- Actually, it would be possible to state and prove a version of the Steinitz exchange lemma that allows repetitions.
- However, this would be notationally messy.
- However, if we only care about the " $|A| \leq|B|$ " part of the Steinitz exchange lemma (which is what we usually care about), then this assumption is not necessary.
- Indeed, suppose that V is a vector space over a field \mathbb{F}, and suppose that A is a linearly independent set of vectors in V and that B is a spanning set of V (with repetitions allowed).
- For technical reasons (in order to get the set B^{\prime}), the Steinitz exchange lemma assumes that the sets A and B contain no repetitions.
- Actually, it would be possible to state and prove a version of the Steinitz exchange lemma that allows repetitions.
- However, this would be notationally messy.
- However, if we only care about the " $|A| \leq|B|$ " part of the Steinitz exchange lemma (which is what we usually care about), then this assumption is not necessary.
- Indeed, suppose that V is a vector space over a field \mathbb{F}, and suppose that A is a linearly independent set of vectors in V and that B is a spanning set of V (with repetitions allowed).
- Since A is linearly independent, it contains no repetitions; however, B may possibly contain repetitions.
- For technical reasons (in order to get the set B^{\prime}), the Steinitz exchange lemma assumes that the sets A and B contain no repetitions.
- Actually, it would be possible to state and prove a version of the Steinitz exchange lemma that allows repetitions.
- However, this would be notationally messy.
- However, if we only care about the " $|A| \leq|B|$ " part of the Steinitz exchange lemma (which is what we usually care about), then this assumption is not necessary.
- Indeed, suppose that V is a vector space over a field \mathbb{F}, and suppose that A is a linearly independent set of vectors in V and that B is a spanning set of V (with repetitions allowed).
- Since A is linearly independent, it contains no repetitions; however, B may possibly contain repetitions.
- But then we let \widetilde{B} be the set obtained from B by eliminating repetitions.
- For technical reasons (in order to get the set B^{\prime}), the Steinitz exchange lemma assumes that the sets A and B contain no repetitions.
- Actually, it would be possible to state and prove a version of the Steinitz exchange lemma that allows repetitions.
- However, this would be notationally messy.
- However, if we only care about the " $|A| \leq|B|$ " part of the Steinitz exchange lemma (which is what we usually care about), then this assumption is not necessary.
- Indeed, suppose that V is a vector space over a field \mathbb{F}, and suppose that A is a linearly independent set of vectors in V and that B is a spanning set of V (with repetitions allowed).
- Since A is linearly independent, it contains no repetitions; however, B may possibly contain repetitions.
- But then we let \widetilde{B} be the set obtained from B by eliminating repetitions.
- Then \widetilde{B} is still a spanning set of V, and by the Steinitz exchange lemma, we get that $|A| \leq|\widetilde{B}| \leq|B|$.

The Steinitz exchange lemma

Let V be a vector space over a field \mathbb{F}, let
$\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell} \in V$, and assume that $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$ are pairwise distinct and that $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}$ are pairwise distinct. Assume furthermore that $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ is a linearly independent set in V, and assume that $B:=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right\}$ is a spanning set of V. Then $k \leq \ell$ (i.e. $|A| \leq|B|$). Moreover, there exists a set $B^{\prime} \subseteq B \backslash A$ such that $\left|B^{\prime}\right|=|B|-|A|=\ell-k$ and $A \cup B^{\prime}$ is a spanning set of V.

- The most important corollary of the Steinitz exchange lemma is Theorem 3.2.16 (next slide).
- We first prove Theorem 3.2.16 (using the Steinitz exchange lemma), and then we prove the Steinitz exchange lemma.

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F}. Then all bases of V are of the same size.

Proof (assuming the Steinitz exchange lemma).

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F}. Then all bases of V are of the same size.

Proof (assuming the Steinitz exchange lemma). We apply the Steinitz exchange lemma twice.

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F}. Then all bases of V are of the same size.

Proof (assuming the Steinitz exchange lemma). We apply the Steinitz exchange lemma twice.

Fix bases $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of V.

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F}. Then all bases of V are of the same size.

Proof (assuming the Steinitz exchange lemma). We apply the Steinitz exchange lemma twice.

Fix bases $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of V.
Since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ is linearly independent and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a spanning set of V, the Steinitz exchange lemma guarantees that $m \leq n$.

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F}. Then all bases of V are of the same size.

Proof (assuming the Steinitz exchange lemma). We apply the Steinitz exchange lemma twice.

Fix bases $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of V.
Since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ is linearly independent and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a spanning set of V, the Steinitz exchange lemma guarantees that $m \leq n$.

On the other hand, since $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent set and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ is a spanning set of V, the Steinitz exchange lemma guarantees that $n \leq m$.

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F}. Then all bases of V are of the same size.

Proof (assuming the Steinitz exchange lemma). We apply the Steinitz exchange lemma twice.

Fix bases $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of V.
Since $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ is linearly independent and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a spanning set of V, the Steinitz exchange lemma guarantees that $m \leq n$.

On the other hand, since $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent set and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ is a spanning set of V, the Steinitz exchange lemma guarantees that $n \leq m$.

So, $m=n$. \square

The Steinitz exchange lemma

Let V be a vector space over a field \mathbb{F}, let
$\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell} \in V$, and assume that $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$ are pairwise distinct and that $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}$ are pairwise distinct. Assume furthermore that $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ is a linearly independent set in V, and assume that $B:=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right\}$ is a spanning set of V. Then $k \leq \ell$ (i.e. $|A| \leq|B|$). Moreover, there exists a set $B^{\prime} \subseteq B \backslash A$ such that $\left|B^{\prime}\right|=|B|-|A|=\ell-k$ and $A \cup B^{\prime}$ is a spanning set of V.

- Let's prove the Steinitz exchange lemma!

The Steinitz exchange lemma

Let V be a vector space over a field \mathbb{F}, let
$\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell} \in V$, and assume that $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$ are pairwise distinct and that $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}$ are pairwise distinct. Assume furthermore that $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ is a linearly independent set in V, and assume that $B:=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right\}$ is a spanning set of V. Then $k \leq \ell$ (i.e. $|A| \leq|B|$). Moreover, there exists a set $B^{\prime} \subseteq B \backslash A$ such that $\left|B^{\prime}\right|=|B|-|A|=\ell-k$ and $A \cup B^{\prime}$ is a spanning set of V.

- Let's prove the Steinitz exchange lemma!
- The proof proceeds by induction using the following lemma (next slide).

Lemma 3.2.15

Let V be a vector space over a field \mathbb{F}. Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell} \in V$, and assume that $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$ are pairwise distinct and that $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}$ are pairwise distinct. Assume furthermore that $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ is a linearly independent set in V, and that $B:=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right\}$ is a spanning set of V. Then for all $\mathbf{a} \in A \backslash B$, there exists some $\mathbf{b} \in B \backslash A$ such that $(B \backslash\{\mathbf{b}\}) \cup\{\mathbf{a}\}$ is a spanning set of V.

WTS $\forall \mathbf{a} \in A \backslash B \quad \exists \mathbf{b} \in B \backslash A$ s.t.
$(B \backslash\{\mathbf{b}\}) \cup\{\mathbf{a}\}$ is a spanning set of V

Proof.

Proof. WMA $A \nsubseteq B$, for otherwise, the lemma is vacuously true.

$$
\text { WTS } \forall \mathrm{a} \in A \backslash B \quad \exists \mathbf{b} \in B \backslash A \text { s.t. }
$$

$$
(B \backslash\{\mathbf{b}\}) \cup\{\mathbf{a}\} \text { is a spanning set of } V
$$

Proof. WMA $A \nsubseteq B$, for otherwise, the lemma is vacuously true. Fix any $\mathbf{a} \in A \backslash B$.

Proof. WMA $A \nsubseteq B$, for otherwise, the lemma is vacuously true. Fix any $\mathbf{a} \in A \backslash B$. Then there exists an index $i \in\{1, \ldots, k\}$ such that $\mathbf{a}=\mathbf{a}_{i}$. Since $\mathbf{a}_{i} \in V=\operatorname{Span}(B)$, we know that there exist scalars $\alpha_{1}, \ldots, \alpha_{\ell} \in \mathbb{F}$ such that

$$
\mathbf{a}_{i}=\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{\ell} \mathbf{b}_{\ell}
$$

Proof. WMA $A \nsubseteq B$, for otherwise, the lemma is vacuously true. Fix any $\mathbf{a} \in A \backslash B$. Then there exists an index $i \in\{1, \ldots, k\}$ such that $\mathbf{a}=\mathbf{a}_{i}$. Since $\mathbf{a}_{i} \in V=\operatorname{Span}(B)$, we know that there exist scalars $\alpha_{1}, \ldots, \alpha_{\ell} \in \mathbb{F}$ such that

$$
\mathbf{a}_{i}=\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{\ell} \mathbf{b}_{\ell}
$$

Claim. There exists an index $j \in\{1, \ldots, \ell\}$ such that $\alpha_{j} \neq 0$ and $\mathbf{b}_{j} \in B \backslash A$.
Proof of the Claim.

B

WTS $\forall \mathbf{a} \in A \backslash B \quad \exists \mathbf{b} \in B \backslash A$ s.t. $(B \backslash\{\mathbf{b}\}) \cup\{\mathbf{a}\}$ is a spanning set of V

$(B \backslash\{\mathbf{b}\}) \cup\{\mathbf{a}\}$

Proof. WMA $A \nsubseteq B$, for otherwise, the lemma is vacuously true. Fix any $\mathrm{a} \in A \backslash B$. Then there exists an index $i \in\{1, \ldots, k\}$ such that $\mathbf{a}=\mathbf{a}_{i}$. Since $\mathbf{a}_{i} \in V=\operatorname{Span}(B)$, we know that there exist scalars $\alpha_{1}, \ldots, \alpha_{\ell} \in \mathbb{F}$ such that

$$
\mathbf{a}_{i}=\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{\ell} \mathbf{b}_{\ell}
$$

Claim. There exists an index $j \in\{1, \ldots, \ell\}$ such that $\alpha_{j} \neq 0$ and $\mathbf{b}_{j} \in B \backslash A$.
Proof of the Claim. Suppose otherwise. Then for all $j \in\{1, \ldots, \ell\}$ such that $\alpha_{j} \neq 0$, we have that $\mathbf{b}_{j} \in B \cap A \subseteq A \backslash\left\{\mathbf{a}_{i}\right\}$. But now \mathbf{a}_{i} is a linear combination of the other vectors in the linearly independent set A, contrary to Proposition 3.2.11(a).

Proof (continued). Reminder: $\mathbf{a}=\mathbf{a}_{i}=\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{\ell} \mathbf{b}_{\ell}$.
Claim. There exists an index $j \in\{1, \ldots, \ell\}$ such that $\alpha_{j} \neq 0$ and $\mathbf{b}_{j} \in B \backslash A$.

$$
\begin{aligned}
& \text { WTS } \forall \mathbf{a} \in A \backslash B \quad \exists \mathbf{b} \in B \backslash A \text { s.t. } \\
& (B \backslash\{\mathbf{b}\}) \cup\{\mathbf{a}\} \text { is a spanning set of } V \\
& (B \backslash\{\mathbf{b}\}) \cup\{\mathbf{a}\}
\end{aligned}
$$

Proof (continued). Reminder: $\mathbf{a}=\mathbf{a}_{i}=\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{\ell} \mathbf{b}_{\ell}$. Claim. There exists an index $j \in\{1, \ldots, \ell\}$ such that $\alpha_{j} \neq 0$ and $\mathbf{b}_{j} \in B \backslash A$.
Using the Claim, we fix an index $j \in\{1, \ldots, \ell\}$ such that $\alpha_{j} \neq 0$ and $\mathbf{b}_{j} \in B \backslash A$.

Proof (continued). Reminder: $\mathbf{a}=\mathbf{a}_{i}=\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{\ell} \mathbf{b}_{\ell}$. Claim. There exists an index $j \in\{1, \ldots, \ell\}$ such that $\alpha_{j} \neq 0$ and $\mathbf{b}_{j} \in B \backslash A$.
Using the Claim, we fix an index $j \in\{1, \ldots, \ell\}$ such that $\alpha_{j} \neq 0$ and $\mathbf{b}_{j} \in B \backslash A$. We will show that $\left(B \backslash\left\{\mathbf{b}_{j}\right\}\right) \cup\left\{\mathbf{a}_{i}\right\}$ is a spanning set of V (this will complete the proof of the lemma).

Proof (continued). Reminder: $\mathbf{a}=\mathbf{a}_{i}=\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{\ell} \mathbf{b}_{\ell}$.
Claim. There exists an index $j \in\{1, \ldots, \ell\}$ such that $\alpha_{j} \neq 0$ and $\mathbf{b}_{j} \in B \backslash A$.
Using the Claim, we fix an index $j \in\{1, \ldots, \ell\}$ such that $\alpha_{j} \neq 0$ and $\mathbf{b}_{j} \in B \backslash A$. We will show that $\left(B \backslash\left\{\mathbf{b}_{j}\right\}\right) \cup\left\{\mathbf{a}_{i}\right\}$ is a spanning set of V (this will complete the proof of the lemma).

Since $\mathbf{b}_{j} \neq \mathbf{a}_{i}$, we see that $\left(B \backslash\left\{\mathbf{b}_{j}\right\}\right) \cup\left\{\mathbf{a}_{i}\right\}=\left(B \cup\left\{\mathbf{a}_{i}\right\}\right) \backslash\left\{\mathbf{b}_{j}\right\}$,

Proof (continued). Reminder: $\mathbf{a}=\mathbf{a}_{i}=\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{\ell} \mathbf{b}_{\ell}$.
Claim. There exists an index $j \in\{1, \ldots, \ell\}$ such that $\alpha_{j} \neq 0$ and $\mathbf{b}_{j} \in B \backslash A$.
Using the Claim, we fix an index $j \in\{1, \ldots, \ell\}$ such that $\alpha_{j} \neq 0$ and $\mathbf{b}_{j} \in B \backslash A$. We will show that $\left(B \backslash\left\{\mathbf{b}_{j}\right\}\right) \cup\left\{\mathbf{a}_{i}\right\}$ is a spanning set of V (this will complete the proof of the lemma).

Since $\mathbf{b}_{j} \neq \mathbf{a}_{i}$, we see that $\left(B \backslash\left\{\mathbf{b}_{j}\right\}\right) \cup\left\{\mathbf{a}_{i}\right\}=\left(B \cup\left\{\mathbf{a}_{i}\right\}\right) \backslash\left\{\mathbf{b}_{j}\right\}$, and we need to show that $\left(B \cup\left\{\mathbf{a}_{i}\right\}\right) \backslash\left\{\mathbf{b}_{j}\right\}$ is a spanning set of V.

Proof (continued). Reminder: $\mathbf{a}=\mathbf{a}_{i}=\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{\ell} \mathbf{b}_{\ell}$.
Claim. There exists an index $j \in\{1, \ldots, \ell\}$ such that $\alpha_{j} \neq 0$ and $\mathbf{b}_{j} \in B \backslash A$.
Using the Claim, we fix an index $j \in\{1, \ldots, \ell\}$ such that $\alpha_{j} \neq 0$ and $\mathbf{b}_{j} \in B \backslash A$. We will show that $\left(B \backslash\left\{\mathbf{b}_{j}\right\}\right) \cup\left\{\mathbf{a}_{i}\right\}$ is a spanning set of V (this will complete the proof of the lemma).

Since $\mathbf{b}_{j} \neq \mathbf{a}_{i}$, we see that $\left(B \backslash\left\{\mathbf{b}_{j}\right\}\right) \cup\left\{\mathbf{a}_{i}\right\}=\left(B \cup\left\{\mathbf{a}_{i}\right\}\right) \backslash\left\{\mathbf{b}_{j}\right\}$, and we need to show that $\left(B \cup\left\{\mathbf{a}_{i}\right\}\right) \backslash\left\{\mathbf{b}_{j}\right\}$ is a spanning set of V. Since B is a spanning set of V, so is $B \cup\left\{\mathbf{a}_{i}\right\}$.

Proof (continued). Reminder: $\mathbf{a}=\mathbf{a}_{i}=\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{\ell} \mathbf{b}_{\ell}$.
Claim. There exists an index $j \in\{1, \ldots, \ell\}$ such that $\alpha_{j} \neq 0$ and $\mathbf{b}_{j} \in B \backslash A$.
Using the Claim, we fix an index $j \in\{1, \ldots, \ell\}$ such that $\alpha_{j} \neq 0$ and $\mathbf{b}_{j} \in B \backslash A$. We will show that $\left(B \backslash\left\{\mathbf{b}_{j}\right\}\right) \cup\left\{\mathbf{a}_{i}\right\}$ is a spanning set of V (this will complete the proof of the lemma).

Since $\mathbf{b}_{j} \neq \mathbf{a}_{i}$, we see that $\left(B \backslash\left\{\mathbf{b}_{j}\right\}\right) \cup\left\{\mathbf{a}_{i}\right\}=\left(B \cup\left\{\mathbf{a}_{i}\right\}\right) \backslash\left\{\mathbf{b}_{j}\right\}$, and we need to show that $\left(B \cup\left\{\mathbf{a}_{i}\right\}\right) \backslash\left\{\mathbf{b}_{j}\right\}$ is a spanning set of V. Since B is a spanning set of V, so is $B \cup\left\{\mathbf{a}_{i}\right\}$.

In view of Proposition 3.2.11(b), it now suffices to show that \mathbf{b}_{j} is a linear combination of the other vectors in $B \cup\left\{\mathbf{a}_{i}\right\}$.

Proof (continued). Reminder: $\mathbf{a}=\mathbf{a}_{i}=\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{\ell} \mathbf{b}_{\ell} ; \alpha_{j} \neq 0$ and $\mathbf{b}_{j} \in B \backslash A$. WTS \mathbf{b}_{j} is a linear combination of the other vectors in $B \cup\left\{\mathbf{a}_{i}\right\}$.

WTS $\forall \mathrm{a} \in A \backslash B \quad \exists \mathbf{b} \in B \backslash A$ s.t.

$(B \backslash\{\mathbf{b}\}) \cup\{\mathbf{a}\}$ is a spanning set of V

Proof (continued). Reminder: $\mathbf{a}=\mathbf{a}_{i}=\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{\ell} \mathbf{b}_{\ell} ; \alpha_{j} \neq 0$ and $\mathbf{b}_{j} \in B \backslash A$. WTS \mathbf{b}_{j} is a linear combination of the other vectors in $B \cup\left\{\mathbf{a}_{i}\right\}$.
Since $\mathbf{a}_{i}=\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{\ell} \mathbf{b}_{\ell}$, we see that

$$
\alpha_{j} \mathbf{b}_{j}=\mathbf{a}_{i}-\alpha_{1} \mathbf{b}_{1}-\cdots-\alpha_{j-1} \mathbf{b}_{j-1}-\alpha_{j+1} \mathbf{b}_{j+1}-\cdots-\alpha_{\ell} \mathbf{b}_{\ell}
$$

WTS $\forall \mathrm{a} \in A \backslash B \quad \exists \mathbf{b} \in B \backslash A$ s.t.

$(B \backslash\{\mathbf{b}\}) \cup\{\mathbf{a}\}$ is a spanning set of V

Proof (continued). Reminder: $\mathbf{a}=\mathbf{a}_{i}=\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{\ell} \mathbf{b}_{\ell} ; \alpha_{j} \neq 0$ and $\mathbf{b}_{j} \in B \backslash A$. WTS \mathbf{b}_{j} is a linear combination of the other vectors in $B \cup\left\{\mathbf{a}_{i}\right\}$.
Since $\mathbf{a}_{i}=\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{\ell} \mathbf{b}_{\ell}$, we see that

$$
\alpha_{j} \mathbf{b}_{j}=\mathbf{a}_{i}-\alpha_{1} \mathbf{b}_{1}-\cdots-\alpha_{j-1} \mathbf{b}_{j-1}-\alpha_{j+1} \mathbf{b}_{j+1}-\cdots-\alpha_{\ell} \mathbf{b}_{\ell}
$$

Since $\alpha_{j} \neq 0$, we know that α_{j} has a multiplicative inverse α_{j}^{-1}, and we deduce that

$$
\begin{aligned}
\mathbf{b}_{j}=\alpha_{j}^{-1} \mathbf{a}_{i} & -\alpha_{j}^{-1} \alpha_{1} \mathbf{b}_{1}-\cdots-\alpha_{j}^{-1} \alpha_{j-1} \mathbf{b}_{j-1}- \\
& -\alpha_{j}^{-1} \alpha_{j+1} \mathbf{b}_{j+1}-\cdots-\alpha_{j}^{-1} \alpha_{\ell} \mathbf{b}_{\ell}
\end{aligned}
$$

$$
\begin{aligned}
& \text { WTS } \forall \mathbf{a} \in A \backslash B \quad \exists \mathbf{b} \in B \backslash A \text { s.t. } \\
& (B \backslash\{\mathbf{b}\}) \cup\{\mathbf{a}\} \text { is a spanning set of } V \\
& (B \backslash\{\mathbf{b}\}) \cup\{\mathrm{a}\}
\end{aligned}
$$

Proof (continued). Reminder: $\mathbf{a}=\mathbf{a}_{i}=\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{\ell} \mathbf{b}_{\ell} ; \alpha_{j} \neq 0$ and $\mathbf{b}_{j} \in B \backslash A$. WTS \mathbf{b}_{j} is a linear combination of the other vectors in $B \cup\left\{\mathbf{a}_{i}\right\}$.
Since $\mathbf{a}_{i}=\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{\ell} \mathbf{b}_{\ell}$, we see that

$$
\alpha_{j} \mathbf{b}_{j}=\mathbf{a}_{i}-\alpha_{1} \mathbf{b}_{1}-\cdots-\alpha_{j-1} \mathbf{b}_{j-1}-\alpha_{j+1} \mathbf{b}_{j+1}-\cdots-\alpha_{\ell} \mathbf{b}_{\ell}
$$

Since $\alpha_{j} \neq 0$, we know that α_{j} has a multiplicative inverse α_{j}^{-1}, and we deduce that

$$
\begin{aligned}
\mathbf{b}_{j}=\alpha_{j}^{-1} \mathbf{a}_{i} & -\alpha_{j}^{-1} \alpha_{1} \mathbf{b}_{1}-\cdots-\alpha_{j}^{-1} \alpha_{j-1} \mathbf{b}_{j-1}- \\
& -\alpha_{j}^{-1} \alpha_{j+1} \mathbf{b}_{j+1}-\cdots-\alpha_{j}^{-1} \alpha_{\ell} \mathbf{b}_{\ell}
\end{aligned}
$$

So, \mathbf{b}_{j} is indeed a linear combination of the other vectors in $B \cup\left\{\mathbf{a}_{i}\right\}$, and we are done. \square

Lemma 3.2.15

Let V be a vector space over a field \mathbb{F}. Let
$\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell} \in V$, and assume that $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$ are pairwise distinct and that $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}$ are pairwise distinct. Assume furthermore that $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ is a linearly independent set in V, and that $B:=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right\}$ is a spanning set of V. Then for all $\mathbf{a} \in A \backslash B$, there exists some $\mathbf{b} \in B \backslash A$ such that $(B \backslash\{\mathbf{b}\}) \cup\{\mathbf{a}\}$ is a spanning set of V.

Lemma 3.2.15

Let V be a vector space over a field \mathbb{F}. Let
$\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell} \in V$, and assume that $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$ are pairwise distinct and that $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}$ are pairwise distinct. Assume furthermore that $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ is a linearly independent set in V, and that $B:=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right\}$ is a spanning set of V. Then for all $\mathbf{a} \in A \backslash B$, there exists some $\mathbf{b} \in B \backslash A$ such that $(B \backslash\{\mathbf{b}\}) \cup\{\mathbf{a}\}$ is a spanning set of V.

- The proof of the Steinitz exchange lemma consists of repeated applications of Lemma 3.2.15 (technically, an induction).

Lemma 3.2.15

Let V be a vector space over a field \mathbb{F}. Let
$\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell} \in V$, and assume that $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$ are pairwise distinct and that $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}$ are pairwise distinct. Assume furthermore that $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ is a linearly independent set in V, and that $B:=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right\}$ is a spanning set of V. Then for all $\mathbf{a} \in A \backslash B$, there exists some $\mathbf{b} \in B \backslash A$ such that $(B \backslash\{\mathbf{b}\}) \cup\{\mathbf{a}\}$ is a spanning set of V.

- The proof of the Steinitz exchange lemma consists of repeated applications of Lemma 3.2.15 (technically, an induction).
- The formal proof is in the Lecture Notes.
- Here, we give an informal outline.

The Steinitz exchange lemma

Let V be a vector space over a field \mathbb{F}, let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell} \in V$, and assume that $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$ are pairwise distinct and that $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}$ are pairwise distinct. Assume furthermore that $A:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ is a linearly independent set in V, and assume that $B:=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right\}$ is a spanning set of V. Then $k \leq \ell$ (i.e. $|A| \leq|B|$). Moreover, there exists a set $B^{\prime} \subseteq B \backslash A$ such that $\left|B^{\prime}\right|=|B|-|A|=\ell-k$ and $A \cup B^{\prime}$ is a spanning set of V.

Proof (outline).

Proof (outline). Using Lemma 3.2.15, we "throw in" vertices of $A \backslash B$ into B one by one, and at each step, we remove one vertex of $B \backslash A$ from B.

By Lemma 3.2.15, at each step, the set that we create remains a spanning set of V.

Proof (outline). Using Lemma 3.2.15, we "throw in" vertices of $A \backslash B$ into B one by one, and at each step, we remove one vertex of $B \backslash A$ from B.

By Lemma 3.2.15, at each step, the set that we create remains a spanning set of V. In the end, we obtain a spanning set of V that includes A (as a subset) and is of the same set as B.

Proof (outline). Using Lemma 3.2.15, we "throw in" vertices of $A \backslash B$ into B one by one, and at each step, we remove one vertex of $B \backslash A$ from B.

By Lemma 3.2.15, at each step, the set that we create remains a spanning set of V. In the end, we obtain a spanning set of V that includes A (as a subset) and is of the same set as B.
B^{\prime} is the set of all vertices of $B \backslash A$ that we did not "throw out" in the process. \square

- Reminder: Using the Steinitz exchange lemma, we proved Theorem 3.2.16 (below).

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F}. Then all bases of V are of the same size.

- Reminder: Using the Steinitz exchange lemma, we proved Theorem 3.2.16 (below).

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F}. Then all bases of V are of the same size.

Definition

The dimension of a finite-dimensional vector space V over a field \mathbb{F}, denoted by $\operatorname{dim}(V)$, is the number of elements in any basis of V (by Theorem 3.2.16, this is well-defined).

- Reminder: Using the Steinitz exchange lemma, we proved Theorem 3.2.16 (below).

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F}. Then all bases of V are of the same size.

Definition

The dimension of a finite-dimensional vector space V over a field \mathbb{F}, denoted by $\operatorname{dim}(V)$, is the number of elements in any basis of V (by Theorem 3.2.16, this is well-defined).

- Remarks:
- Reminder: Using the Steinitz exchange lemma, we proved Theorem 3.2.16 (below).

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F}. Then all bases of V are of the same size.

Definition

The dimension of a finite-dimensional vector space V over a field \mathbb{F}, denoted by $\operatorname{dim}(V)$, is the number of elements in any basis of V (by Theorem 3.2.16, this is well-defined).

- Remarks:
- Note that $\operatorname{dim}(\{\mathbf{0}\})=0$ (where $\{\mathbf{0}\}$ is understood to be a vector space over an arbitrary field \mathbb{F}), because \emptyset is a basis of $\{0\}$.
- Reminder: Using the Steinitz exchange lemma, we proved Theorem 3.2.16 (below).

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F}. Then all bases of V are of the same size.

Definition

The dimension of a finite-dimensional vector space V over a field \mathbb{F}, denoted by $\operatorname{dim}(V)$, is the number of elements in any basis of V (by Theorem 3.2.16, this is well-defined).

- Remarks:

- Note that $\operatorname{dim}(\{\mathbf{0}\})=0$ (where $\{\mathbf{0}\}$ is understood to be a vector space over an arbitrary field \mathbb{F}), because \emptyset is a basis of \{0\}.
- For any field \mathbb{F}, we have that $\operatorname{dim}\left(\mathbb{F}^{n}\right)=n$, because the standard basis of \mathbb{F}^{n} has n elements.
- However, the standard basis is not the only basis of \mathbb{F}^{n} (except in some very special cases).

Theorem 3.2.17

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(a) every linearly independent set of vectors in V has at most n vectors;
(D) every spanning set of V has at least n vectors.

Proof.

Theorem 3.2.17

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(a) every linearly independent set of vectors in V has at most n vectors;
(D) every spanning set of V has at least n vectors.

Proof. Fix a basis $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of V.

Theorem 3.2.17

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(a) every linearly independent set of vectors in V has at most n vectors;
(D) every spanning set of V has at least n vectors.

Proof. Fix a basis $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of V. Then B is both a linearly independent set and a spanning set of V.

Theorem 3.2.17

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(0) every linearly independent set of vectors in V has at most n vectors;
(D) every spanning set of V has at least n vectors.

Proof. Fix a basis $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of V. Then B is both a linearly independent set and a spanning set of V.

Now, by the Steinitz exchange lemma, the number of vectors in any linearly independent set of V is at most the number of vectors in the spanning set B of V, which is n; so, (a) holds.

Theorem 3.2.17

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(a) every linearly independent set of vectors in V has at most n vectors;
(D) every spanning set of V has at least n vectors.

Proof. Fix a basis $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of V. Then B is both a linearly independent set and a spanning set of V.

Now, by the Steinitz exchange lemma, the number of vectors in any linearly independent set of V is at most the number of vectors in the spanning set B of V, which is n; so, (a) holds.

On the other hand, by the Steinitz exchange lemma, any spanning set of V has at least as many vectors as the linearly independent set B; so, (b) holds.

Theorem 3.2.16

Let V be a finite-dimensional vector space over a field \mathbb{F}. Then all bases of V are of the same size.

Definition

The dimension of a finite-dimensional vector space V over a field \mathbb{F}, denoted by $\operatorname{dim}(V)$, is the number of elements in any basis of V (by Theorem 3.2.16, this is well-defined).

Theorem 3.2.17

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(a) every linearly independent set of vectors in V has at most n vectors;
(D) every spanning set of V has at least n vectors.

- Informally, Theorem 3.2.17 says:
\mid linearly independent set of $V|\leq \operatorname{dim}(V) \leq|$ spanning set of $V \mid$.

Theorem 3.2.17

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(a) every linearly independent set of vectors in V has at most n vectors;
(0) every spanning set of V has at least n vectors.

Theorem 3.2.17

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(a) every linearly independent set of vectors in V has at most n vectors;
(b) every spanning set of V has at least n vectors.

- By Theorem 3.2.17(a), linearly independent sets in any finite-dimensional vector space have bounded size (bounded above by the dimension of the vector space in question).

Theorem 3.2.17

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(a) every linearly independent set of vectors in V has at most n vectors;
(D) every spanning set of V has at least n vectors.

- By Theorem 3.2.17(a), linearly independent sets in any finite-dimensional vector space have bounded size (bounded above by the dimension of the vector space in question).
- On the other hand, by Proposition 3.2.18 (next slide), infinite-dimensional vector spaces have linearly independent sets of arbitrarily large (finite) size.

Theorem 3.2.17

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(a) every linearly independent set of vectors in V has at most n vectors;
(D) every spanning set of V has at least n vectors.

- By Theorem 3.2.17(a), linearly independent sets in any finite-dimensional vector space have bounded size (bounded above by the dimension of the vector space in question).
- On the other hand, by Proposition 3.2.18 (next slide), infinite-dimensional vector spaces have linearly independent sets of arbitrarily large (finite) size.
- For instance, if \mathbb{F} is a field, then for any positive integer n, $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a linearly independent set in $\mathbb{P}_{\mathbb{F}}$ (the vector space of all polynomials with coefficients in \mathbb{F}).

Proposition 3.2.18

Let V be an infinite-dimensional vector space over a field \mathbb{F}. Then for every non-negative integer n, V has a linearly independent set of size n.

Proof (outline).

Proposition 3.2.18

Let V be an infinite-dimensional vector space over a field \mathbb{F}. Then for every non-negative integer n, V has a linearly independent set of size n.

Proof (outline). We proceed by induction on n.

Proposition 3.2.18

Let V be an infinite-dimensional vector space over a field \mathbb{F}. Then for every non-negative integer n, V has a linearly independent set of size n.

Proof (outline). We proceed by induction on n.
For $n=0$, we observe that \emptyset is a linearly independent set of size 0 in V.

Proposition 3.2.18

Let V be an infinite-dimensional vector space over a field \mathbb{F}. Then for every non-negative integer n, V has a linearly independent set of size n.

Proof (outline). We proceed by induction on n.
For $n=0$, we observe that \emptyset is a linearly independent set of size 0 in V.

Next, fix a non-negative integer n, and assume that V has a linearly independent set of size n, say $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$.

Proposition 3.2.18

Let V be an infinite-dimensional vector space over a field \mathbb{F}. Then for every non-negative integer n, V has a linearly independent set of size n.

Proof (outline). We proceed by induction on n.
For $n=0$, we observe that \emptyset is a linearly independent set of size 0 in V.

Next, fix a non-negative integer n, and assume that V has a linearly independent set of size n, say $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$. Then $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$ is not a spanning set of V, for otherwise, it would be a basis of V, contrary to the fact that V is infinite-dimensional.

Proposition 3.2.18

Let V be an infinite-dimensional vector space over a field \mathbb{F}. Then for every non-negative integer n, V has a linearly independent set of size n.

Proof (outline). We proceed by induction on n.
For $n=0$, we observe that \emptyset is a linearly independent set of size 0 in V.

Next, fix a non-negative integer n, and assume that V has a linearly independent set of size n, say $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$. Then $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$ is not a spanning set of V, for otherwise, it would be a basis of V, contrary to the fact that V is infinite-dimensional. Thus, $\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right) \varsubsetneqq V$;

Proposition 3.2.18

Let V be an infinite-dimensional vector space over a field \mathbb{F}. Then for every non-negative integer n, V has a linearly independent set of size n.

Proof (outline). We proceed by induction on n.
For $n=0$, we observe that \emptyset is a linearly independent set of size 0 in V.

Next, fix a non-negative integer n, and assume that V has a linearly independent set of size n, say $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$. Then $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$ is not a spanning set of V, for otherwise, it would be a basis of V, contrary to the fact that V is infinite-dimensional. Thus, $\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right) \varsubsetneqq V$; fix some $\mathbf{a}_{n+1} \in V \backslash \operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)$.

Proposition 3.2.18

Let V be an infinite-dimensional vector space over a field \mathbb{F}. Then for every non-negative integer n, V has a linearly independent set of size n.

Proof (outline). We proceed by induction on n.
For $n=0$, we observe that \emptyset is a linearly independent set of size 0 in V.

Next, fix a non-negative integer n, and assume that V has a linearly independent set of size n, say $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$. Then $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$ is not a spanning set of V, for otherwise, it would be a basis of V, contrary to the fact that V is infinite-dimensional. Thus, $\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right) \varsubsetneqq V$; fix some $\mathbf{a}_{n+1} \in V \backslash \operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)$. Then $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}, \mathbf{a}_{n+1}\right\}$ is a linearly independent set in V (details: Lecture Notes).

Proposition 3.2.18

Let V be an infinite-dimensional vector space over a field \mathbb{F}. Then for every non-negative integer n, V has a linearly independent set of size n.

Proof (outline). We proceed by induction on n.
For $n=0$, we observe that \emptyset is a linearly independent set of size 0 in V.

Next, fix a non-negative integer n, and assume that V has a linearly independent set of size n, say $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$. Then $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$ is not a spanning set of V, for otherwise, it would be a basis of V, contrary to the fact that V is infinite-dimensional. Thus, $\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right) \varsubsetneqq V$; fix some $\mathbf{a}_{n+1} \in V \backslash \operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)$. Then $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}, \mathbf{a}_{n+1}\right\}$ is a linearly independent set in V (details: Lecture Notes). This completes the induction. \square

- Reminder:

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Then some subset of B is a basis of V.

- Reminder:

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Then some subset of B is a basis of V.

- For linearly independent sets, we have the following analog of Theorem 3.2.14:

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

- We first make some remarks and then give a proof.

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Then some subset of B is a basis of V.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Then some subset of B is a basis of V.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

- Suppose that V is a vector space over a field \mathbb{F}.

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Then some subset of B is a basis of V.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

- Suppose that V is a vector space over a field \mathbb{F}.
- By Theorem 3.2.14, any (finite) spanning set of V contains a subset that is a basis of V; in particular, if a vector space has a (finite) spanning set, then it is finite-dimensional.

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Then some subset of B is a basis of V.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

- Suppose that V is a vector space over a field \mathbb{F}.
- By Theorem 3.2.14, any (finite) spanning set of V contains a subset that is a basis of V; in particular, if a vector space has a (finite) spanning set, then it is finite-dimensional.
- On the other hand, by Theorem 3.2.19, if V is finite-dimensional, then any linearly independent set in V can be extended to a basis of V.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Proof.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Proof. Set $n:=\operatorname{dim}(V)$.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Proof. Set $n:=\operatorname{dim}(V)$. By Theorem 3.2.17, any linearly independent set of vectors in V has at most n vectors; in particular, $k \leq n$ (because $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ is linearly independent).

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Proof. Set $n:=\operatorname{dim}(V)$. By Theorem 3.2.17, any linearly independent set of vectors in V has at most n vectors; in particular, $k \leq n$ (because $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ is linearly independent).

Now, let A be a linearly independent set that contains vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$, and subject to that, is of maximum possible size.

- Let us explain why A exists.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Proof. Set $n:=\operatorname{dim}(V)$. By Theorem 3.2.17, any linearly independent set of vectors in V has at most n vectors; in particular, $k \leq n$ (because $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ is linearly independent).

Now, let A be a linearly independent set that contains vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$, and subject to that, is of maximum possible size.

- Let us explain why A exists.
- There exists at least one linearly independent set that contains vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$, namely, the set $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Proof. Set $n:=\operatorname{dim}(V)$. By Theorem 3.2.17, any linearly independent set of vectors in V has at most n vectors; in particular, $k \leq n$ (because $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ is linearly independent).

Now, let A be a linearly independent set that contains vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$, and subject to that, is of maximum possible size.

- Let us explain why A exists.
- There exists at least one linearly independent set that contains vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$, namely, the set $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$.
- On the other hand, all linearly independent sets are of size at most n, and in particular, there is an upper bound on the size of linearly independent sets containing $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Proof. Set $n:=\operatorname{dim}(V)$. By Theorem 3.2.17, any linearly independent set of vectors in V has at most n vectors; in particular, $k \leq n$ (because $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ is linearly independent).

Now, let A be a linearly independent set that contains vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$, and subject to that, is of maximum possible size.

- Let us explain why A exists.
- There exists at least one linearly independent set that contains vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$, namely, the set $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$.
- On the other hand, all linearly independent sets are of size at most n, and in particular, there is an upper bound on the size of linearly independent sets containing $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.
- So, A exists.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Proof (continued). Reminder: A is a linearly independent set that contains vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$, and subject to that, is of maximum possible size.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Proof (continued). Reminder: A is a linearly independent set that contains vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$, and subject to that, is of maximum possible size.
Set $A=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{a}_{k+1}, \ldots, \mathbf{a}_{k+\ell}\right\}$.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Proof (continued). Reminder: A is a linearly independent set that contains vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$, and subject to that, is of maximum possible size.
Set $A=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{a}_{k+1}, \ldots, \mathbf{a}_{k+\ell}\right\}$. WTS is a basis of V.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Proof (continued). Reminder: A is a linearly independent set that contains vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$, and subject to that, is of maximum possible size.
Set $A=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{a}_{k+1}, \ldots, \mathbf{a}_{k+\ell}\right\}$. WTS is a basis of V.
Since A is linearly independent, it suffices to show that A is a spanning set of V.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Proof (continued). Reminder: A is a linearly independent set that contains vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$, and subject to that, is of maximum possible size.
Set $A=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{a}_{k+1}, \ldots, \mathbf{a}_{k+\ell}\right\}$. WTS is a basis of V.
Since A is linearly independent, it suffices to show that A is a spanning set of V. Fix $\mathbf{v} \in V$; WTS \mathbf{v} is a linear combination of vectors in A.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Proof (continued). Reminder: A is a linearly independent set that contains vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$, and subject to that, is of maximum possible size.
Set $A=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{a}_{k+1}, \ldots, \mathbf{a}_{k+\ell}\right\}$. WTS is a basis of V.
Since A is linearly independent, it suffices to show that A is a spanning set of V. Fix $\mathbf{v} \in V$; WTS \mathbf{v} is a linear combination of vectors in A. If $\mathbf{v} \in A$, then this is immediate. So, assume that $\mathbf{v} \notin A$.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Proof (continued). Reminder: A is a linearly independent set that contains vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$, and subject to that, is of maximum possible size.
Set $A=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{a}_{k+1}, \ldots, \mathbf{a}_{k+\ell}\right\}$. WTS is a basis of V.
Since A is linearly independent, it suffices to show that A is a spanning set of V. Fix $\mathbf{v} \in V$; WTS \mathbf{v} is a linear combination of vectors in A. If $\mathbf{v} \in A$, then this is immediate. So, assume that $\mathbf{v} \notin A$. Then by the maximality of A, the set $\{\mathbf{v}\} \cup A$ is not linearly independent.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Proof (continued). Reminder: A is a linearly independent set that contains vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$, and subject to that, is of maximum possible size.
Set $A=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{a}_{k+1}, \ldots, \mathbf{a}_{k+\ell}\right\}$. WTS is a basis of V.
Since A is linearly independent, it suffices to show that A is a spanning set of V. Fix $\mathbf{v} \in V$; WTS \mathbf{v} is a linear combination of vectors in A. If $\mathbf{v} \in A$, then this is immediate. So, assume that $\mathbf{v} \notin A$. Then by the maximality of A, the set $\{\mathbf{v}\} \cup A$ is not linearly independent. So, there exist scalars $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k+\ell} \in \mathbb{F}$, not all zero, such that

$$
\alpha_{0} \mathbf{v}+\alpha_{1} \mathbf{a}_{1}+\cdots+\alpha_{k+\ell} \mathbf{a}_{k+\ell}=\mathbf{0} .
$$

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Proof (continued). Reminder: $\alpha_{0} \mathbf{v}+\alpha_{1} \mathbf{a}_{1}+\cdots+\alpha_{k+\ell} \mathbf{a}_{k+\ell}=\mathbf{0}$.
WTS \mathbf{v} is a linear combination of the vectors in $A=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{a}_{k+1}, \ldots, \mathbf{a}_{k+\ell}\right\}$.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Proof (continued). Reminder: $\alpha_{0} \mathbf{v}+\alpha_{1} \mathbf{a}_{1}+\cdots+\alpha_{k+\ell} \mathbf{a}_{k+\ell}=\mathbf{0}$.
WTS \mathbf{v} is a linear combination of the vectors in $A=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{a}_{k+1}, \ldots, \mathbf{a}_{k+\ell}\right\}$.
If $\alpha_{0}=0$, then at least one of $\alpha_{1}, \ldots, \alpha_{k+\ell}$ is non-zero and $\alpha_{1} \mathbf{a}_{1}+\cdots+\alpha_{k+\ell} \mathbf{a}_{k+\ell}=\mathbf{0}$, contrary to the fact that A is linearly independent.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Proof (continued). Reminder: $\alpha_{0} \mathbf{v}+\alpha_{1} \mathbf{a}_{1}+\cdots+\alpha_{k+\ell} \mathbf{a}_{k+\ell}=\mathbf{0}$.
WTS \mathbf{v} is a linear combination of the vectors in
$A=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{a}_{k+1}, \ldots, \mathbf{a}_{k+\ell}\right\}$.
If $\alpha_{0}=0$, then at least one of $\alpha_{1}, \ldots, \alpha_{k+\ell}$ is non-zero and $\alpha_{1} \mathbf{a}_{1}+\cdots+\alpha_{k+\ell} \mathbf{a}_{k+\ell}=\mathbf{0}$, contrary to the fact that A is linearly independent.

So, $\alpha_{0} \neq 0$, it follows that

$$
\mathbf{v}=\left(-\alpha_{0}^{-1} \alpha_{1}\right) \mathbf{a}_{1}+\cdots+\left(-\alpha_{0}^{-1} \alpha_{k+\ell}\right) \mathbf{a}_{k+\ell}
$$

and we see that \mathbf{v} is a linear combination of vectors in A.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Proof (continued). Reminder: $\alpha_{0} \mathbf{v}+\alpha_{1} \mathbf{a}_{1}+\cdots+\alpha_{k+\ell} \mathbf{a}_{k+\ell}=\mathbf{0}$.
WTS \mathbf{v} is a linear combination of the vectors in
$A=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{a}_{k+1}, \ldots, \mathbf{a}_{k+\ell}\right\}$.
If $\alpha_{0}=0$, then at least one of $\alpha_{1}, \ldots, \alpha_{k+\ell}$ is non-zero and $\alpha_{1} \mathbf{a}_{1}+\cdots+\alpha_{k+\ell} \mathbf{a}_{k+\ell}=\mathbf{0}$, contrary to the fact that A is linearly independent.

So, $\alpha_{0} \neq 0$, it follows that

$$
\mathbf{v}=\left(-\alpha_{0}^{-1} \alpha_{1}\right) \mathbf{a}_{1}+\cdots+\left(-\alpha_{0}^{-1} \alpha_{k+\ell}\right) \mathbf{a}_{k+\ell}
$$

and we see that \mathbf{v} is a linear combination of vectors in A.
This proves that A is a basis of V, and we are done. \square

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Then some subset of B is a basis of V.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Then some subset of B is a basis of V.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

- Theorems 3.2.14 and 3.2.19 together yield the following corollary:

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(a) any linearly independent set of n vectors of V is a basis of V;
(D) any set of n vectors of V that spans V is a basis of V.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(0) any linearly independent set of n vectors of V is a basis of V;
(b) any set of n vectors of V that spans V is a basis of V.

Proof of (a).

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(a) any linearly independent set of n vectors of V is a basis of V;
(b) any set of n vectors of V that spans V is a basis of V.

Proof of (a). Let A be any linearly independent set of vectors in V such that $|A|=n$.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(a) any linearly independent set of n vectors of V is a basis of V;
(b) any set of n vectors of V that spans V is a basis of V.

Proof of (a). Let A be any linearly independent set of vectors in V such that $|A|=n$. By Theorem 3.2.19, V has a basis A^{\prime} such that $A \subseteq A^{\prime}$.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(a) any linearly independent set of n vectors of V is a basis of V;
(b) any set of n vectors of V that spans V is a basis of V.

Proof of (a). Let A be any linearly independent set of vectors in V such that $|A|=n$. By Theorem 3.2.19, V has a basis A^{\prime} such that $A \subseteq A^{\prime}$. Since $\operatorname{dim}(V)=n$, we see that $\left|A^{\prime}\right|=n$.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(0) any linearly independent set of n vectors of V is a basis of V;
(b) any set of n vectors of V that spans V is a basis of V.

Proof of (a). Let A be any linearly independent set of vectors in V such that $|A|=n$. By Theorem 3.2.19, V has a basis A^{\prime} such that $A \subseteq A^{\prime}$. Since $\operatorname{dim}(V)=n$, we see that $\left|A^{\prime}\right|=n$. Since $|A|=n$ and $A \subseteq A^{\prime}$, it follows that $A=A^{\prime}$.

Theorem 3.2.19

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ be a linearly independent set of vectors in V. Then there exists some basis of V that contains all of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(a) any linearly independent set of n vectors of V is a basis of V;
(b) any set of n vectors of V that spans V is a basis of V.

Proof of (a). Let A be any linearly independent set of vectors in V such that $|A|=n$. By Theorem 3.2.19, V has a basis A^{\prime} such that $A \subseteq A^{\prime}$. Since $\operatorname{dim}(V)=n$, we see that $\left|A^{\prime}\right|=n$. Since $|A|=n$ and $A \subseteq A^{\prime}$, it follows that $A=A^{\prime}$. So, A is a basis of V (because A^{\prime} is). This proves (a). \square

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Then some subset of B is a basis of V.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(0) any linearly independent set of n vectors of V is a basis of V;
(D) any set of n vectors of V that spans V is a basis of V.

Proof of (b).

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Then some subset of B is a basis of V.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(0) any linearly independent set of n vectors of V is a basis of V;
(b) any set of n vectors of V that spans V is a basis of V.

Proof of (b). Let B be any set of n vectors of V such that $V=\operatorname{Span}(B)$.

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Then some subset of B is a basis of V.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(0) any linearly independent set of n vectors of V is a basis of V;
(b) any set of n vectors of V that spans V is a basis of V.

Proof of (b). Let B be any set of n vectors of V such that $V=\operatorname{Span}(B)$. Then by Theorem 3.2.14, V has a basis B^{\prime} such that $B^{\prime} \subseteq B$.

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Then some subset of B is a basis of V.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(2) any linearly independent set of n vectors of V is a basis of V;
(b) any set of n vectors of V that spans V is a basis of V.

Proof of (b). Let B be any set of n vectors of V such that $V=\operatorname{Span}(B)$. Then by Theorem 3.2.14, V has a basis B^{\prime} such that $B^{\prime} \subseteq B$. Since $\operatorname{dim}(V)=n$, we see that $\left|B^{\prime}\right|=n$.

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Then some subset of B is a basis of V.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(0) any linearly independent set of n vectors of V is a basis of V;
(b) any set of n vectors of V that spans V is a basis of V.

Proof of (b). Let B be any set of n vectors of V such that $V=\operatorname{Span}(B)$. Then by Theorem 3.2.14, V has a basis B^{\prime} such that $B^{\prime} \subseteq B$. Since $\operatorname{dim}(V)=n$, we see that $\left|B^{\prime}\right|=n$. Since $|B|=n$ and $B^{\prime} \subseteq B$, it follows that $B^{\prime}=B$.

Theorem 3.2.14

Let V be a vector space over a field \mathbb{F}, and let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ be a spanning set of V. Then some subset of B is a basis of V.

Corollary 3.2.20

Let V be a finite-dimensional vector space over a field \mathbb{F}, and set $n:=\operatorname{dim}(V)$. Then both the following hold:
(2) any linearly independent set of n vectors of V is a basis of V;
(b) any set of n vectors of V that spans V is a basis of V.

Proof of (b). Let B be any set of n vectors of V such that $V=\operatorname{Span}(B)$. Then by Theorem 3.2.14, V has a basis B^{\prime} such that $B^{\prime} \subseteq B$. Since $\operatorname{dim}(V)=n$, we see that $\left|B^{\prime}\right|=n$. Since $|B|=n$ and $B^{\prime} \subseteq B$, it follows that $B^{\prime}=B$. So, B is a basis of V (because B^{\prime} is). This proves (b). \square

Theorem 3.2.21

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U be a subspace of V. Then all the following hold:
(0) U is finite-dimensional;
(D) $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(0) if $\operatorname{dim}(U)=\operatorname{dim}(V)$, then $U=V$.

Proof.

Theorem 3.2.21

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U be a subspace of V. Then all the following hold:
(0) U is finite-dimensional;
(D) $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(0) if $\operatorname{dim}(U)=\operatorname{dim}(V)$, then $U=V$.

Proof. Set $n:=\operatorname{dim}(V)$.

Theorem 3.2.21

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U be a subspace of V. Then all the following hold:
(a) U is finite-dimensional;
(b) $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(0) if $\operatorname{dim}(U)=\operatorname{dim}(V)$, then $U=V$.

Proof. Set $n:=\operatorname{dim}(V)$. Since U is a subspace in V, any linearly independent set of vectors in U is also linearly independent in V, and by Theorem 3.2.17(a), any such set contains at most n vectors.

Theorem 3.2.21

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U be a subspace of V. Then all the following hold:
(a) U is finite-dimensional;
(D) $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(0) if $\operatorname{dim}(U)=\operatorname{dim}(V)$, then $U=V$.

Proof. Set $n:=\operatorname{dim}(V)$. Since U is a subspace in V, any linearly independent set of vectors in U is also linearly independent in V, and by Theorem 3.2.17(a), any such set contains at most n vectors. Now, let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be a linearly independent set of vectors in U of maximum possible size. (Then $k \leq n$.)

Theorem 3.2.21

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U be a subspace of V. Then all the following hold:
(a) U is finite-dimensional;
(D) $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(0) if $\operatorname{dim}(U)=\operatorname{dim}(V)$, then $U=V$.

Proof. Set $n:=\operatorname{dim}(V)$. Since U is a subspace in V, any linearly independent set of vectors in U is also linearly independent in V, and by Theorem 3.2.17(a), any such set contains at most n vectors. Now, let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be a linearly independent set of vectors in U of maximum possible size. (Then $k \leq n$.) WTS $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ spans U.

Theorem 3.2.21

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U be a subspace of V. Then all the following hold:
(a) U is finite-dimensional;
(D) $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(0) if $\operatorname{dim}(U)=\operatorname{dim}(V)$, then $U=V$.

Proof. Set $n:=\operatorname{dim}(V)$. Since U is a subspace in V, any linearly independent set of vectors in U is also linearly independent in V, and by Theorem 3.2.17(a), any such set contains at most n vectors. Now, let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be a linearly independent set of vectors in U of maximum possible size. (Then $k \leq n$.) WTS $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ spans U.

- This will imply that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a basis of U, and consequently, that $\operatorname{dim}(U)=k \neq n$, which is enough to prove (a) and (b).

Proof (continued). Reminder: $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a linearly independent set in U of maximum possible size. WTS it spans U.

Proof (continued). Reminder: $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a linearly independent set in U of maximum possible size. WTS it spans U.

Fix $\mathbf{u} \in U ;$ WTS \mathbf{u} is a linear combination of $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$.

Proof (continued). Reminder: $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a linearly independent set in U of maximum possible size. WTS it spans U.

Fix $\mathbf{u} \in U ;$ WTS \mathbf{u} is a linear combination of $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$. If
$\mathbf{u} \in\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$, then this is immediate.

Proof (continued). Reminder: $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a linearly independent set in U of maximum possible size. WTS it spans U.

Fix $\mathbf{u} \in U ;$ WTS \mathbf{u} is a linear combination of $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$. If
$\mathbf{u} \in\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$, then this is immediate. So, assume that $\mathbf{u} \notin\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$.
By the maximality of $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$, we see that $\left\{\mathbf{u}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is linearly dependent. So, there exist scalars $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}$, not all zero, such that

$$
\alpha_{0} \mathbf{u}+\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}=\mathbf{0}
$$

Proof (continued). Reminder: $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a linearly independent set in U of maximum possible size. WTS it spans U.
Fix $\mathbf{u} \in U ;$ WTS \mathbf{u} is a linear combination of $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$. If
$\mathbf{u} \in\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$, then this is immediate. So, assume that $\mathbf{u} \notin\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$.
By the maximality of $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$, we see that $\left\{\mathbf{u}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is linearly dependent. So, there exist scalars $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}$, not all zero, such that

$$
\alpha_{0} \mathbf{u}+\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}=\mathbf{0}
$$

If $\alpha_{0}=0$, then $\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}=\mathbf{0}$ and at least one of the scalars $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{F}$ is non-zero, contrary to the fact that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is linearly independent.

Proof (continued). Reminder: $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a linearly independent set in U of maximum possible size. WTS it spans U.
Fix $\mathbf{u} \in U ;$ WTS \mathbf{u} is a linear combination of $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$. If
$\mathbf{u} \in\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$, then this is immediate. So, assume that $\mathbf{u} \notin\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$.
By the maximality of $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$, we see that $\left\{\mathbf{u}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is linearly dependent. So, there exist scalars $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}$, not all zero, such that

$$
\alpha_{0} \mathbf{u}+\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}=\mathbf{0} .
$$

If $\alpha_{0}=0$, then $\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}=\mathbf{0}$ and at least one of the scalars $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{F}$ is non-zero, contrary to the fact that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is linearly independent.
So, $\alpha_{0} \neq 0$, and we deduce that

$$
\mathbf{u}=\left(-\alpha_{0}^{-1} \alpha_{1}\right) \mathbf{u}_{1}+\cdots+\left(-\alpha_{0}^{-1} \alpha_{k}\right) \mathbf{u}_{k} .
$$

Proof (continued). Reminder: $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a linearly independent set in U of maximum possible size. WTS it spans U.
Fix $\mathbf{u} \in U ;$ WTS \mathbf{u} is a linear combination of $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$. If
$\mathbf{u} \in\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$, then this is immediate. So, assume that
$\mathbf{u} \notin\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$.
By the maximality of $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$, we see that $\left\{\mathbf{u}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is linearly dependent. So, there exist scalars $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}$, not all zero, such that

$$
\alpha_{0} \mathbf{u}+\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}=\mathbf{0} .
$$

If $\alpha_{0}=0$, then $\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}=\mathbf{0}$ and at least one of the scalars $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{F}$ is non-zero, contrary to the fact that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is linearly independent.
So, $\alpha_{0} \neq 0$, and we deduce that

$$
\mathbf{u}=\left(-\alpha_{0}^{-1} \alpha_{1}\right) \mathbf{u}_{1}+\cdots+\left(-\alpha_{0}^{-1} \alpha_{k}\right) \mathbf{u}_{k} .
$$

So, $\mathbf{u} \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$, and we deduce that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a spanning set of U.

Theorem 3.2.21

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U be a subspace of V. Then all the following hold:
(a) U is finite-dimensional;
(D) $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(0) if $\operatorname{dim}(U)=\operatorname{dim}(V)$, then $U=V$.

Proof (continued). We have now shown that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a basis of U, and consequently, (a) and (b) hold.

Theorem 3.2.21

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U be a subspace of V. Then all the following hold:
(a) U is finite-dimensional;
(b) $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(0) if $\operatorname{dim}(U)=\operatorname{dim}(V)$, then $U=V$.

Proof (continued). We have now shown that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a basis of U, and consequently, (a) and (b) hold.

It remains to prove (c).

Theorem 3.2.21

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U be a subspace of V. Then all the following hold:
(0) U is finite-dimensional;
(b) $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(0) if $\operatorname{dim}(U)=\operatorname{dim}(V)$, then $U=V$.

Proof (continued). We have now shown that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a basis of U, and consequently, (a) and (b) hold.

It remains to prove (c). Suppose that $\operatorname{dim}(U)=\operatorname{dim}(V)$, i.e. $k=n$.

Theorem 3.2.21

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U be a subspace of V. Then all the following hold:
(0) U is finite-dimensional;
(b) $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(0) if $\operatorname{dim}(U)=\operatorname{dim}(V)$, then $U=V$.

Proof (continued). We have now shown that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a basis of U, and consequently, (a) and (b) hold.

It remains to prove (c). Suppose that $\operatorname{dim}(U)=\operatorname{dim}(V)$, i.e. $k=n$.

But now $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a linearly independent set of n vectors in V, and so Corollary 3.2.20 guarantees that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a basis of V.

Theorem 3.2.21

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U be a subspace of V. Then all the following hold:
(0) U is finite-dimensional;
(b) $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(0) if $\operatorname{dim}(U)=\operatorname{dim}(V)$, then $U=V$.

Proof (continued). We have now shown that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a basis of U, and consequently, (a) and (b) hold.

It remains to prove (c). Suppose that $\operatorname{dim}(U)=\operatorname{dim}(V)$, i.e. $k=n$.

But now $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a linearly independent set of n vectors in V, and so Corollary 3.2.20 guarantees that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is a basis of V. So, $U=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)=V$, and we are done. \square

Theorem 3.2.21

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U be a subspace of V. Then all the following hold:
(0) U is finite-dimensional;
(D) $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(0) if $\operatorname{dim}(U)=\operatorname{dim}(V)$, then $U=V$.

- Warning: Theorem 3.2.21(c) fails if V is infinite-dimensional!

Theorem 3.2.21

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U be a subspace of V. Then all the following hold:
(a) U is finite-dimensional;
(D) $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(0) if $\operatorname{dim}(U)=\operatorname{dim}(V)$, then $U=V$.

- Warning: Theorem 3.2.21(c) fails if V is infinite-dimensional!
- Infinite-dimensional vector spaces can have proper subspaces that are infinite-dimensional.

Theorem 3.2.21

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U be a subspace of V. Then all the following hold:
(0) U is finite-dimensional;
(D) $\operatorname{dim}(U) \leq \operatorname{dim}(V)$;
(0) if $\operatorname{dim}(U)=\operatorname{dim}(V)$, then $U=V$.

- Warning: Theorem 3.2.21(c) fails if V is infinite-dimensional!
- Infinite-dimensional vector spaces can have proper subspaces that are infinite-dimensional.
- For example, $\left\{p(x) \in \mathbb{P}_{\mathbb{R}} \mid p(0)=0\right\}$ is an infinite-dimensional proper subspace of $\mathbb{P}_{\mathbb{R}}$.
- Let us consider a geometric interpretation of subspaces in \mathbb{R}^{n}.
- Let us consider a geometric interpretation of subspaces in \mathbb{R}^{n}.
- The only 0 -dimensional subspace of \mathbb{R}^{n} is $\{\boldsymbol{0}\}$.
- This holds for any vector space V (not just \mathbb{R}^{n}), as long as the zero vector is from the vector space V in question. Recall that we defined $\operatorname{Span}(\emptyset)=\{\mathbf{0}\}$, and obviously, \emptyset is linearly independent.
- 1-dimensional subspaces of \mathbb{R}^{n} are lines though the origin. Indeed, suppose that $\{\mathbf{a}\}$ is a basis of a subspace U of \mathbb{R}^{n}. Then $\mathbf{a} \neq \mathbf{0}$ (by linear independence), and we see that $U=\operatorname{Span}(\mathbf{a})$ is the line through the origin and \mathbf{a}.
- This is illustrated below for the case of \mathbb{R}^{2}.

So, 1-dimensional subspaces of \mathbb{R}^{n} essentially look like copies of \mathbb{R}^{1} inside of \mathbb{R}^{n}.

- 2-dimensional subspaces of \mathbb{R}^{n} are planes through the origin.
- 2-dimensional subspaces of \mathbb{R}^{n} are planes through the origin.
- Indeed, suppose that $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ is a basis of a subspace U of \mathbb{R}^{n}.
- 2-dimensional subspaces of \mathbb{R}^{n} are planes through the origin.
- Indeed, suppose that $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ is a basis of a subspace U of \mathbb{R}^{n}.
- By linear independence, $\mathbf{a}_{1}, \mathbf{a}_{2}$ are both non-zero and are not scalar multiples of each other.
- 2-dimensional subspaces of \mathbb{R}^{n} are planes through the origin.
- Indeed, suppose that $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ is a basis of a subspace U of \mathbb{R}^{n}.
- By linear independence, $\mathbf{a}_{1}, \mathbf{a}_{2}$ are both non-zero and are not scalar multiples of each other.
- So, $U=\operatorname{Span}\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)$ is the plane through the origin and through \mathbf{a}_{1} and \mathbf{a}_{2}.
- 2-dimensional subspaces of \mathbb{R}^{n} are planes through the origin.
- Indeed, suppose that $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ is a basis of a subspace U of \mathbb{R}^{n}.
- By linear independence, $\mathbf{a}_{1}, \mathbf{a}_{2}$ are both non-zero and are not scalar multiples of each other.
- So, $U=\operatorname{Span}\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)$ is the plane through the origin and through \mathbf{a}_{1} and \mathbf{a}_{2}.
- For example, the subspace of \mathbb{R}^{3} whose basis is $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ is simply the $x_{1} x_{2}$-plane in \mathbb{R}^{3} (illustrated below).

- 2-dimensional subspaces of \mathbb{R}^{n} are planes through the origin.
- Indeed, suppose that $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ is a basis of a subspace U of \mathbb{R}^{n}.
- By linear independence, $\mathbf{a}_{1}, \mathbf{a}_{2}$ are both non-zero and are not scalar multiples of each other.
- So, $U=\operatorname{Span}\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)$ is the plane through the origin and through \mathbf{a}_{1} and \mathbf{a}_{2}.
- For example, the subspace of \mathbb{R}^{3} whose basis is $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ is simply the $x_{1} x_{2}$-plane in \mathbb{R}^{3} (illustrated below).

- In general, 2-dimensional subspaces of \mathbb{R}^{n} look like copies of \mathbb{R}^{2} inside of \mathbb{R}^{n} (of course, those copies of \mathbb{R}^{2}, i.e. planes, may possibly be "tilted," i.e. not formed by any two of the coordinate axes of \mathbb{R}^{n}); however, they must all pass through the origin.
- In general, for a positive integer $m \leq n$, an m-dimensional subspace of \mathbb{R}^{n} looks like a copy of \mathbb{R}^{m} inside of \mathbb{R}^{n}.
- In general, for a positive integer $m \leq n$, an m-dimensional subspace of \mathbb{R}^{n} looks like a copy of \mathbb{R}^{m} inside of \mathbb{R}^{n}.
- Again, our copy of \mathbb{R}^{m} may possibly be "tilted," i.e. not be formed by any m of the n axes of \mathbb{R}^{n}.
- However, it must pass through the origin.
- Recall that if U and W are vector spaces over a field \mathbb{F}, then $U \times W$ is also a vector space over \mathbb{F}, with vector addition and scalar multiplication defined in a natural way, as follows:
- $\left(\mathbf{u}_{1}, \mathbf{w}_{1}\right)+\left(\mathbf{u}_{2}, \mathbf{w}_{2}\right):=\left(\mathbf{u}_{1}+\mathbf{u}_{2}, \mathbf{w}_{1}+\mathbf{w}_{2}\right)$ for all $\mathbf{u}_{1}, \mathbf{u}_{2} \in U$ and $\mathbf{w}_{1}, \mathbf{w}_{2} \in W$;
- $\alpha(\mathbf{u}, \mathbf{w}):=(\alpha \mathbf{u}, \alpha \mathbf{w})$ for all $\alpha \in \mathbb{F}, \mathbf{u} \in U$, and $\mathbf{w} \in W$.
- Recall that if U and W are vector spaces over a field \mathbb{F}, then $U \times W$ is also a vector space over \mathbb{F}, with vector addition and scalar multiplication defined in a natural way, as follows:
- $\left(\mathbf{u}_{1}, \mathbf{w}_{1}\right)+\left(\mathbf{u}_{2}, \mathbf{w}_{2}\right):=\left(\mathbf{u}_{1}+\mathbf{u}_{2}, \mathbf{w}_{1}+\mathbf{w}_{2}\right)$ for all $\mathbf{u}_{1}, \mathbf{u}_{2} \in U$ and $\mathbf{w}_{1}, \mathbf{w}_{2} \in W$;
- $\alpha(\mathbf{u}, \mathbf{w}):=(\alpha \mathbf{u}, \alpha \mathbf{w})$ for all $\alpha \in \mathbb{F}, \mathbf{u} \in U$, and $\mathbf{w} \in W$.
- We then have the following proposition:

Proposition 3.2.22

Let U and W be finite-dimensional vector spaces over a field \mathbb{F}. Then the vector space $U \times W$ is finite-dimensional, and moreover,

$$
\operatorname{dim}(U \times W)=\operatorname{dim}(U)+\operatorname{dim}(W)
$$

Proposition 3.2.22

Let U and W be finite-dimensional vector spaces over a field \mathbb{F}.
Then the vector space $U \times W$ is finite-dimensional, and moreover,

$$
\operatorname{dim}(U \times W)=\operatorname{dim}(U)+\operatorname{dim}(W)
$$

Proof (outline).

Proposition 3.2.22

Let U and W be finite-dimensional vector spaces over a field \mathbb{F}. Then the vector space $U \times W$ is finite-dimensional, and moreover,

$$
\operatorname{dim}(U \times W)=\operatorname{dim}(U)+\operatorname{dim}(W)
$$

Proof (outline). Let $\mathbf{0}_{U}$ be the zero vector of the vector space U, and let $\mathbf{0}_{W}$ be the zero of the vector space W.

Proposition 3.2.22

Let U and W be finite-dimensional vector spaces over a field \mathbb{F}. Then the vector space $U \times W$ is finite-dimensional, and moreover,

$$
\operatorname{dim}(U \times W)=\operatorname{dim}(U)+\operatorname{dim}(W)
$$

Proof (outline). Let $\mathbf{0}_{U}$ be the zero vector of the vector space U, and let $\mathbf{0}_{W}$ be the zero of the vector space W. Set $m:=\operatorname{dim}(U)$ and $n:=\operatorname{dim}(W)$, and fix a basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ of U and a basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ of W.

Proposition 3.2.22

Let U and W be finite-dimensional vector spaces over a field \mathbb{F}. Then the vector space $U \times W$ is finite-dimensional, and moreover,

$$
\operatorname{dim}(U \times W)=\operatorname{dim}(U)+\operatorname{dim}(W)
$$

Proof (outline). Let $\mathbf{0}_{U}$ be the zero vector of the vector space U, and let $\mathbf{0}_{W}$ be the zero of the vector space W. Set $m:=\operatorname{dim}(U)$ and $n:=\operatorname{dim}(W)$, and fix a basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ of U and a basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ of W. It is then straightforward to check that

$$
\left\{\left(\mathbf{u}_{1}, \mathbf{0}_{W}\right), \ldots,\left(\mathbf{u}_{m}, \mathbf{0}_{W}\right),\left(\mathbf{0}_{U}, \mathbf{w}_{1}\right), \ldots,\left(\mathbf{0}_{U}, \mathbf{w}_{n}\right)\right\}
$$

is a basis of $U \times W$ (the details are left as an exercise),

Proposition 3.2.22

Let U and W be finite-dimensional vector spaces over a field \mathbb{F}. Then the vector space $U \times W$ is finite-dimensional, and moreover,

$$
\operatorname{dim}(U \times W)=\operatorname{dim}(U)+\operatorname{dim}(W)
$$

Proof (outline). Let $\mathbf{0}_{U}$ be the zero vector of the vector space U, and let $\mathbf{0}_{W}$ be the zero of the vector space W. Set $m:=\operatorname{dim}(U)$ and $n:=\operatorname{dim}(W)$, and fix a basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ of U and a basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ of W. It is then straightforward to check that

$$
\left\{\left(\mathbf{u}_{1}, \mathbf{0}_{W}\right), \ldots,\left(\mathbf{u}_{m}, \mathbf{0}_{W}\right),\left(\mathbf{0}_{u}, \mathbf{w}_{1}\right), \ldots,\left(\mathbf{0}_{u}, \mathbf{w}_{n}\right)\right\}
$$

is a basis of $U \times W$ (the details are left as an exercise), and consequently, $\operatorname{dim}(U \times W)=m+n=\operatorname{dim}(U)+\operatorname{dim}(W) . \square$

- Recall that if V is a vector space over a field \mathbb{F}, and U and W are subspaces of V, then $U \cap W$ and $U+W:=\{\mathbf{u}+\mathbf{w} \mid \mathbf{u} \in U, \mathbf{w} \in W\}$ are also subspaces of V.
- Recall that if V is a vector space over a field \mathbb{F}, and U and W are subspaces of V, then $U \cap W$ and $U+W:=\{\mathbf{u}+\mathbf{w} \mid \mathbf{u} \in U, \mathbf{w} \in W\}$ are also subspaces of V.

Theorem 3.2.23

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U and W be subspaces of V. Then $U \cap W$ and $U+W$ are also finite-dimensional subspaces of V. Moreover, $U, W, U \cap W$, and $U+W$ are all finite-dimensional and satisfy

$$
\operatorname{dim}(U+W)+\operatorname{dim}(U \cap W)=\operatorname{dim}(U)+\operatorname{dim}(W)
$$

Proof (outline).

- Recall that if V is a vector space over a field \mathbb{F}, and U and W are subspaces of V, then $U \cap W$ and $U+W:=\{\mathbf{u}+\mathbf{w} \mid \mathbf{u} \in U, \mathbf{w} \in W\}$ are also subspaces of V.

Theorem 3.2.23

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U and W be subspaces of V. Then $U \cap W$ and $U+W$ are also finite-dimensional subspaces of V. Moreover, $U, W, U \cap W$, and $U+W$ are all finite-dimensional and satisfy

$$
\operatorname{dim}(U+W)+\operatorname{dim}(U \cap W)=\operatorname{dim}(U)+\operatorname{dim}(W)
$$

Proof (outline). The proof of the fact that $U \cap W$ and $U+W$ are subspaces of V was an exercise.

- Recall that if V is a vector space over a field \mathbb{F}, and U and W are subspaces of V, then $U \cap W$ and $U+W:=\{\mathbf{u}+\mathbf{w} \mid \mathbf{u} \in U, \mathbf{w} \in W\}$ are also subspaces of V.

Theorem 3.2.23

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U and W be subspaces of V. Then $U \cap W$ and $U+W$ are also finite-dimensional subspaces of V. Moreover, $U, W, U \cap W$, and $U+W$ are all finite-dimensional and satisfy

$$
\operatorname{dim}(U+W)+\operatorname{dim}(U \cap W)=\operatorname{dim}(U)+\operatorname{dim}(W)
$$

Proof (outline). The proof of the fact that $U \cap W$ and $U+W$ are subspaces of V was an exercise. Since V is finite-dimensional, Theorem 3.2.21 guarantees that all its subspaces are finite dimensional; in particular, $U, W, U \cap W$, and $U+W$ are all finite-dimensional.

Theorem 3.2.23

 $\operatorname{dim}(U+W)+\operatorname{dim}(U \cap W)=\operatorname{dim}(U)+\operatorname{dim}(W)$.Proof (continued). Set $m:=\operatorname{dim}(U), n:=\operatorname{dim}(W)$, and $p:=\operatorname{dim}(U \cap W)$.

Theorem 3.2.23

 $\operatorname{dim}(U+W)+\operatorname{dim}(U \cap W)=\operatorname{dim}(U)+\operatorname{dim}(W)$.Proof (continued). Set $m:=\operatorname{dim}(U), n:=\operatorname{dim}(W)$, and $p:=\operatorname{dim}(U \cap W)$. Fix a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of $U \cap W$.

Theorem 3.2.23

$\operatorname{dim}(U+W)+\operatorname{dim}(U \cap W)=\operatorname{dim}(U)+\operatorname{dim}(W)$.
Proof (continued). Set $m:=\operatorname{dim}(U), n:=\operatorname{dim}(W)$, and $p:=\operatorname{dim}(U \cap W)$. Fix a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of $U \cap W$. Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a linearly independent set in the finite-dimensional vector space U, and so by Theorem 3.2.19, it can be extended to a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m-p}\right\}$ of U. Similarly, $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ can be extended to a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{n-p}\right\}$ of W.

Theorem 3.2.23

$\operatorname{dim}(U+W)+\operatorname{dim}(U \cap W)=\operatorname{dim}(U)+\operatorname{dim}(W)$.
Proof (continued).

It is now straightforward to check that

$$
\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m-p}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{n-p}\right\}
$$

is a basis of $U+W$ (details: exercise).

Theorem 3.2.23

$\operatorname{dim}(U+W)+\operatorname{dim}(U \cap W)=\operatorname{dim}(U)+\operatorname{dim}(W)$.
Proof (continued).

It is now straightforward to check that

$$
\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m-p}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{n-p}\right\}
$$

is a basis of $U+W$ (details: exercise). So,

$$
\operatorname{dim}(U+W)=p+(m-p)+(n-p)=m+n-p
$$

Theorem 3.2.23

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U and W be subspaces of V. Then $U \cap W$ and $U+W$ are also finite-dimensional subspaces of V. Moreover, $U, W, U \cap W$, and $U+W$ are all finite-dimensional and satisfy

$$
\operatorname{dim}(U+W)+\operatorname{dim}(U \cap W)=\operatorname{dim}(U)+\operatorname{dim}(W)
$$

Proof (continued). It now follows that

$$
\begin{aligned}
\operatorname{dim}(U+W)+\operatorname{dim}(U \cap W) & =(m+n-p)+p \\
& =m+n \\
& =\operatorname{dim}(U)+\operatorname{dim}(W)
\end{aligned}
$$

which is what we needed to show. \square

Theorem 3.2.23

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U and W be subspaces of V. Then $U \cap W$ and $U+W$ are also finite-dimensional subspaces of V. Moreover, $U, W, U \cap W$, and $U+W$ are all finite-dimensional and satisfy

$$
\operatorname{dim}(U+W)+\operatorname{dim}(U \cap W)=\operatorname{dim}(U)+\operatorname{dim}(W)
$$

Theorem 3.2.23

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U and W be subspaces of V. Then $U \cap W$ and $U+W$ are also finite-dimensional subspaces of V. Moreover, $U, W, U \cap W$, and $U+W$ are all finite-dimensional and satisfy

$$
\operatorname{dim}(U+W)+\operatorname{dim}(U \cap W)=\operatorname{dim}(U)+\operatorname{dim}(W)
$$

- If V is a vector space over a field \mathbb{F} and U and V are its subspaces such that $U \cap W=\{\mathbf{0}\}$ and $V=U+W$, then we say that V is the direct sum of U and W, and we write $V=U \oplus W$.

Theorem 3.2.23

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U and W be subspaces of V. Then $U \cap W$ and $U+W$ are also finite-dimensional subspaces of V. Moreover, $U, W, U \cap W$, and $U+W$ are all finite-dimensional and satisfy

$$
\operatorname{dim}(U+W)+\operatorname{dim}(U \cap W)=\operatorname{dim}(U)+\operatorname{dim}(W)
$$

- If V is a vector space over a field \mathbb{F} and U and V are its subspaces such that $U \cap W=\{\mathbf{0}\}$ and $V=U+W$, then we say that V is the direct sum of U and W, and we write $V=U \oplus W$.
- If $V=U \oplus W$ is also finite-dimensional, then Theorem 3.2.23 immediately implies that $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}(W)$.

Theorem 3.2.23

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U and W be subspaces of V. Then $U \cap W$ and $U+W$ are also finite-dimensional subspaces of V. Moreover, $U, W, U \cap W$, and $U+W$ are all finite-dimensional and satisfy

$$
\operatorname{dim}(U+W)+\operatorname{dim}(U \cap W)=\operatorname{dim}(U)+\operatorname{dim}(W)
$$

- If V is a vector space over a field \mathbb{F} and U and V are its subspaces such that $U \cap W=\{\mathbf{0}\}$ and $V=U+W$, then we say that V is the direct sum of U and W, and we write $V=U \oplus W$.
- If $V=U \oplus W$ is also finite-dimensional, then Theorem 3.2.23 immediately implies that $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}(W)$.
- This is because $\operatorname{dim}(U \cap W)=0$.

Theorem 3.2.23

Let V be a finite-dimensional vector space over a field \mathbb{F}, and let U and W be subspaces of V. Then $U \cap W$ and $U+W$ are also finite-dimensional subspaces of V. Moreover, $U, W, U \cap W$, and $U+W$ are all finite-dimensional and satisfy

$$
\operatorname{dim}(U+W)+\operatorname{dim}(U \cap W)=\operatorname{dim}(U)+\operatorname{dim}(W)
$$

- If V is a vector space over a field \mathbb{F} and U and V are its subspaces such that $U \cap W=\{\mathbf{0}\}$ and $V=U+W$, then we say that V is the direct sum of U and W, and we write $V=U \oplus W$.
- If $V=U \oplus W$ is also finite-dimensional, then Theorem 3.2.23 immediately implies that $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}(W)$.
- This is because $\operatorname{dim}(U \cap W)=0$.
- Moreover, we have the following theorem (next slide).

Theorem 3.2.24

Let V be a vector space over a field \mathbb{F}, and let U and W be subspaces of V such that $V=U \oplus W$. Then for all $\mathbf{v} \in V$, there exist unique $\mathbf{u} \in U$ and $\mathbf{w} \in W$ such that $\mathbf{v}=\mathbf{u}+\mathbf{w}$.

Proof. Exercise.

- Optional reading: subsection 3.2.7 from the Lecture Notes ("A very brief introduction to infinite bases").

[^0]: ${ }^{\text {a }}$ If A contains more than one copy of the same vector, then we treat each copy as distinct. So, when expressing a vector \mathbf{v} in A as a linear combination of the "other" vectors in A, we are allowed to use any additional copies of \mathbf{v} (if there are any) in that linear combination.
 ${ }^{b}$ If \mathbf{a}_{i} appears more than once in A, then $A \backslash\left\{\mathbf{a}_{i}\right\}$ is understood to be the set obtained from A by removing only one copy of \mathbf{a}_{i}.

