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In this lecture, we examine the relationship between the sizes
of linearly independent sets, spanning sets, and bases of a
finite-dimensional vector space.

In particular, we will prove the following two theorems.

Theorem 3.2.16
Let V be a finite-dimensional vector space over a field F. Then all
bases of V are of the same size.

Theorem 3.2.17
Let V be a finite-dimensional vector space over a field F, and set
n := dim(V ). Then both the following hold:

(a) every linearly independent set of vectors in V has at most n
vectors;

(b) every spanning set of V has at least n vectors.

Informally, Theorem 3.2.17 says:
|linearly independent set of V | ≤ dim(V ) ≤ |spanning set of V |.
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Proposition 3.2.11
Let V be a vector space over a field F, and let a1, . . . , ak ∈ V . Set
A := {a1, . . . , ak}. Then the following hold:

(a) A is linearly independent if and only if no vector in A is a
linear combination of the other vectors in A;a

(b) if A is a spanning set of V , and some vector ai ∈ A is a linear
combination of the other vectors in A, then A \ {ai} is a
spanning set of V .b

aIf A contains more than one copy of the same vector, then we treat each
copy as distinct. So, when expressing a vector v in A as a linear combination of
the “other” vectors in A, we are allowed to use any additional copies of v (if
there are any) in that linear combination.

bIf ai appears more than once in A, then A \ {ai} is understood to be the set
obtained from A by removing only one copy of ai .

Proof.

We prove (b). The proof of (a) is in the Lecture Notes.
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(b) if A is a spanning set of V , and some vector ai ∈ A is a linear
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Proof of (b).

Assume that A is a spanning set of V , and that some
ai ∈ A is a linear combination of the other vectors in A. Then
there exist scalars α1, . . . , αi−1, αi+1, . . . , αk ∈ F such that

ai = α1a1 + · · · + αi−1ai−1 + αi+1ai+1 + · · · + αkak .

Now, fix any vector v ∈ V . WTS v is a linear combination of
vectors in A \ {ai} = {a1, . . . , ai−1, ai+1, . . . , ak}. Since
A = {a1, . . . , ak} is a spanning set of V , we know that there exist
scalars β1, . . . , βk ∈ F such that v = β1a1 + · · · + βkak . We now
compute (next slide):
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Proof of (b) (continued).

v = β1a1 + · · · + βi−1ai−1 + βiai + βi+1ai+1 + · · · + βkak

= β1a1 + · · · + βi−1ai−1+
+βi(α1a1 + · · · + αi−1ai−1 + αi+1ai+1 + · · · + αkak)
+βi+1ai+1 + · · · + βkak

= (β1 + βiα1)a1 + · · · + (βi−1 + βiαi−1)ai−1+
+(βi+1 + βiαi+1)ai+1 + · · · + (βk + βiαk)ak .

So, v is a linear combination of vectors a1, . . . , ai−1, ai+1, . . . , ak ,
and (b) follows. □
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Proposition 3.2.13
Let V be a vector space over a field F, and let B = {b1, . . . , bk}
be a spanning set of V . Let B′ ⊆ B be such that every vector in
B \ B′ is a linear combination of vectors in B′. Then B′ is a
spanning set of V .

Proof.

Choose a set B̃ such that
B′ ⊆ B̃ ⊆ B,
B̃ is a spanning set of V ;
subject to the above, B̃ is as small as possible.

(The fact that B̃ exists follows from the fact that B′ ⊆ B ⊆ B,
and B is a spanning set of V .)

If B̃ = B′, then we are done. So, assume that B′ ⫋ B̃, and fix
some v ∈ B̃ \ B′. Then v is a linear combination of the other
vectors in B̃ (because v is a linear combination of the vectors in
B′), and so by Proposition 3.2.11(b), B̃ \ {v} is a spanning set of
V . But now B̃ \ v contradicts the minimality of B̃. □
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Proposition 3.2.11(b), B′ \ {b} is a spanning set of V , contrary to
the minimality of B′. □
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The Steinitz exchange lemma
Let V be a vector space over a field F, let
a1, . . . , ak , b1, . . . , bℓ ∈ V , and assume that a1, . . . , ak are pairwise
distinct and that b1, . . . , bℓ are pairwise distinct. Assume
furthermore that A := {a1, . . . , ak} is a linearly independent set in
V , and assume that B := {b1, . . . , bℓ} is a spanning set of V .
Then k ≤ ℓ (i.e. |A| ≤ |B|). Moreover, there exists a set
B′ ⊆ B \ A such that |B′| = |B| − |A| = ℓ − k and A ∪ B′ is a
spanning set of V .

B

A

B′B′ A

First, some remarks. Then, a proof.
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For technical reasons (in order to get the set B′), the Steinitz
exchange lemma assumes that the sets A and B contain no
repetitions.

Actually, it would be possible to state and prove a version of
the Steinitz exchange lemma that allows repetitions.
However, this would be notationally messy.

However, if we only care about the “|A| ≤ |B|” part of the
Steinitz exchange lemma (which is what we usually care
about), then this assumption is not necessary.
Indeed, suppose that V is a vector space over a field F, and
suppose that A is a linearly independent set of vectors in V
and that B is a spanning set of V (with repetitions allowed).
Since A is linearly independent, it contains no repetitions;
however, B may possibly contain repetitions.
But then we let B̃ be the set obtained from B by eliminating
repetitions.
Then B̃ is still a spanning set of V , and by the Steinitz
exchange lemma, we get that |A| ≤ |B̃| ≤ |B|.



For technical reasons (in order to get the set B′), the Steinitz
exchange lemma assumes that the sets A and B contain no
repetitions.

Actually, it would be possible to state and prove a version of
the Steinitz exchange lemma that allows repetitions.

However, this would be notationally messy.
However, if we only care about the “|A| ≤ |B|” part of the
Steinitz exchange lemma (which is what we usually care
about), then this assumption is not necessary.
Indeed, suppose that V is a vector space over a field F, and
suppose that A is a linearly independent set of vectors in V
and that B is a spanning set of V (with repetitions allowed).
Since A is linearly independent, it contains no repetitions;
however, B may possibly contain repetitions.
But then we let B̃ be the set obtained from B by eliminating
repetitions.
Then B̃ is still a spanning set of V , and by the Steinitz
exchange lemma, we get that |A| ≤ |B̃| ≤ |B|.



For technical reasons (in order to get the set B′), the Steinitz
exchange lemma assumes that the sets A and B contain no
repetitions.

Actually, it would be possible to state and prove a version of
the Steinitz exchange lemma that allows repetitions.
However, this would be notationally messy.

However, if we only care about the “|A| ≤ |B|” part of the
Steinitz exchange lemma (which is what we usually care
about), then this assumption is not necessary.
Indeed, suppose that V is a vector space over a field F, and
suppose that A is a linearly independent set of vectors in V
and that B is a spanning set of V (with repetitions allowed).
Since A is linearly independent, it contains no repetitions;
however, B may possibly contain repetitions.
But then we let B̃ be the set obtained from B by eliminating
repetitions.
Then B̃ is still a spanning set of V , and by the Steinitz
exchange lemma, we get that |A| ≤ |B̃| ≤ |B|.



For technical reasons (in order to get the set B′), the Steinitz
exchange lemma assumes that the sets A and B contain no
repetitions.

Actually, it would be possible to state and prove a version of
the Steinitz exchange lemma that allows repetitions.
However, this would be notationally messy.

However, if we only care about the “|A| ≤ |B|” part of the
Steinitz exchange lemma (which is what we usually care
about), then this assumption is not necessary.

Indeed, suppose that V is a vector space over a field F, and
suppose that A is a linearly independent set of vectors in V
and that B is a spanning set of V (with repetitions allowed).
Since A is linearly independent, it contains no repetitions;
however, B may possibly contain repetitions.
But then we let B̃ be the set obtained from B by eliminating
repetitions.
Then B̃ is still a spanning set of V , and by the Steinitz
exchange lemma, we get that |A| ≤ |B̃| ≤ |B|.



For technical reasons (in order to get the set B′), the Steinitz
exchange lemma assumes that the sets A and B contain no
repetitions.

Actually, it would be possible to state and prove a version of
the Steinitz exchange lemma that allows repetitions.
However, this would be notationally messy.

However, if we only care about the “|A| ≤ |B|” part of the
Steinitz exchange lemma (which is what we usually care
about), then this assumption is not necessary.
Indeed, suppose that V is a vector space over a field F, and
suppose that A is a linearly independent set of vectors in V
and that B is a spanning set of V (with repetitions allowed).

Since A is linearly independent, it contains no repetitions;
however, B may possibly contain repetitions.
But then we let B̃ be the set obtained from B by eliminating
repetitions.
Then B̃ is still a spanning set of V , and by the Steinitz
exchange lemma, we get that |A| ≤ |B̃| ≤ |B|.



For technical reasons (in order to get the set B′), the Steinitz
exchange lemma assumes that the sets A and B contain no
repetitions.

Actually, it would be possible to state and prove a version of
the Steinitz exchange lemma that allows repetitions.
However, this would be notationally messy.

However, if we only care about the “|A| ≤ |B|” part of the
Steinitz exchange lemma (which is what we usually care
about), then this assumption is not necessary.
Indeed, suppose that V is a vector space over a field F, and
suppose that A is a linearly independent set of vectors in V
and that B is a spanning set of V (with repetitions allowed).
Since A is linearly independent, it contains no repetitions;
however, B may possibly contain repetitions.

But then we let B̃ be the set obtained from B by eliminating
repetitions.
Then B̃ is still a spanning set of V , and by the Steinitz
exchange lemma, we get that |A| ≤ |B̃| ≤ |B|.



For technical reasons (in order to get the set B′), the Steinitz
exchange lemma assumes that the sets A and B contain no
repetitions.

Actually, it would be possible to state and prove a version of
the Steinitz exchange lemma that allows repetitions.
However, this would be notationally messy.

However, if we only care about the “|A| ≤ |B|” part of the
Steinitz exchange lemma (which is what we usually care
about), then this assumption is not necessary.
Indeed, suppose that V is a vector space over a field F, and
suppose that A is a linearly independent set of vectors in V
and that B is a spanning set of V (with repetitions allowed).
Since A is linearly independent, it contains no repetitions;
however, B may possibly contain repetitions.
But then we let B̃ be the set obtained from B by eliminating
repetitions.

Then B̃ is still a spanning set of V , and by the Steinitz
exchange lemma, we get that |A| ≤ |B̃| ≤ |B|.



For technical reasons (in order to get the set B′), the Steinitz
exchange lemma assumes that the sets A and B contain no
repetitions.

Actually, it would be possible to state and prove a version of
the Steinitz exchange lemma that allows repetitions.
However, this would be notationally messy.

However, if we only care about the “|A| ≤ |B|” part of the
Steinitz exchange lemma (which is what we usually care
about), then this assumption is not necessary.
Indeed, suppose that V is a vector space over a field F, and
suppose that A is a linearly independent set of vectors in V
and that B is a spanning set of V (with repetitions allowed).
Since A is linearly independent, it contains no repetitions;
however, B may possibly contain repetitions.
But then we let B̃ be the set obtained from B by eliminating
repetitions.
Then B̃ is still a spanning set of V , and by the Steinitz
exchange lemma, we get that |A| ≤ |B̃| ≤ |B|.



The Steinitz exchange lemma
Let V be a vector space over a field F, let
a1, . . . , ak , b1, . . . , bℓ ∈ V , and assume that a1, . . . , ak are pairwise
distinct and that b1, . . . , bℓ are pairwise distinct. Assume
furthermore that A := {a1, . . . , ak} is a linearly independent set in
V , and assume that B := {b1, . . . , bℓ} is a spanning set of V .
Then k ≤ ℓ (i.e. |A| ≤ |B|). Moreover, there exists a set
B′ ⊆ B \ A such that |B′| = |B| − |A| = ℓ − k and A ∪ B′ is a
spanning set of V .

B

A

B′B′ A

The most important corollary of the Steinitz exchange lemma
is Theorem 3.2.16 (next slide).
We first prove Theorem 3.2.16 (using the Steinitz exchange
lemma), and then we prove the Steinitz exchange lemma.



Theorem 3.2.16
Let V be a finite-dimensional vector space over a field F. Then all
bases of V are of the same size.

Proof (assuming the Steinitz exchange lemma).

We apply the
Steinitz exchange lemma twice.

Fix bases {u1, . . . , um} and {v1, . . . , vn} of V .

Since {u1, . . . , um} is linearly independent and {v1, . . . , vn} is a
spanning set of V , the Steinitz exchange lemma guarantees that
m ≤ n.

On the other hand, since {v1, . . . , vn} is a linearly independent set
and {u1, . . . , um} is a spanning set of V , the Steinitz exchange
lemma guarantees that n ≤ m.

So, m = n. □
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Let’s prove the Steinitz exchange lemma!

The proof proceeds by induction using the following lemma
(next slide).
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Lemma 3.2.15
Let V be a vector space over a field F. Let
a1, . . . , ak , b1, . . . , bℓ ∈ V , and assume that a1, . . . , ak are pairwise
distinct and that b1, . . . , bℓ are pairwise distinct. Assume
furthermore that A := {a1, . . . , ak} is a linearly independent set in
V , and that B := {b1, . . . , bℓ} is a spanning set of V . Then for all
a ∈ A \ B, there exists some b ∈ B \ A such that (B \ {b}) ∪ {a} is
a spanning set of V .
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B

a

(B \ {b}) ∪ {a}

WTS ∀a ∈ A \B ∃b ∈ B \ A s.t.

(B \ {b}) ∪ {a} is a spanning set of V

Proof.

WMA A ̸⊆ B, for otherwise, the lemma is vacuously true.
Fix any a ∈ A \ B. Then there exists an index i ∈ {1, . . . , k} such
that a = ai . Since ai ∈ V = Span(B), we know that there exist
scalars α1, . . . , αℓ ∈ F such that

ai = α1b1 + · · · + αℓbℓ.

Claim. There exists an index j ∈ {1, . . . , ℓ} such that
αj ̸= 0 and bj ∈ B \ A.

Proof of the Claim. Suppose otherwise. Then for all j ∈ {1, . . . , ℓ}
such that αj ̸= 0, we have that bj ∈ B ∩ A ⊆ A \ {ai}. But now ai
is a linear combination of the other vectors in the linearly
independent set A, contrary to Proposition 3.2.11(a). ♦
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Proof (continued). Reminder: a = ai = α1b1 + · · · + αℓbℓ.
Claim. There exists an index j ∈ {1, . . . , ℓ} such that
αj ̸= 0 and bj ∈ B \ A.

Using the Claim, we fix an index j ∈ {1, . . . , ℓ} such that αj ̸= 0
and bj ∈ B \ A. We will show that (B \ {bj}) ∪ {ai} is a spanning
set of V (this will complete the proof of the lemma).

Since bj ̸= ai , we see that (B \ {bj}) ∪ {ai} = (B ∪ {ai}) \ {bj},
and we need to show that (B ∪ {ai}) \ {bj} is a spanning set of V .
Since B is a spanning set of V , so is B ∪ {ai}.

In view of Proposition 3.2.11(b), it now suffices to show that bj is
a linear combination of the other vectors in B ∪ {ai}.
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Lemma 3.2.15
Let V be a vector space over a field F. Let
a1, . . . , ak , b1, . . . , bℓ ∈ V , and assume that a1, . . . , ak are pairwise
distinct and that b1, . . . , bℓ are pairwise distinct. Assume
furthermore that A := {a1, . . . , ak} is a linearly independent set in
V , and that B := {b1, . . . , bℓ} is a spanning set of V . Then for all
a ∈ A \ B, there exists some b ∈ B \ A such that (B \ {b}) ∪ {a} is
a spanning set of V .

a

b

A

B

a

(B \ {b}) ∪ {a}

The proof of the Steinitz exchange lemma consists of repeated
applications of Lemma 3.2.15 (technically, an induction).

The formal proof is in the Lecture Notes.
Here, we give an informal outline.
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The Steinitz exchange lemma
Let V be a vector space over a field F, let
a1, . . . , ak , b1, . . . , bℓ ∈ V , and assume that a1, . . . , ak are pairwise
distinct and that b1, . . . , bℓ are pairwise distinct. Assume
furthermore that A := {a1, . . . , ak} is a linearly independent set in
V , and assume that B := {b1, . . . , bℓ} is a spanning set of V .
Then k ≤ ℓ (i.e. |A| ≤ |B|). Moreover, there exists a set
B′ ⊆ B \ A such that |B′| = |B| − |A| = ℓ − k and A ∪ B′ is a
spanning set of V .

B

A

B′B′ A



B

A

B′B′ A

Proof (outline).

Using Lemma 3.2.15, we “throw in” vertices of
A \ B into B one by one, and at each step, we remove one vertex
of B \ A from B.

A

B

By Lemma 3.2.15, at each step, the set that we create remains a
spanning set of V . In the end, we obtain a spanning set of V that
includes A (as a subset) and is of the same set as B.
B′ is the set of all vertices of B \ A that we did not “throw out” in
the process. □



B

A

B′B′ A

Proof (outline). Using Lemma 3.2.15, we “throw in” vertices of
A \ B into B one by one, and at each step, we remove one vertex
of B \ A from B.

A

B

By Lemma 3.2.15, at each step, the set that we create remains a
spanning set of V .

In the end, we obtain a spanning set of V that
includes A (as a subset) and is of the same set as B.
B′ is the set of all vertices of B \ A that we did not “throw out” in
the process. □



B

A

B′B′ A

Proof (outline). Using Lemma 3.2.15, we “throw in” vertices of
A \ B into B one by one, and at each step, we remove one vertex
of B \ A from B.

A

B

By Lemma 3.2.15, at each step, the set that we create remains a
spanning set of V . In the end, we obtain a spanning set of V that
includes A (as a subset) and is of the same set as B.

B′ is the set of all vertices of B \ A that we did not “throw out” in
the process. □



B

A

B′B′ A

Proof (outline). Using Lemma 3.2.15, we “throw in” vertices of
A \ B into B one by one, and at each step, we remove one vertex
of B \ A from B.

A

B

By Lemma 3.2.15, at each step, the set that we create remains a
spanning set of V . In the end, we obtain a spanning set of V that
includes A (as a subset) and is of the same set as B.
B′ is the set of all vertices of B \ A that we did not “throw out” in
the process. □



Reminder: Using the Steinitz exchange lemma, we proved
Theorem 3.2.16 (below).

Theorem 3.2.16
Let V be a finite-dimensional vector space over a field F. Then all
bases of V are of the same size.

Definition
The dimension of a finite-dimensional vector space V over a field
F, denoted by dim(V ), is the number of elements in any basis of V
(by Theorem 3.2.16, this is well-defined).

Remarks:

Note that dim({0}) = 0 (where {0} is understood to be a
vector space over an arbitrary field F), because ∅ is a basis of
{0}.
For any field F, we have that dim(Fn) = n, because the
standard basis of Fn has n elements.

However, the standard basis is not the only basis of Fn (except
in some very special cases).
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Theorem 3.2.17
Let V be a finite-dimensional vector space over a field F, and set
n := dim(V ). Then both the following hold:

(a) every linearly independent set of vectors in V has at most n
vectors;

(b) every spanning set of V has at least n vectors.

Proof.

Fix a basis B = {b1, . . . , bn} of V . Then B is both a
linearly independent set and a spanning set of V .

Now, by the Steinitz exchange lemma, the number of vectors in
any linearly independent set of V is at most the number of vectors
in the spanning set B of V , which is n; so, (a) holds.

On the other hand, by the Steinitz exchange lemma, any spanning
set of V has at least as many vectors as the linearly independent
set B; so, (b) holds. □
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Theorem 3.2.16
Let V be a finite-dimensional vector space over a field F. Then all
bases of V are of the same size.

Definition
The dimension of a finite-dimensional vector space V over a field
F, denoted by dim(V ), is the number of elements in any basis of V
(by Theorem 3.2.16, this is well-defined).

Theorem 3.2.17
Let V be a finite-dimensional vector space over a field F, and set
n := dim(V ). Then both the following hold:

(a) every linearly independent set of vectors in V has at most n
vectors;

(b) every spanning set of V has at least n vectors.

Informally, Theorem 3.2.17 says:
|linearly independent set of V | ≤ dim(V ) ≤ |spanning set of V |.
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n := dim(V ). Then both the following hold:

(a) every linearly independent set of vectors in V has at most n
vectors;

(b) every spanning set of V has at least n vectors.

By Theorem 3.2.17(a), linearly independent sets in any
finite-dimensional vector space have bounded size (bounded
above by the dimension of the vector space in question).
On the other hand, by Proposition 3.2.18 (next slide),
infinite-dimensional vector spaces have linearly independent
sets of arbitrarily large (finite) size.

For instance, if F is a field, then for any positive integer n,
{1, x , x2, . . . , xn} is a linearly independent set in PF (the
vector space of all polynomials with coefficients in F).
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Proposition 3.2.18
Let V be an infinite-dimensional vector space over a field F. Then
for every non-negative integer n, V has a linearly independent set
of size n.

Proof (outline).

We proceed by induction on n.

For n = 0, we observe that ∅ is a linearly independent set of size 0
in V .

Next, fix a non-negative integer n, and assume that V has a
linearly independent set of size n, say {a1, . . . , an}. Then
{a1, . . . , an} is not a spanning set of V , for otherwise, it would be
a basis of V , contrary to the fact that V is infinite-dimensional.
Thus, Span(a1, . . . , an) ⫋ V ; fix some
an+1 ∈ V \ Span(a1, . . . , an). Then {a1, . . . , an, an+1} is a linearly
independent set in V (details: Lecture Notes). This completes the
induction. □
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Then {a1, . . . , an, an+1} is a linearly
independent set in V (details: Lecture Notes). This completes the
induction. □
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Reminder:

Theorem 3.2.14
Let V be a vector space over a field F, and let B = {b1, . . . , bk}
be a spanning set of V . Then some subset of B is a basis of V .

For linearly independent sets, we have the following analog of
Theorem 3.2.14:

Theorem 3.2.19
Let V be a finite-dimensional vector space over a field F, and let
{a1, . . . , ak} be a linearly independent set of vectors in V . Then
there exists some basis of V that contains all of a1, . . . , ak .

We first make some remarks and then give a proof.
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Suppose that V is a vector space over a field F.

By Theorem 3.2.14, any (finite) spanning set of V contains a
subset that is a basis of V ; in particular, if a vector space has
a (finite) spanning set, then it is finite-dimensional.
On the other hand, by Theorem 3.2.19, if V is
finite-dimensional, then any linearly independent set in V can
be extended to a basis of V .
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Theorem 3.2.19
Let V be a finite-dimensional vector space over a field F, and let
{a1, . . . , ak} be a linearly independent set of vectors in V . Then
there exists some basis of V that contains all of a1, . . . , ak .

Proof.

Set n := dim(V ). By Theorem 3.2.17, any linearly
independent set of vectors in V has at most n vectors; in
particular, k ≤ n (because {a1, . . . , ak} is linearly independent).

Now, let A be a linearly independent set that contains vectors
a1, . . . , ak , and subject to that, is of maximum possible size.

Let us explain why A exists.
There exists at least one linearly independent set that
contains vectors a1, . . . , ak , namely, the set {a1, . . . , ak}.
On the other hand, all linearly independent sets are of size at
most n, and in particular, there is an upper bound on the size
of linearly independent sets containing a1, . . . , ak .
So, A exists.
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Theorem 3.2.19
Let V be a finite-dimensional vector space over a field F, and let
{a1, . . . , ak} be a linearly independent set of vectors in V . Then
there exists some basis of V that contains all of a1, . . . , ak .

Proof (continued). Reminder: A is a linearly independent set that
contains vectors a1, . . . , ak , and subject to that, is of maximum
possible size.

Set A = {a1, . . . , ak , ak+1, . . . , ak+ℓ}. WTS is a basis of V .
Since A is linearly independent, it suffices to show that A is a
spanning set of V . Fix v ∈ V ; WTS v is a linear combination of
vectors in A. If v ∈ A, then this is immediate. So, assume that
v /∈ A. Then by the maximality of A, the set {v} ∪ A is not linearly
independent. So, there exist scalars α0, α1, . . . , αk+ℓ ∈ F, not all
zero, such that

α0v + α1a1 + · · · + αk+ℓak+ℓ = 0.
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Proof (continued). Reminder: α0v + α1a1 + · · · + αk+ℓak+ℓ = 0.
WTS v is a linear combination of the vectors in
A = {a1, . . . , ak , ak+1, . . . , ak+ℓ}.

If α0 = 0, then at least one of α1, . . . , αk+ℓ is non-zero and
α1a1 + · · · + αk+ℓak+ℓ = 0, contrary to the fact that A is linearly
independent.

So, α0 ̸= 0, it follows that

v = (−α−1
0 α1)a1 + · · · + (−α−1

0 αk+ℓ)ak+ℓ,

and we see that v is a linear combination of vectors in A.

This proves that A is a basis of V , and we are done. □
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Theorem 3.2.14
Let V be a vector space over a field F, and let B = {b1, . . . , bk}
be a spanning set of V . Then some subset of B is a basis of V .
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{a1, . . . , ak} be a linearly independent set of vectors in V . Then
there exists some basis of V that contains all of a1, . . . , ak .

Theorems 3.2.14 and 3.2.19 together yield the following
corollary:

Corollary 3.2.20
Let V be a finite-dimensional vector space over a field F, and set
n := dim(V ). Then both the following hold:

(a) any linearly independent set of n vectors of V is a basis of V ;
(b) any set of n vectors of V that spans V is a basis of V .
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Proof of (a).

Let A be any linearly independent set of vectors in V
such that |A| = n. By Theorem 3.2.19, V has a basis A′ such that
A ⊆ A′. Since dim(V ) = n, we see that |A′| = n. Since |A| = n
and A ⊆ A′, it follows that A = A′. So, A is a basis of V (because
A′ is). This proves (a). □
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A ⊆ A′. Since dim(V ) = n, we see that |A′| = n. Since |A| = n
and A ⊆ A′, it follows that A = A′. So, A is a basis of V (because
A′ is). This proves (a). □
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Theorem 3.2.14
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V = Span(B). Then by Theorem 3.2.14, V has a basis B′ such
that B′ ⊆ B. Since dim(V ) = n, we see that |B′| = n. Since
|B| = n and B′ ⊆ B, it follows that B′ = B. So, B is a basis of V
(because B′ is). This proves (b). □
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Theorem 3.2.21
Let V be a finite-dimensional vector space over a field F, and let U
be a subspace of V . Then all the following hold:

(a) U is finite-dimensional;
(b) dim(U) ≤ dim(V );
(c) if dim(U) = dim(V ), then U = V .

Proof.

Set n := dim(V ). Since U is a subspace in V , any linearly
independent set of vectors in U is also linearly independent in V ,
and by Theorem 3.2.17(a), any such set contains at most n
vectors. Now, let {u1, . . . , uk} be a linearly independent set of
vectors in U of maximum possible size. (Then k ≤ n.) WTS
{u1, . . . , uk} spans U.

This will imply that {u1, . . . , uk} is a basis of U, and
consequently, that dim(U) = k ̸= n, which is enough to
prove (a) and (b).
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Proof (continued). Reminder: {u1, . . . , uk} is a linearly
independent set in U of maximum possible size. WTS it spans U.

Fix u ∈ U; WTS u is a linear combination of u1, . . . , uk . If
u ∈ {u1, . . . , uk}, then this is immediate. So, assume that
u /∈ {u1, . . . , uk}.

By the maximality of {u1, . . . , uk}, we see that {u, u1, . . . , uk} is
linearly dependent. So, there exist scalars α0, α1, . . . , αk , not all
zero, such that

α0u + α1u1 + · · · + αkuk = 0.

If α0 = 0, then α1u1 + · · · + αkuk = 0 and at least one of the
scalars α1, . . . , αk ∈ F is non-zero, contrary to the fact that
{u1, . . . , uk} is linearly independent.

So, α0 ̸= 0, and we deduce that
u = (−α−1

0 α1)u1 + · · · + (−α−1
0 αk)uk .

So, u ∈ Span(u1, . . . , uk), and we deduce that {u1, . . . , uk} is a
spanning set of U.
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Theorem 3.2.21
Let V be a finite-dimensional vector space over a field F, and let U
be a subspace of V . Then all the following hold:

(a) U is finite-dimensional;
(b) dim(U) ≤ dim(V );
(c) if dim(U) = dim(V ), then U = V .

Proof (continued). We have now shown that {u1, . . . , uk} is a
basis of U, and consequently, (a) and (b) hold.

It remains to prove (c). Suppose that dim(U) = dim(V ), i.e.
k = n.

But now {u1, . . . , uk} is a linearly independent set of n vectors in
V , and so Corollary 3.2.20 guarantees that {u1, . . . , uk} is a basis
of V . So, U = Span(u1, . . . , uk) = V , and we are done. □
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Theorem 3.2.21
Let V be a finite-dimensional vector space over a field F, and let U
be a subspace of V . Then all the following hold:

(a) U is finite-dimensional;
(b) dim(U) ≤ dim(V );
(c) if dim(U) = dim(V ), then U = V .

Warning: Theorem 3.2.21(c) fails if V is infinite-dimensional!

Infinite-dimensional vector spaces can have proper subspaces
that are infinite-dimensional.
For example,

{
p(x) ∈ PR | p(0) = 0

}
is an infinite-dimensional

proper subspace of PR.
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is an infinite-dimensional
proper subspace of PR.



Theorem 3.2.21
Let V be a finite-dimensional vector space over a field F, and let U
be a subspace of V . Then all the following hold:

(a) U is finite-dimensional;
(b) dim(U) ≤ dim(V );
(c) if dim(U) = dim(V ), then U = V .

Warning: Theorem 3.2.21(c) fails if V is infinite-dimensional!
Infinite-dimensional vector spaces can have proper subspaces
that are infinite-dimensional.
For example,

{
p(x) ∈ PR | p(0) = 0

}
is an infinite-dimensional

proper subspace of PR.



Let us consider a geometric interpretation of subspaces in Rn.

The only 0-dimensional subspace of Rn is {0}.
This holds for any vector space V (not just Rn), as long as the
zero vector is from the vector space V in question. Recall that
we defined Span(∅) = {0}, and obviously, ∅ is linearly
independent.
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1-dimensional subspaces of Rn are lines though the origin.
Indeed, suppose that {a} is a basis of a subspace U of Rn.
Then a ̸= 0 (by linear independence), and we see that
U = Span(a) is the line through the origin and a.

This is illustrated below for the case of R2.

U = Span(a)

a

x1
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0

So, 1-dimensional subspaces of Rn essentially look like copies
of R1 inside of Rn.



2-dimensional subspaces of Rn are planes through the origin.

Indeed, suppose that {a1, a2} is a basis of a subspace U of Rn.
By linear independence, a1, a2 are both non-zero and are not
scalar multiples of each other.
So, U = Span(a1, a2) is the plane through the origin and
through a1 and a2.
For example, the subspace of R3 whose basis is {e1, e2} is
simply the x1x2-plane in R3 (illustrated below).
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x3

U = Span(e1, e2)

0

In general, 2-dimensional subspaces of Rn look like copies of
R2 inside of Rn (of course, those copies of R2, i.e. planes, may
possibly be “tilted,” i.e. not formed by any two of the
coordinate axes of Rn); however, they must all pass through
the origin.
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In general, for a positive integer m ≤ n, an m-dimensional
subspace of Rn looks like a copy of Rm inside of Rn.

Again, our copy of Rm may possibly be “tilted,” i.e. not be
formed by any m of the n axes of Rn.
However, it must pass through the origin.
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Recall that if U and W are vector spaces over a field F, then
U × W is also a vector space over F, with vector addition and
scalar multiplication defined in a natural way, as follows:

(u1, w1) + (u2, w2) := (u1 + u2, w1 + w2) for all u1, u2 ∈ U
and w1, w2 ∈ W ;
α(u, w) := (αu, αw) for all α ∈ F, u ∈ U, and w ∈ W .

We then have the following proposition:

Proposition 3.2.22
Let U and W be finite-dimensional vector spaces over a field F.
Then the vector space U × W is finite-dimensional, and moreover,

dim(U × W ) = dim(U) + dim(W ).
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Proposition 3.2.22
Let U and W be finite-dimensional vector spaces over a field F.
Then the vector space U × W is finite-dimensional, and moreover,

dim(U × W ) = dim(U) + dim(W ).

Proof (outline). Let 0U be the zero vector of the vector space U,
and let 0W be the zero of the vector space W . Set m := dim(U)
and n := dim(W ), and fix a basis {u1, . . . , um} of U and a basis
{w1, . . . , wn} of W . It is then straightforward to check that{

(u1, 0W ), . . . , (um, 0W ), (0U , w1), . . . , (0U , wn)
}

is a basis of U × W (the details are left as an exercise), and
consequently, dim(U × W ) = m + n = dim(U) + dim(W ). □
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Recall that if V is a vector space over a field F, and U and W
are subspaces of V , then U ∩ W and
U + W := {u + w | u ∈ U, w ∈ W } are also subspaces of V .

Theorem 3.2.23
Let V be a finite-dimensional vector space over a field F, and let U
and W be subspaces of V . Then U ∩ W and U + W are also
finite-dimensional subspaces of V . Moreover, U, W , U ∩ W , and
U + W are all finite-dimensional and satisfy

dim(U + W ) + dim(U ∩ W ) = dim(U) + dim(W ).

Proof (outline). The proof of the fact that U ∩ W and U + W are
subspaces of V was an exercise. Since V is finite-dimensional,
Theorem 3.2.21 guarantees that all its subspaces are finite
dimensional; in particular, U, W , U ∩ W , and U + W are all
finite-dimensional.
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Theorem 3.2.23
dim(U + W ) + dim(U ∩ W ) = dim(U) + dim(W ).

Proof (continued). Set m := dim(U), n := dim(W ), and
p := dim(U ∩ W ).

Fix a basis {v1, . . . , vp} of U ∩ W . Then
{v1, . . . , vp} is a linearly independent set in the finite-dimensional
vector space U, and so by Theorem 3.2.19, it can be extended to a
basis {v1, . . . , vp, u1, . . . , um−p} of U. Similarly, {v1, . . . , vp} can
be extended to a basis {v1, . . . , vp, w1, . . . , wn−p} of W .
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Proof (continued).
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It is now straightforward to check that{
v1, . . . , vp, u1, . . . , um−p, w1, . . . , wn−p

}
is a basis of U + W (details: exercise).

So,
dim(U + W ) = p + (m − p) + (n − p) = m + n − p.
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Theorem 3.2.23
Let V be a finite-dimensional vector space over a field F, and let U
and W be subspaces of V . Then U ∩ W and U + W are also
finite-dimensional subspaces of V . Moreover, U, W , U ∩ W , and
U + W are all finite-dimensional and satisfy

dim(U + W ) + dim(U ∩ W ) = dim(U) + dim(W ).

Proof (continued). It now follows that

dim(U + W ) + dim(U ∩ W ) = (m + n − p) + p

= m + n

= dim(U) + dim(W ),

which is what we needed to show. □
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and W be subspaces of V . Then U ∩ W and U + W are also
finite-dimensional subspaces of V . Moreover, U, W , U ∩ W , and
U + W are all finite-dimensional and satisfy

dim(U + W ) + dim(U ∩ W ) = dim(U) + dim(W ).

If V is a vector space over a field F and U and V are its
subspaces such that U ∩ W = {0} and V = U + W , then we
say that V is the direct sum of U and W , and we write
V = U ⊕ W .

If V = U ⊕ W is also finite-dimensional, then Theorem 3.2.23
immediately implies that dim(V ) = dim(U) + dim(W ).
This is because dim(U ∩ W ) = 0.

Moreover, we have the following theorem (next slide).
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Theorem 3.2.24
Let V be a vector space over a field F, and let U and W be
subspaces of V such that V = U ⊕ W . Then for all v ∈ V , there
exist unique u ∈ U and w ∈ W such that v = u + w.

Proof. Exercise.



Optional reading: subsection 3.2.7 from the Lecture Notes
(“A very brief introduction to infinite bases”).


