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1 Permutations and the symmetric group

Definition
A permutation of a set X is any bijection from X to itself. The set
of all permutations of X is denoted by Sym(X ).

For any set X , (Sym(X ), ◦) is a group, called the symmetric
group on X (here, ◦ is the composition of functions).

Indeed, the composition of two permutations of X is a
permutation of X , and so ◦ is a binary operation on Sym(X ).
Moreover, it is clear that ◦ is associative; indeed, for any
π, σ, τ ∈ Sym(X ), we have that π ◦ (σ ◦ τ) = (π ◦ σ) ◦ τ ,
because for all x ∈ X , we have the following:(

π ◦ (σ ◦ τ)
)
(x) = π

(
(σ ◦ τ)(x)

)
= π

(
σ(τ(x))

)
= (π ◦ σ)

(
τ(x)

)
=

(
(π ◦ σ) ◦ τ

)
(x).

The identity element of this group is the identity function IdX .
The inverse element of any permutation π ∈ Sym(X ) is the
inverse permutation π−1.
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If a set X has at most two elements, then it is easy to see
that the group Sym(X ) is abelian.

However, if X has at least three elements, then X is not
abelian, as we now show.
Suppose that |X | ≥ 3, and let a, b, c be pairwise distinct
elements of X .
Let σ, τ : X → X be defined as follows:

σ(a) = b, σ(b) = a, and σ(x) = x for all x ∈ X \ {a, b};
τ(a) = c, τ(c) = a, and τ(x) = x for all x ∈ X \ {a, c}.

Clearly, σ, τ ∈ Sym(X ).
But now

(σ ◦ τ)(a) = σ
(
τ(a)

)
= σ(c) = c;

(τ ◦ σ)(a) = τ
(
σ(a)

)
= τ(b) = b.

Since b ̸= c, we have that (σ ◦ τ)(a) ̸= (τ ◦ σ)(a).
So, σ ◦ τ ̸= τ ◦ σ.
Thus, Sym(X ) is not abelian.
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We particularly often consider Sym(X ) for the case when
X = {1, . . . , n} for some positive integer n.

The set Sym({1, . . . , n}) is also denoted by Sym(n), Symn, or
Sn.
In this course, we will consistently use the notation Sn.
The group (Sn, ◦) is called the symmetric group of degree n.
Note that |Sn| = n!.
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A permutation π ∈ Sn can be represented in the following way:

π =
(

1 2 . . . n
π(1) π(2) . . . π(n)

)
.

So, in the top row, we have numbers 1, 2, . . . , n, and in the
bottom row, we have those same numbers in some order
(determined by the permutation π).
For example, the permutation π ∈ S4 given by

π(1) = 3,
π(2) = 2,
π(3) = 4,
π(4) = 1

can be represented as follows:

π =
(

1 2 3 4
3 2 4 1

)
.
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We can also represent permutations in Sn in terms of cycles.

Let us consider an example.
Suppose we are given the following permutation in S9:

π =
(

1 2 3 4 5 6 7 8 9
3 6 2 4 9 7 1 8 5

)
.

We can represent this permutation geometrically, as shown
below.

1

3 2

6

7

4

5

9

8

We can “encode” the picture that we obtained as a “product
of disjoint cycles”:

π = (13267)(4)(59)(8).

The above is also referred to as a “disjoint cycle
decomposition” of the permutation π.
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Reminder: π = (13267)(4)(59)(8).

1

3 2

6

7

4

5

9

8

The disjoint cycle decomposition of a permutation is unique
up to cyclic permutation of the elements within each cycle,
and up to a reordering of the cycles.
For example, the permutation π above can also be expressed
as follows: π = (95)(26713)(8)(4).
However, the first disjoint cycle decomposition is
canonical/standard because it satisfies the following two
properties:

within each cycle, the smallest number appears first;
the first elements of the cycles from the disjoint cycle
decomposition form an increasing sequence.

Usually, the canonical representation is preferred, but
occasionally, it may be more practical to use a non-canonical
one.



Reminder: π = (13267)(4)(59)(8).

1

3 2

6

7

4

5

9

8

The disjoint cycle decomposition of a permutation is unique
up to cyclic permutation of the elements within each cycle,
and up to a reordering of the cycles.

For example, the permutation π above can also be expressed
as follows: π = (95)(26713)(8)(4).
However, the first disjoint cycle decomposition is
canonical/standard because it satisfies the following two
properties:

within each cycle, the smallest number appears first;
the first elements of the cycles from the disjoint cycle
decomposition form an increasing sequence.

Usually, the canonical representation is preferred, but
occasionally, it may be more practical to use a non-canonical
one.
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When the n from Sn is clear from context, one-element cycles
may be omitted.
So, if we know that we are working in S9, then we may omit
the one-element cycles (4) and (8) from the representation
above, and write simply

π = (13267)(59).

In this case, the cycles (4) and (8) are understood from
context.
However, we can only do this when n has been specified
beforehand!

Otherwise, cycles of length one must be included.
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Notation: When there is danger of confusion, we put
commas between elements within cycles.

For instance, if we are working in S12, then (123) is ambiguous.
To avoid ambiguity, we write (1, 2, 3) or (12, 3), as appropriate.
However, if we are working in Sn, where n is a single-digit
number, then there is no danger of confusion, and so we
normally omit commas.
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Example 2.3.1
Find the disjoint cycle decompositions of the following
permutations.

(a) π1 =
(

1 2 3 4 5
2 5 4 3 1

)

(b) π2 =
(

1 2 3 4 5 6
3 2 4 1 6 5

)

(c) π3 =
(

1 2 3 4 5
2 5 1 3 4

)

Solution.

We have:
(a) π1 = (125)(34);
(b) π2 = (134)(2)(56);

we could also have written π ∈ S6, π = (134)(56);

(c) π3 = (12543).
□
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It is also easy to go the other way around: from the disjoint
cycle decomposition to the table representation.

For instance:

(143)(26)(5) =
(

1 2 3 4 5 6
4 6 1 3 5 2

)
;

(154362) =
(

1 2 3 4 5 6
5 1 6 3 4 2

)
.
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By composing two permutations, we get another permutation.

For example:

(
1 2 3 4 5
1 3 2 5 4

)
◦
(

1 2 3 4 5
2 4 5 1 3

)
=
(

1 2 3 4 5
3 5 4 1 2

)
;

(1)(23)(45) ◦ (124)(35) = (134)(25).
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The inverse of a permutation π in Sn can be obtained by
starting with a disjoint cycle decomposition of π, and then
reversing the order of elements in all cycles, i.e. turning each
cycle of the form (a1a2 . . . ak) into (ak . . . a2a1).

a1 a2

ak

(a1a2 . . . ak)

a1 a2

ak

(ak . . . a2a1)



For example, in S7:
if π1 = (143)(2576), then π−1

1 = (341)(6752) = (134)(2675);
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1

if π2 = (15)(2)(3476), then
π−1

2 = (51)(2)(6743) = (15)(2)(3674).
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Notation: The identity permutation in Sn is often denoted
simply by 1.

So, in this context, we have that

1 = (1)(2) . . . (n).

If we wish to emphasize n (or if we need to avoid confusion
with other kinds of 1 that may appear in our
proof/computation), then we can denote the identity
permutation in Sn by 1n.
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Definition
Given a positive integer n and a permutation π ∈ Sn, the sign of π,
denoted by sgn(π), is given by sgn(π) = (−1)n−k , where k is the
number of cycles in the disjoint cycle decomposition of π
including the one-element cycles.

For instance:

for π1 = (1367)(2)(45) in S7, we have

sgn(π1) = (−1)7−3 = 1;

for π2 = (12)(345)(6)(7) in S7, we have

sgn(π2) = (−1)7−4 = −1.
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Given a positive integer n and a permutation π ∈ Sn, the sign of π,
denoted by sgn(π), is given by sgn(π) = (−1)n−k , where k is the
number of cycles in the disjoint cycle decomposition of π
including the one-element cycles.

Equivalently, for π ∈ Sn, we have that sgn(π) = (−1)n′−k′ ,
where k ′ is the number of cycles in some disjoint cycles in
some disjoint cycle decomposition of π (possibly with some
one-element cycles omitted), and n′ is the number of elements
in those k ′ cycles.

The two definitions are equivalent because if d is the number
of omitted one-element cycles in some disjoint cycle
decomposition of π , then n = n′ + d , and if we write the
complete disjoint cycle decomposition of π including all
one-element cycles, then we get k = k ′ + d many cycles.

So,
n − k = n′ − k ′, and consequently, (−1)n−k = (−1)n′−k′ .
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For instance, for π3 = (123)(45) in S7, we have

sgn(π3) = (−1)5−2 = −1.

Note that the one-element cycles (6) and (7) are implicitly
understood for π3, that is, π3 = (123)(45)(6)(7).
And indeed, we have

sgn(π3) = (−1)7−4 = −1,

as before.
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Remark: Note that for all positive integers n, the identity
permutation in Sn has sign 1.

This is because the identity permutation in Sn has disjoint
cycle decomposition (1)(2) . . . (n), and so its sign is
(−1)n−n = (−1)0 = 1.

Terminology: Permutations whose sign is +1 are called even,
and permutations whose sign is −1 are called odd. Since the
sign of the identity permutation is +1, the identity
permutation is even.
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Proposition 2.3.2
Let n ≥ 2 be an integer, and let π be a permutation in Sn. Then
sgn(π−1) = sgn(π).

Proof.

This follows from the fact that π and π−1 have the same
number of cycles in their disjoint cycle decompositions (when the
one-element cycles are included).
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Slightly informally, a transposition is a permutation that
swaps two elements and fixes all the remaining ones.

More formally, given an integer n ≥ 2, a transposition in Sn is
a permutation π ∈ Sn for which there exist distinct
i , j ∈ {1, . . . , n} s.t.

π(i) = j ,
π(j) = i ,
π(ℓ) = ℓ for all ℓ ∈ {1, . . . , n} \ {i , j}.

Such a transposition is typically denoted by (ij), and the n − 2
many one-element cycles are implicitly understood.
For instance, the following permutation in S5 is a
transposition: (

1 2 3 4 5
1 5 3 4 2

)
= (25).

Note that this transposition could also have been written in
the form (1)(25)(3)(4).

More commonly, one-element cycles are omitted.
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Remark: Every transposition is its own inverse, that is, for
any transposition τ = (ij) in Sn (n ≥ 2), we have that
τ−1 = τ .

The sign of any transposition is −1, and so transpositions are
odd.

This follows straight from the definition of the sign of a
permutation.
Indeed, if τ is a transposition in Sn (n ≥ 2), then the disjoint
cycle decomposition of τ consists of one cycle of length two
and n − 2 many cycles of length one, and consequently, it
consists of n − 1 cycles total (when cycles of length one are
included).
So, sgn(τ) = (−1)n−(n−1) = −1.
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As we shall see, for n ≥ 2, any permutation can be written as
a composition of transpositions.

For instance, in S7, we have

(134)(2657) = (13) ◦ (34) ◦ (26) ◦ (65) ◦ (57).

The correctness of the above can easily be verified by checking
that the image of each element of {1, . . . , 7} under the
permutations (134)(2657) and (13) ◦ (34) ◦ (26) ◦ (65) ◦ (57)
is the same.

Moreover, this works in general, as the following proposition
shows (next slide).
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Proposition 2.3.3
Let n ≥ 2 be an integer. Then any permutation in Sn can be
written as a composition of transpositions.

Proof.

The identity permutation in Sn can be written in the form
(12) ◦ (12).
Let us now suppose that π is some permutation in Sn other than
the identity. Then π can be written as the product of one or more
disjoint cycles of length at least two (one-element cycles are
omitted in our expression, but are understood from context). Let
us say we have k cycles of length at least two:
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and so π is the composition of transpositions. □
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Example 2.3.4
Express each of the following permutations in S6 as the
composition of transpositions.

(a) π1 =
(

1 2 3 4 5 6
1 5 2 3 4 6

)
;

(b) π2 =
(

1 2 3 4 5 6
2 1 3 5 6 4

)
;

(c) π3 =
(

1 2 3 4 5 6
3 6 5 2 1 4

)
.

Solution.

(a) π1 =
(

1 2 3 4 5 6
1 5 2 3 4 6

)
= (2543) = (25) ◦ (54) ◦ (43);

(b) π2 =
(

1 2 3 4 5 6
2 1 3 5 6 4

)
= (12)(456) = (12)◦(45) ◦ (56);
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.

Solution (continued).

(c) π3 =
(

1 2 3 4 5 6
3 6 5 2 1 4

)
= (135)(264) =

(13) ◦ (35) ◦ (26) ◦ (64).
□



We note that the same permutation can be expressed as the
composition of transpositions in more than one way.

For instance, in S5, we have:
(12345) = (12) ◦ (23) ◦ (34) ◦ (45);
(12345) = (12) ◦ (23) ◦ (34) ◦ (45) ◦ (35) ◦ (35);
(12345) = (15) ◦ (14) ◦ (13) ◦ (12);
(12345) =
(35) ◦ (35) ◦ (23) ◦ (23) ◦ (15) ◦ (14) ◦ (13) ◦ (12) ◦ (35) ◦ (35).

However, as we shall see, for any given permutation π in Sn,
where n ≥ 2, in all representations of π as a composition of
transpositions, the number of transpositions is of the same
parity (i.e. it is either always even or always odd).
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Theorem 2.3.6
Let n ≥ 2. Then for any permutation π ∈ Sn, if π can be expressed
as a composition of r transpositions, then

(a) sgn(π) = (−1)r ;
(b) π is an even permutation iff r is even;
(c) π is an odd permutation iff r is odd.

The main ingredient of the proof of Theorem 2.3.6 is the
following proposition.

Proposition 2.3.5
Let n ≥ 2 be an integer. Then for all π, τ ∈ Sn s.t. τ is a
transposition, we have that sgn(τ ◦ π) = sgn(π ◦ τ) = −sgn(π).

We first prove Theorem 2.3.6 assuming Proposition 2.3.5, and
then we actually prove Proposition 2.3.5.
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Clearly, (b) and (c) follow
from (a). Part (a) follows from Proposition 2.3.5 by an easy
induction on r . Let us give the details. We prove the following
statement: “for every positive integer r and permutation π ∈ Sn, if
π is the composition of r transpositions, then sgn(π) = (−1)r .”
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Proof (continued). Reminder: WTS for every positive integer r
and permutation π ∈ Sn, if π is the composition of r
transpositions, then sgn(π) = (−1)r .

Base case: r = 1. Note that if π is the composition of one
transposition, i.e. π is itself a transposition, then π is odd, and we
have that sgn(π) = −1 = (−1)r .

Induction step: Fix a positive integer r , and assume that for any
permutation π ∈ Sn, if π is the composition of r transpositions,
then sgn(π) = (−1)r .

Now, fix a permutation π ∈ Sn in Sn s.t. π can be expressed as the
composition of r + 1 transpositions, say
π = (a0a′

0) ◦ (a1a′
1) ◦ · · · ◦ (ar a′

r ).

Then by the induction hypothesis, π′ := (a1a′
1) ◦ · · · ◦ (ar a′

r )
satisfies sgn(π′) = (−1)r . But since π = (a0a′

0) ◦ π′,
Proposition 2.3.5 guarantees that sgn(π) = −sgn(π′). So,
sgn(π) = −sgn(π′) = −(−1)r = (−1)r+1. This completes the
induction. □
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Proposition 2.3.5
Let n ≥ 2 be an integer. Then for all π, τ ∈ Sn s.t. τ is a
transposition, we have that sgn(τ ◦ π) = sgn(π ◦ τ) = −sgn(π).

Warning: In general, τ ◦ π��ZZ=π ◦ τ .
Proof of Proposition 2.3.5.

The Claim below proves one part of
the proposition (“sgn(τ ◦ π) = −sgn(π)”). The other part
(“sgn(π ◦ τ) = −sgn(π)”) can be proven using the Claim and
certain basic properties of permutations (as we shall see below).

Claim. For all π, τ ∈ Sn s.t. τ is a transposition, we have
that sgn(τ ◦ π) = −sgn(π).

Proof of the Claim. Fix π, τ ∈ Sn, and assume that τ = (ij) is a
transposition (here, i and j are some two distinct elements of
{1, . . . , n}). There are two cases to consider: when i and j are in
the same cycle of the disjoint cycle decomposition of π, and when
they are in different cycles.
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Claim. For all π, τ ∈ Sn s.t. τ is a transposition, we have
that sgn(τ ◦ π) = −sgn(π).

Proof of the Claim (continued). Reminder: τ = (ij).

Case 1: i and j are in the same cycle of the disjoint cycle
decomposition of π. After possibly swapping the order of our
disjoint cycles, and cyclically permuting the elements of the cycle
that contains i and j , we may assume that our disjoint cycle
decomposition of π is given by

π = (i a1 . . . ap j b1 . . . bq)(c1
1 . . . c1

ℓ1
) . . . (c r

1 . . . c r
ℓr

).

In the permutation τ ◦ π, the red cycle essentially gets “split up”
into two, while the blue cycles remain unaffected, as follows (next
slide):
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j
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c11
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cr1

crℓr

. . .

We now see that the disjoint cycle decomposition of τ ◦ π has one
cycle more than the disjoint cycle decomposition of π, and it
follows that sgn

(
τ ◦ π

)
= −sgn(π).

Indeed, the disjoint cycle decomposition of π has r + 1 cycles,
whereas the disjoint cycle decomposition of τ ◦ π has r + 2
cycles. Therefore, sgn

(
τ ◦ π

)
= (−1)n−(r+2) =

(−1)n−(r+1)−1 = −(−1)n−(r+1) = −sgn(π).
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Claim. For all π, τ ∈ Sn s.t. τ is a transposition, we have
that sgn(τ ◦ π) = −sgn(π).

Proof of the Claim (continued). Reminder: τ = (ij).
Case 2: i and j are in different cycles of the disjoint cycle
decomposition of π.

After possibly swapping the order of our
disjoint cycles, and cyclically permuting the elements of the cycles
that contain i and j , we may assume that our disjoint cycle
decomposition of π is given by

π = (i a1 . . . ap)(j b1 . . . bq)(c1
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We then have that
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(∗)= (ij) ◦ (i a1 . . . ap j b1 . . . bq)(c1
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where (*) follows from the argument given in Case 1. We now
compose both sides with τ = (ij) on the left, and we obtain (next
slide):
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Since (ij) = τ and (ij) ◦ (ij) = 1n, we deduce that

τ ◦ π = (i a1 . . . ap j b1 . . . bq)(c1
1 . . . c1

ℓ1
) . . . (c r

1 . . . c r
ℓr

).

As we can see, in the permutation τ ◦ π, the two red cycles of π
essentially get “merged” into one, while the blue cycles remain
unaffected. But now the disjoint cycle decomposition of τ ◦ π has
one cycle less than the disjoint cycle decomposition of π, and it
follows that sgn

(
τ ◦ π

)
= −sgn(π).

Indeed, the disjoint cycle decomposition of π has r + 2 cycles,
whereas the disjoint cycle decomposition of τ ◦ π has r + 1
cycles. Therefore, sgn

(
τ ◦ π

)
= (−1)n−(r+1) =

(−1)n−(r+2)+1 = −(−1)n−(r+2) = −sgn(π).
This completes the proof of the Claim. ♦



(ij) ◦ π = (ij) ◦ (ij) ◦ (i a1 . . . ap j b1 . . . bq)(c1
1 . . . c1

ℓ1
) . . . (c r

1 . . . c r
ℓr

).

Since (ij) = τ and (ij) ◦ (ij) = 1n, we deduce that

τ ◦ π = (i a1 . . . ap j b1 . . . bq)(c1
1 . . . c1

ℓ1
) . . . (c r

1 . . . c r
ℓr

).

As we can see, in the permutation τ ◦ π, the two red cycles of π
essentially get “merged” into one, while the blue cycles remain
unaffected. But now the disjoint cycle decomposition of τ ◦ π has
one cycle less than the disjoint cycle decomposition of π, and it
follows that sgn

(
τ ◦ π

)
= −sgn(π).

Indeed, the disjoint cycle decomposition of π has r + 2 cycles,
whereas the disjoint cycle decomposition of τ ◦ π has r + 1
cycles. Therefore, sgn

(
τ ◦ π

)
= (−1)n−(r+1) =

(−1)n−(r+2)+1 = −(−1)n−(r+2) = −sgn(π).
This completes the proof of the Claim. ♦



(ij) ◦ π = (ij) ◦ (ij) ◦ (i a1 . . . ap j b1 . . . bq)(c1
1 . . . c1

ℓ1
) . . . (c r

1 . . . c r
ℓr

).

Since (ij) = τ and (ij) ◦ (ij) = 1n, we deduce that

τ ◦ π = (i a1 . . . ap j b1 . . . bq)(c1
1 . . . c1

ℓ1
) . . . (c r

1 . . . c r
ℓr

).

As we can see, in the permutation τ ◦ π, the two red cycles of π
essentially get “merged” into one, while the blue cycles remain
unaffected.

But now the disjoint cycle decomposition of τ ◦ π has
one cycle less than the disjoint cycle decomposition of π, and it
follows that sgn

(
τ ◦ π

)
= −sgn(π).

Indeed, the disjoint cycle decomposition of π has r + 2 cycles,
whereas the disjoint cycle decomposition of τ ◦ π has r + 1
cycles. Therefore, sgn

(
τ ◦ π

)
= (−1)n−(r+1) =

(−1)n−(r+2)+1 = −(−1)n−(r+2) = −sgn(π).
This completes the proof of the Claim. ♦



(ij) ◦ π = (ij) ◦ (ij) ◦ (i a1 . . . ap j b1 . . . bq)(c1
1 . . . c1

ℓ1
) . . . (c r

1 . . . c r
ℓr

).

Since (ij) = τ and (ij) ◦ (ij) = 1n, we deduce that

τ ◦ π = (i a1 . . . ap j b1 . . . bq)(c1
1 . . . c1

ℓ1
) . . . (c r

1 . . . c r
ℓr

).

As we can see, in the permutation τ ◦ π, the two red cycles of π
essentially get “merged” into one, while the blue cycles remain
unaffected. But now the disjoint cycle decomposition of τ ◦ π has
one cycle less than the disjoint cycle decomposition of π, and it
follows that sgn

(
τ ◦ π

)
= −sgn(π).

Indeed, the disjoint cycle decomposition of π has r + 2 cycles,
whereas the disjoint cycle decomposition of τ ◦ π has r + 1
cycles. Therefore, sgn

(
τ ◦ π

)
= (−1)n−(r+1) =

(−1)n−(r+2)+1 = −(−1)n−(r+2) = −sgn(π).
This completes the proof of the Claim. ♦



Proposition 2.3.5
Let n ≥ 2 be an integer. Then for all π, τ ∈ Sn s.t. τ is a
transposition, we have that sgn(τ ◦ π) = sgn(π ◦ τ) = −sgn(π).

Proof (continued). We have now proven the Claim below.
Claim. For all π, τ ∈ Sn s.t. τ is a transposition, we have
that sgn(τ ◦ π) = −sgn(π).

Now, fix π, τ ∈ Sn s.t. τ is a transposition. By the Claim, we have
that sgn(τ ◦ π) = −π. On the other hand,

sgn(π ◦ τ) = sgn
(

(π ◦ τ)−1
)

by Proposition 2.3.2

= sgn
(
τ−1 ◦ π−1) by Proposition 1.10.17(c)

(or by Proposition 2.2.4(f))

= sgn
(
τ ◦ π−1) because τ is a transposition,

and so τ−1 = τ

= −sgn(π−1) by the Claim applied to
π−1 and τ

= −sgn(π) by Proposition 2.3.2.
□
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(b) π is an even permutation iff r is even;
(c) π is an odd permutation iff r is odd.
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So, sgn(σ ◦ π) = (−1)k+ℓ = (−1)k(−1)ℓ = sgn(σ)sgn(π). □
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For an integer n ≥ 2, let An be the set of all even
permutations in Sn.

Let us show that (An, ◦) is a subgroup of (Sn, ◦), where ◦ is
the composition of functions.
We apply Theorem 2.2.9.

Theorem 2.2.9
Let (G , ◦) be a group with identity element e, and with the inverse
of an element a ∈ G denoted by a−1. Then for all H ⊆ G , we have
that (H, ◦) is a subgroup of (G , ◦) iff all the following hold:

(i) e ∈ H;
(ii) H is closed under ◦, that is, ∀a, b ∈ H: a ◦ b ∈ H;
(iii) H is closed under inverses, that is, ∀a ∈ H: a−1 ∈ H.
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The identity element of Sn is the identity permutation 1n,
which is obviously even, and therefore belongs to An.
Next, by Theorem 2.3.7, a composition of two even
permutations is even, and consequently, An is closed under ◦.
Finally, by Proposition 2.3.2, the sign of a permutation in Sn is
equal to the sign of its inverse, and in particular, the inverse of
an even permutation is even; so, An is closed under inverses.
Theorem 2.2.9 now guarantees that An is indeed a subgroup
of Sn.
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Terminology: For an integer n ≥ 2, the group (An, ◦) is
called the alternating group of degree n.

Typically, we just say that An is the alternating group of
degree n, and the operation ◦ (composition of functions) is
understood from context.

We remark that the set of odd permutations in Sn (n ≥ 2),
call it On, does not form a subgroup of Sn.

Indeed, the identity permutation 1n is even and therefore does
not belong to On; so, by Theorem 2.2.9, On is not a subgroup
of Sn.

Remark: On is not standard notation for the set of odd
permutations in Sn; in fact, no standard notation exists for
this set.
However, An is indeed the standard notation for the set of
even permutations in Sn.
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Definition
Let n be a positive integer. An inversion of a permutation π ∈ Sn
is an ordered pair (i , j) of numbers in {1, . . . , n} s.t. i < j and
π(i) > π(j).

Example 2.3.8
The permutation

π =
(

1 2 3 4 5 6 7
2 1 3 6 5 4 7

)

in S7 has the following four inversions: (1, 2), (4, 5), (4, 6), (5, 6).

Theorem 2.3.9
Let n be a positive integer. Then all permutations π ∈ Sn satisfy
sgn(π) = (−1)r , where r is the number of inversions of π.
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Theorem 2.3.9
Let n be a positive integer. Then all permutations π ∈ Sn satisfy
sgn(π) = (−1)r , where r is the number of inversions of π.

Proof.

We proceed by induction on the number r of inversions.

Base case: r = 0. The only permutation with no inversions is the
identity permutation, and its sign is 1. Since (−1)0 = 1, this is
what we needed.

Induction step: Fix a non-negative integer r , and assume
inductively that any permutation in Sn that has exactly r
inversions has sign (−1)r . WTS any permutation in Sn that has
exactly r + 1 inversions has sign (−1)r+1.
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Theorem 2.3.9
Let n be a positive integer. Then all permutations π ∈ Sn satisfy
sgn(π) = (−1)r , where r is the number of inversions of π.

Proof (continued). Fix a permutation π ∈ Sn, and assume that it
has exactly r + 1 inversions.

Note that this implies that n ≥ 2.

In particular, π has at least one inversion, and it follows that there
exists some p ∈ {1, . . . , n − 1} s.t. (p, p + 1) is an inversion of π.

Otherwise, we would have that π(1) < π(2) < · · · < π(n),
and then π would be the identity permutation, contrary to the
fact that it has at least one inversion.

Now, consider the transposition τ :=
(
π(p)π(p + 1)

)
in Sn, and

set π′ := τ ◦ π, so that

π′ =
(

1 . . . p − 1 p p + 1 p + 2 . . . n
π(1) . . . π(p − 1) π(p + 1) π(p) π(p + 2) . . . π(n)

)
.
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Then π′ has exactly r inversions, i.e. exactly one inversion less
than π has. To see this, we note the following:

inversions (i , j) of π s.t. i , j /∈ {p, p + 1} are still inversions of
π′;
inversions of the form (i , p) of π correspond to inversions
(i , p + 1) of π′;
inversions of the form (i , p + 1) of π, where i < p, correspond
to inversions (i , p) of π′;
inversions of the form (p, j) of π, where p + 1 < j , correspond
to inversions (p + 1, j) of π′;
inversions of the form (p + 1, j) of π correspond to inversions
(p, j) of π′;
π′ has no other inversions, and in particular (p, p + 1) is not
an inversion of π′.
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Theorem 2.3.9
Let n be a positive integer. Then all permutations π ∈ Sn satisfy
sgn(π) = (−1)r , where r is the number of inversions of π.

Proof (continued). Reminder: π′ = τ ◦ π and π′ has exactly r
inversions (i.e. exactly one inversion less than π).

But now

(−1)r = sgn(π′) by the induction hypothesis,
since π′ has exactly r inversions

= sgn(τ ◦ π) because π′ = τ ◦ π

= −sgn(π) by Proposition 2.3.5,
since τ is a transposition,

and it follows that sgn(π) = (−1)r+1. This completes the
induction. □
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Remark: In the induction step of the proof of Theorem 2.3.9,
it was important that we chose an inversion of the form
(p, p + 1), and not just any inversion of our permutation π.

To explain why, let us take a look at an example.
Consider the permutation

π =
(

1 2 3 4 5 6 7
2 1 3 6 5 4 7

)
from Example 2.3.8.

We could choose the inversion (4, 5), and consider the
transposition τ :=

(
π(4)π(5)

)
= (65) = (56) and the

permutation

π′ := τ ◦ π = (56) ◦
(

1 2 3 4 5 6 7
2 1 3 6 5 4 7

)

=
(

1 2 3 4 5 6 7
2 1 3 5 6 4 7

)
Note that π′ has three inversions, whereas π has four.
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Reminder:

π =
(

1 2 3 4 5 6 7
2 1 3 6 5 4 7

)
.

If we had, instead, chosen an arbitrary inversion of π, then the
number of inversions would not necessarily decrease by one,
and we could not apply the induction hypothesis.
Indeed, suppose we chose the inversion (4, 6) of our
permutation π (above) and then considered the transposition
τ ′ :=

(
π(4)π(6)

)
= (64) = (46) and the permutation

π′′ := τ ′ ◦ π = (46) ◦
(

1 2 3 4 5 6 7
2 1 3 6 5 4 7

)

=
(

1 2 3 4 5 6 7
2 1 3 4 5 6 7

)
.

Note that π′′ has only one inversion (namely, (1, 2)), whereas
π has four.
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Definition
A field is an ordered triple (F, +, ·), where F is a set, and + and · are
binary operations on F (i.e. functions from F × F to F), called addition
and multiplication, respectively, satisfying the following axioms:

1 addition and multiplication are associative, that is, for all a, b, c ∈ F,
we have that a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c;

2 addition and multiplication are commutative, that is, for all
a, b ∈ F, we have that a + b = b + a and a · b = b · a;

3 there exist distinct elements 0F, 1F ∈ F s.t. for all a ∈ F, a + 0F = a
and a · 1F = a; 0F is called the additive identity of F, and 1F is
called the multiplicative identity of F;

4 for every a ∈ F, there exists an element in F, denoted by −a and
called the additive inverse of a, s.t. a + (−a) = 0F;

5 for all a ∈ F \ {0F}, there exists an element in F, denoted by a−1

and called the multiplicative inverse of a, s.t. a · a−1 = 1F;
6 multiplication is distributive over addition, that is, for all a, b, c ∈ F,

we have that a · (b + c) = (a · b) + (a · c).



Example 2.4.1
All the following are fields:

1 (Q, +, ·); 2 (R, +, ·); 3 (C, +, ·).

Note that (Z, +, ·) is not a field. This is because elements of
Z \ {−1, 0, 1} do not have multiplicative inverses.
As we shall see (Theorem 2.4.3), (Zp, +, ·) is a field for every
prime number p.

Notation:

If operations + and · are understood from context, then we
typically just say “field F” instead of “field (F, +, ·).”
For a, b ∈ F, we typically write ab instead of a · b, and we
typically write a − b instead of a + (−b).
As usual, unless parentheses indicate otherwise, we perform
multiplication before performing addition. So, for a, b, c ∈ F,
we write ab + c instead of (a · b) + c, and similarly, we write
a + bc instead of a + (b · c).
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Remark: Axioms 1, 2, and 3 imply that (F, +) and (F, ·) are
monoids with identity elements 0F and 1F, respectively.
Proposition 2.1.1 guarantees that 0F and 1F are unique.

When there is no danger of confusion, we write 0 and 1
instead of 0F and 1F, respectively.

Proposition 2.4.2
Let (F, +, ·) be a field. Then all the following hold:

(a) for all a ∈ F, 0a = a0 = 0;
(b) for all a, b ∈ F, if ab = 0, then a = 0 or b = 0;
(c) for all a ∈ F, (−1)a = −a.a

aThis statement may require some clarification. Here, −a is the additive
inverse of a. On the other hand, (−1)a is the product of −1 (the additive
inverse of the multiplicative identity) and a. So, −a is not simply a shorthand
for (−1)a. The two quantities are indeed equal, but this requires proof!

Proof: Later!
First, some remarks (next slide).



Remark: Axioms 1, 2, and 3 imply that (F, +) and (F, ·) are
monoids with identity elements 0F and 1F, respectively.
Proposition 2.1.1 guarantees that 0F and 1F are unique.
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Remarks:

1 Axioms 1, 2, 3, and 4 imply that (F, +) is an abelian group
with identity element 0F. By Proposition 2.2.1, this implies
that each element a ∈ F has a unique additive inverse −a.

2 By Proposition 2.4.2, for any a, b ∈ F \ {0F}, we have
ab ̸= 0F, i.e. ab ∈ F \ {0F}.

This, together with axioms 1 and 3, implies that (F \ {0F}, ·)
is a monoid with identity element 1F.
Next, by Proposition 2.4.2, and by axioms 2 (commutativity
of addition) and 3 (0F ̸= 1F), we have that we have that
a0F = 0Fa = 0F ̸= 1F.
This, together with axiom 5 implies that the multiplicative
inverse of any element a ∈ F \ {0F} also belongs to F \ {0F}.
So, (F \ {0F}, ·) is an abelian group with identity element 1F.
By Proposition 2.2.1, it follows that every element
a ∈ F \ {0F} has a unique multiplicative inverse a−1.

3 By axioms 2 and 6, for all a, b, c ∈ F, we have that
(b + c) · a = (b · a) + (c · a), or written in a simplified manner,
(b + c)a = ba + ca.

Indeed, for a, b, c ∈ F, we have that
(b + c)a ax. 2.= a(b + c) ax. 6.= ab + ac ax. 2.= ba + ca.
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Proposition 2.4.2
Let (F, +, ·) be a field. Then all the following hold:

(a) for all a ∈ F, 0a = a0 = 0;
(b) for all a, b ∈ F, if ab = 0, then a = 0 or b = 0;
(c) for all a ∈ F, (−1)a = −a.

Proof.

We first prove (a). Fix a ∈ F. Since multiplication in the
field F is commutative, we know that 0a = a0. So, it suffices to
show that a0 = 0.

First, note that

a0 (∗)= a(0 + 0) (∗∗)= a0 + a0,

where (*) follows from the fact that 0 + 0 = 0 (because 0 is the
additive identity of the field), and (**) follows from axiom 6 of the
definition of a field. We have now established that a0 = a0 + a0,
and it follows that (next slide):
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Proof (continued). Reminder: a0 = a0 + a0.

0 = −(a0) + a0 because −(a0) is the
additive inverse of a0

= −(a0) + (a0 + a0) because a0 = a0 + a0
(proven above)

= (−(a0) + a0) + a0 because + is associative

= 0 + a0 because −(a0) is the
additive inverse of a0

= a0 because 0 is the additive
identity of the field F.

Thus, a0 = 0. This proves (a).
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(b) for all a, b ∈ F, if ab = 0, then a = 0 or b = 0;
(c) for all a ∈ F, (−1)a = −a.

Proof (continued). Next, we prove (b).

Fix a, b ∈ F s.t. ab = 0.
WTS a = 0 or b = 0. We may assume that b ̸= 0, for otherwise
we are done. But now b has a multiplicative inverse b−1, and we
compute:

a = a · 1 = a(bb−1) (∗)= (ab)b−1 (∗∗)= 0b−1 (∗∗∗)= 0,

where (*) follows from the associativity of multiplication, (**)
follows from the fact that ab = 0, and (***) follows from (a).
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Proof (continued). It remains to prove (c).

Fix a ∈ F. WTS
(−1)a = −a. First, we have that

0 (∗)= 0a = (1 − 1)a = 1a + (−1)a = a + (−1)a,

where (*) follows from (a). Consequently,

−a = −a + 0 because 0 is the additive
identity of the field F

= −a + (a + (−1)a) because 0 = a + (−1)a
(proven above)

= (−a + a) + (−1)a because + is associative

= 0 + (−1)a because −a is the additive
inverse of a

= (−1)a because 0 is the additive
identity of the field F.

This proves (c). □
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= (−1)a because 0 is the additive
identity of the field F.

This proves (c). □



Proposition 2.4.2
Let (F, +, ·) be a field. Then all the following hold:

(a) for all a ∈ F, 0a = a0 = 0;
(b) for all a, b ∈ F, if ab = 0, then a = 0 or b = 0;
(c) for all a ∈ F, (−1)a = −a.



We now consider finite fields.

As we shall see, for all prime numbers p, Zp is a field.

However, for positive integers n that are not prime, (Zn, +, ·)
is not a field.

To prove this, we will need Fermat’s Little Theorem.

Fermat’s Little Theorem
If p ∈ N is a prime number and a ∈ Zp \ {0}, then ap−1 = 1.

Theorem 2.4.3
For every prime number p, (Zp, +, ·) is a field.
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Proof.

By Proposition 0.2.11, addition and multiplication are
associative and commutative in Zp, and multiplication is
distributive over addition in Zp. So, (Zp, +, ·) satisfies axioms 1, 2,
and 6 from the definition of a field.

Further, 0 := [0]p is the additive identity and 1 := [1]p is the
multiplicative identity of (Zp, +, ·). Moreover, [0]p ̸= [1]p, since
0 ̸≡ 1 (mod p). Thus, (Zp, +, ·) satisfies axiom 3 from the
definition of a field.

Further, for all a ∈ Z, the additive inverse of [a]p in (Zp, +, ·) is
[−a]p, and so axiom 4 is satisfied.
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Proof (continued). Finally, by Fermat’s Little Theorem, every
number a ∈ Zp \ {0} has a multiplicative inverse, namely, ap−2,
and it follows that axiom 5 is satisfied.

This proves that (Zp, +, ·) is indeed a field, which is what we
needed to show. □
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Theorem 2.4.3
For every prime number p, (Zp, +, ·) is a field.

Remark: For a positive integer n that is not prime, (Zn, +, ·)
is not a field.

If n = 1, then this follows from the fact that Zn = Z1 has only
one element, whereas every field has at least two elements
(namely, the additive and multiplicative identities, which
cannot be equal by axiom 3 of the definition of a field).
Now, let us suppose that n ≥ 2 is composite, say n = pq
where p, q ≥ 2 are integers. Then [p]n[q]n = [pq]n = [n]n = 0.
So, if (Zn, +, ·) were a field, Proposition 2.4.2(b) would imply
that at least one of [p]n and [q]n is 0, a contradiction.
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Theorem 2.4.4
Let n ≥ 2 be an integer. Then there exists a field of size n iff n is a
power of a prime.a Moreover, if n is a power of a prime, then up to
“isomorphism” (i.e. up to renaming the operations and elements of
the field), there is exactly one field of size n, and it is denoted by
Fn.b

a“n is a power of a prime” means that there exists some prime number p
and a positive integer m s.t. n = pm.

bTechnically, the field is (Fn, +, ·), but we typically write just Fn.

Proof. Omitted.

Remark: For a prime number p, we have that Fp = Zp.

However, if n = pm, where p is a prime number and m ≥ 2 is
an integer, then Fn ̸= Zn (this is because Fn is a field, but Zn
is not a field).
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Let F be a field. For a ∈ F \ {0}, we sometimes use the
notation 1

a instead of a−1 (the multiplicative inverse of a in
the field F).

For instance, in Z3, we have 1
1 = 1−1 = 1 and 1

2 = 2−1 = 2
(because in Z3, we have that 2 · 2 = 1).

In a similar vein, for scalars a, b ∈ F s.t. b ̸= 0, we sometimes
write a

b instead of b−1a.

For example, in Z5, we have that 3−1 = 2 (because 3 · 2 = 1),
and so 4

3 = 3−1 · 4 = 2 · 4 = 3.

It is sometimes more convenient to use the notation 1
a instead

of a−1, and a
b instead of b−1a.

However, when working over a finite field such as Zp (for a
prime number p), we never leave a fraction as a final answer,
and instead, we always simplify.
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Definition
The characteristic of a field F is the smallest positive integer n (if
it exists) s.t. in the field F, we have that

1 + · · · + 1︸ ︷︷ ︸
n

= 0,

where the 1’s and the 0 are understood to be in the field F. If no
such n exists, then char(F) := 0.

Note that fields Q, R, and C all have characteristic 0.
On the other hand, for all prime numbers p, we have that
char(Zp) = p.

Theorem 2.4.5
The characteristic of any field is either 0 or a prime number.
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Theorem 2.4.5
The characteristic of any field is either 0 or a prime number.

Proof.

Let F be a field. We may assume that char(F) ̸= 0, for
otherwise we are done. So, char(F) is a positive integer.

By the definition of a field, we have that 1 ̸= 0, and so
char(F) ≥ 2. Now, suppose that char(F) is not prime, and fix
integers p, q ≥ 2 s.t. char(F) = pq. Then(

1 + · · · + 1︸ ︷︷ ︸
p

)(
1 + · · · + 1︸ ︷︷ ︸

q

)
= 1 + · · · + 1︸ ︷︷ ︸

pq

= 0.

Since F is a field, Proposition 2.4.2(b) guarantees that at least
one of the numbers 1 + · · · + 1︸ ︷︷ ︸

p

and 1 + · · · + 1︸ ︷︷ ︸
q

is zero. But this is

impossible since 0 < p, q < char(F). □



Theorem 2.4.5
The characteristic of any field is either 0 or a prime number.

Proof. Let F be a field.

We may assume that char(F) ̸= 0, for
otherwise we are done. So, char(F) is a positive integer.

By the definition of a field, we have that 1 ̸= 0, and so
char(F) ≥ 2. Now, suppose that char(F) is not prime, and fix
integers p, q ≥ 2 s.t. char(F) = pq. Then(

1 + · · · + 1︸ ︷︷ ︸
p

)(
1 + · · · + 1︸ ︷︷ ︸

q

)
= 1 + · · · + 1︸ ︷︷ ︸

pq

= 0.

Since F is a field, Proposition 2.4.2(b) guarantees that at least
one of the numbers 1 + · · · + 1︸ ︷︷ ︸

p

and 1 + · · · + 1︸ ︷︷ ︸
q

is zero. But this is

impossible since 0 < p, q < char(F). □



Theorem 2.4.5
The characteristic of any field is either 0 or a prime number.

Proof. Let F be a field. We may assume that char(F) ̸= 0, for
otherwise we are done.

So, char(F) is a positive integer.

By the definition of a field, we have that 1 ̸= 0, and so
char(F) ≥ 2. Now, suppose that char(F) is not prime, and fix
integers p, q ≥ 2 s.t. char(F) = pq. Then(

1 + · · · + 1︸ ︷︷ ︸
p

)(
1 + · · · + 1︸ ︷︷ ︸

q

)
= 1 + · · · + 1︸ ︷︷ ︸

pq

= 0.

Since F is a field, Proposition 2.4.2(b) guarantees that at least
one of the numbers 1 + · · · + 1︸ ︷︷ ︸

p

and 1 + · · · + 1︸ ︷︷ ︸
q

is zero. But this is

impossible since 0 < p, q < char(F). □



Theorem 2.4.5
The characteristic of any field is either 0 or a prime number.

Proof. Let F be a field. We may assume that char(F) ̸= 0, for
otherwise we are done. So, char(F) is a positive integer.

By the definition of a field, we have that 1 ̸= 0, and so
char(F) ≥ 2. Now, suppose that char(F) is not prime, and fix
integers p, q ≥ 2 s.t. char(F) = pq. Then(

1 + · · · + 1︸ ︷︷ ︸
p

)(
1 + · · · + 1︸ ︷︷ ︸

q

)
= 1 + · · · + 1︸ ︷︷ ︸

pq

= 0.

Since F is a field, Proposition 2.4.2(b) guarantees that at least
one of the numbers 1 + · · · + 1︸ ︷︷ ︸

p

and 1 + · · · + 1︸ ︷︷ ︸
q

is zero. But this is

impossible since 0 < p, q < char(F). □



Theorem 2.4.5
The characteristic of any field is either 0 or a prime number.

Proof. Let F be a field. We may assume that char(F) ̸= 0, for
otherwise we are done. So, char(F) is a positive integer.

By the definition of a field, we have that 1 ̸= 0, and so
char(F) ≥ 2.

Now, suppose that char(F) is not prime, and fix
integers p, q ≥ 2 s.t. char(F) = pq. Then(

1 + · · · + 1︸ ︷︷ ︸
p

)(
1 + · · · + 1︸ ︷︷ ︸

q

)
= 1 + · · · + 1︸ ︷︷ ︸

pq

= 0.

Since F is a field, Proposition 2.4.2(b) guarantees that at least
one of the numbers 1 + · · · + 1︸ ︷︷ ︸

p

and 1 + · · · + 1︸ ︷︷ ︸
q

is zero. But this is

impossible since 0 < p, q < char(F). □



Theorem 2.4.5
The characteristic of any field is either 0 or a prime number.

Proof. Let F be a field. We may assume that char(F) ̸= 0, for
otherwise we are done. So, char(F) is a positive integer.

By the definition of a field, we have that 1 ̸= 0, and so
char(F) ≥ 2. Now, suppose that char(F) is not prime, and fix
integers p, q ≥ 2 s.t. char(F) = pq.

Then(
1 + · · · + 1︸ ︷︷ ︸

p

)(
1 + · · · + 1︸ ︷︷ ︸

q

)
= 1 + · · · + 1︸ ︷︷ ︸

pq

= 0.

Since F is a field, Proposition 2.4.2(b) guarantees that at least
one of the numbers 1 + · · · + 1︸ ︷︷ ︸

p

and 1 + · · · + 1︸ ︷︷ ︸
q

is zero. But this is

impossible since 0 < p, q < char(F). □



Theorem 2.4.5
The characteristic of any field is either 0 or a prime number.

Proof. Let F be a field. We may assume that char(F) ̸= 0, for
otherwise we are done. So, char(F) is a positive integer.

By the definition of a field, we have that 1 ̸= 0, and so
char(F) ≥ 2. Now, suppose that char(F) is not prime, and fix
integers p, q ≥ 2 s.t. char(F) = pq. Then(

1 + · · · + 1︸ ︷︷ ︸
p

)(
1 + · · · + 1︸ ︷︷ ︸

q

)
= 1 + · · · + 1︸ ︷︷ ︸

pq

= 0.

Since F is a field, Proposition 2.4.2(b) guarantees that at least
one of the numbers 1 + · · · + 1︸ ︷︷ ︸

p

and 1 + · · · + 1︸ ︷︷ ︸
q

is zero. But this is

impossible since 0 < p, q < char(F). □



Theorem 2.4.5
The characteristic of any field is either 0 or a prime number.

Proof. Let F be a field. We may assume that char(F) ̸= 0, for
otherwise we are done. So, char(F) is a positive integer.

By the definition of a field, we have that 1 ̸= 0, and so
char(F) ≥ 2. Now, suppose that char(F) is not prime, and fix
integers p, q ≥ 2 s.t. char(F) = pq. Then(

1 + · · · + 1︸ ︷︷ ︸
p

)(
1 + · · · + 1︸ ︷︷ ︸

q

)
= 1 + · · · + 1︸ ︷︷ ︸

pq

= 0.

Since F is a field, Proposition 2.4.2(b) guarantees that at least
one of the numbers 1 + · · · + 1︸ ︷︷ ︸

p

and 1 + · · · + 1︸ ︷︷ ︸
q

is zero.

But this is

impossible since 0 < p, q < char(F). □



Theorem 2.4.5
The characteristic of any field is either 0 or a prime number.

Proof. Let F be a field. We may assume that char(F) ̸= 0, for
otherwise we are done. So, char(F) is a positive integer.

By the definition of a field, we have that 1 ̸= 0, and so
char(F) ≥ 2. Now, suppose that char(F) is not prime, and fix
integers p, q ≥ 2 s.t. char(F) = pq. Then(

1 + · · · + 1︸ ︷︷ ︸
p

)(
1 + · · · + 1︸ ︷︷ ︸

q

)
= 1 + · · · + 1︸ ︷︷ ︸

pq

= 0.

Since F is a field, Proposition 2.4.2(b) guarantees that at least
one of the numbers 1 + · · · + 1︸ ︷︷ ︸

p

and 1 + · · · + 1︸ ︷︷ ︸
q

is zero. But this is

impossible since 0 < p, q < char(F). □


