Linear Algebra 1

Lecture \#6

Groups

Irena Penev

November 13, 2023

This lecture consists of two parts:

This lecture consists of two parts:
(1) Monoids

This lecture consists of two parts:
(1) Monoids
(2) Groups
(1) Monoids
(1) Monoids

Definition

A monoid is an ordered pair (S, \circ), where S is a set and \circ is a binary operation on S (i.e. ०: $S \times S \rightarrow S$), satisfying the following two axioms:
(1) the operation \circ is associative, i.e. $\forall a, b, c \in S$, we have that $a \circ(b \circ c)=(a \circ b) \circ c$;
(2) there exists some $e \in S$, called the identity element of (S, \circ), s.t. $\forall a \in S$, we have that $e \circ a=a$ and $a \circ e=a$.
(1) Monoids

Definition

A monoid is an ordered pair (S, \circ), where S is a set and \circ is a binary operation on S (i.e. ०: $S \times S \rightarrow S$), satisfying the following two axioms:
(1) the operation \circ is associative, i.e. $\forall a, b, c \in S$, we have that $a \circ(b \circ c)=(a \circ b) \circ c$;
(2) there exists some $e \in S$, called the identity element of (S, \circ), s.t. $\forall a \in S$, we have that $e \circ a=a$ and $a \circ e=a$.

Proposition 2.1.1

Every monoid has a unique identity element.

- Proof: Later!
(1) Monoids

Definition

A monoid is an ordered pair (S, \circ), where S is a set and \circ is a binary operation on S (i.e. ०: $S \times S \rightarrow S$), satisfying the following two axioms:
(1) the operation \circ is associative, i.e. $\forall a, b, c \in S$, we have that $a \circ(b \circ c)=(a \circ b) \circ c$;
(2) there exists some $e \in S$, called the identity element of (S, \circ), s.t. $\forall a \in S$, we have that $e \circ a=a$ and $a \circ e=a$.

Proposition 2.1.1

Every monoid has a unique identity element.

- Proof: Later!
- First, some examples.

Example 2.1.2

All the following are monoids:
(1) $\left(\mathbb{N}_{0},+\right)$;
(3) $(\mathbb{Q},+)$;
(6) $(\mathbb{C},+)$.
(2) $(\mathbb{Z},+)$;
(1) $(\mathbb{R},+)$;

In each of the above, 0 is the identity element.

Example 2.1.2

All the following are monoids:
(1) $\left(\mathbb{N}_{0},+\right)$;
(3) $(\mathbb{Q},+)$;
(6) $(\mathbb{C},+)$.
(2) $(\mathbb{Z},+)$;
(1) $(\mathbb{R},+)$;

In each of the above, 0 is the identity element.

- Remark: $(\mathbb{N},+)$ is not a monoid, since it does not have an identity element.

Example 2.1.3

All the following are monoids ("." denotes multiplication):
(1) $\left(\mathbb{N}_{0}, \cdot\right)$;
(3) (\mathbb{Z}, \cdot);
(5) (\mathbb{R}, \cdot);
(2) (\mathbb{N}, \cdot);
(1) (\mathbb{Q}, \cdot);
(6) (\mathbb{C}, \cdot).

In each of the above, 1 is the identity element.

Example 2.1.3

All the following are monoids ("." denotes multiplication):
(1) $\left(\mathbb{N}_{0}, \cdot\right)$;
(3) (\mathbb{Z}, \cdot);
(6) (\mathbb{R}, \cdot);
(2) (\mathbb{N}, \cdot);
(4) (\mathbb{Q}, \cdot);
© ($\mathbb{C}, \cdot)$.

In each of the above, 1 is the identity element.

Example 2.1.4

All the following are monoids ("." denotes multiplication):
(1) (\mathbb{N}, \cdot);
(3) $\mathbb{Q} \backslash\{0\}, \cdot)$;
(6) $(\mathbb{C} \backslash\{0\}, \cdot)$.
(2) $(\mathbb{Z} \backslash\{0\}, \cdot)$;
(3) $(\mathbb{R} \backslash\{0\}, \cdot)$;

In each of the above, 1 is the identity element.

Proposition 2.1.1

Every monoid has a unique identity element.
Proof.

Proposition 2.1.1

Every monoid has a unique identity element.
Proof. Let (S, \circ) be a monoid.

Proposition 2.1.1

Every monoid has a unique identity element.
Proof. Let (S, \circ) be a monoid. By definition (in particular, by axiom 2), the monoid (S, \circ) has an identity element; we must show that this identity element is unique. Suppose that e_{1}, e_{2} are identity elements of (S, \circ).

Proposition 2.1.1

Every monoid has a unique identity element.
Proof. Let (S, \circ) be a monoid. By definition (in particular, by axiom 2), the monoid (S, \circ) has an identity element; we must show that this identity element is unique. Suppose that e_{1}, e_{2} are identity elements of (S, \circ). Then

$$
e_{1} \stackrel{(*)}{=} e_{1} \circ e_{2} \stackrel{(* *)}{=} e_{2}
$$

where $\left(^{*}\right)$ follows from the fact that e_{2} is the identity element of the monoid (S, \circ), and $\left({ }^{* *}\right)$ follows from the fact that e_{1} is the identity element of the monoid (S, \circ). So, the identity element of the monoid (S, \circ) is unique. \square
(2) Groups

(2) Groups

Definition

A group is an ordered pair (G, \circ), where G is a set and \circ is a binary operation on G (i.e. $\circ: G \times G \rightarrow G$) that satisfy the following three axioms:
(1) the operation \circ is associative, i.e. $\forall a, b, c \in G$, we have that $a \circ(b \circ c)=(a \circ b) \circ c$;
(2) there exists some $e \in G$, called the identity element of (G, \circ), s.t. $\forall a \in G$, we have that $e \circ a=a$ and $a \circ e=a$;
(3) $\forall a \in G, \exists a^{\prime} \in G$, called the inverse of a, s.t. $a \circ a^{\prime}=e$ and $a^{\prime} \circ a=e$.
An abelian group is a group (G, \circ) that satisfies the following additional axiom:
(9) the operation \circ is commutative, i.e. $\forall a, b \in G$, we have that $a \circ b=b \circ a$.
A non-abelian group is a group that is not abelian.

- Remark: Note that the first two axioms (axioms 1 and 2) from the definition of a group are precisely the monoid axioms.
- Remark: Note that the first two axioms (axioms 1 and 2) from the definition of a group are precisely the monoid axioms.
- So, every group is a monoid.
- Remark: Note that the first two axioms (axioms 1 and 2) from the definition of a group are precisely the monoid axioms.
- So, every group is a monoid.
- By Proposition 2.1.1, it follows that the identity element e of a group is unique.
- Remark: Note that the first two axioms (axioms 1 and 2) from the definition of a group are precisely the monoid axioms.
- So, every group is a monoid.
- By Proposition 2.1.1, it follows that the identity element e of a group is unique.
- In particular, the third axiom (axiom 3) makes sense.
- Remark: Note that the first two axioms (axioms 1 and 2) from the definition of a group are precisely the monoid axioms.
- So, every group is a monoid.
- By Proposition 2.1.1, it follows that the identity element e of a group is unique.
- In particular, the third axiom (axiom 3) makes sense.
- Terminology/Notation: If the operation \circ of the group (G, \circ) is clear from context, then we may say that G is a group, rather than that (G, \circ) is a group.
- Remark: Note that the first two axioms (axioms 1 and 2) from the definition of a group are precisely the monoid axioms.
- So, every group is a monoid.
- By Proposition 2.1.1, it follows that the identity element e of a group is unique.
- In particular, the third axiom (axiom 3) makes sense.
- Terminology/Notation: If the operation \circ of the group (G, \circ) is clear from context, then we may say that G is a group, rather than that (G, \circ) is a group.
- However, this is only done if there is no chance of confusion, and so when in doubt, you should specify the operation.
- Remark: Note that the first two axioms (axioms 1 and 2) from the definition of a group are precisely the monoid axioms.
- So, every group is a monoid.
- By Proposition 2.1.1, it follows that the identity element e of a group is unique.
- In particular, the third axiom (axiom 3) makes sense.
- Terminology/Notation: If the operation \circ of the group (G, \circ) is clear from context, then we may say that G is a group, rather than that (G, \circ) is a group.
- However, this is only done if there is no chance of confusion, and so when in doubt, you should specify the operation.
- Sometimes, we say " G is a group under the operation \circ," which means exactly the same thing as " (G, \circ) is a group."

Proposition 2.2.1

Each element of a group has a unique inverse.

- Proof: Later!

Proposition 2.2.1

Each element of a group has a unique inverse.

- Proof: Later!
- First, we introduce some notation and consider a few examples.

Proposition 2.2.1

Each element of a group has a unique inverse.

- Proof: Later!
- First, we introduce some notation and consider a few examples.
- Notation: Typically, the (unique) inverse of an element g of a group (G, \circ) is denoted by g^{-1}.

Proposition 2.2.1

Each element of a group has a unique inverse.

- Proof: Later!
- First, we introduce some notation and consider a few examples.
- Notation: Typically, the (unique) inverse of an element g of a group (G, \circ) is denoted by g^{-1}.
- However, when the group operation is denoted by + (note: this is typically done only if the group is abelian), then the inverse of an element g is denoted by $-g$.

Example 2.2.2

All the following are abelian groups:
(1) $(\mathbb{Z},+)$;
(2) $(\mathbb{Q},+)$;
(3) $(\mathbb{R},+)$;
(a) $(\mathbb{C},+)$.

In each of the above cases, the identity element is 0 , and the inverse of a group element g is $-g$. ${ }^{a}$
${ }^{2}$ For example, in the group $(\mathbb{R},+)$, the inverse of $\sqrt{13}$ is $-\sqrt{13}$.

Example 2.2.2

All the following are abelian groups:
(1) $(\mathbb{Z},+)$;
(2) $(\mathbb{Q},+)$;
(3) $(\mathbb{R},+)$;
(a) $(\mathbb{C},+)$.

In each of the above cases, the identity element is 0 , and the inverse of a group element g is $-g$. ${ }^{a}$
${ }^{2}$ For example, in the group $(\mathbb{R},+)$, the inverse of $\sqrt{13}$ is $-\sqrt{13}$.

- Note that the monoid $\left(\mathbb{N}_{0},+\right)$ is not a group because elements other than 0 do not have inverses, and so axiom 3 from the definition of a group is not satisfied.

Example 2.2.3

All the following are abelian groups:
(1) $(\mathbb{Q} \backslash\{0\}, \cdot)$;
(2) $(\mathbb{R} \backslash\{0\}, \cdot)$;
(3) $(\mathbb{C} \backslash\{0\}, \cdot)$.

In each of the above cases, the identity element is 1 , and the inverse of a group element g is $g^{-1}=\frac{1}{g}$. ${ }^{\text {a }}$

[^0]
Example 2.2.3

All the following are abelian groups:
(1) $(\mathbb{Q} \backslash\{0\}, \cdot)$;
(2) $(\mathbb{R} \backslash\{0\}, \cdot)$;
(3) $(\mathbb{C} \backslash\{0\}, \cdot)$.

In each of the above cases, the identity element is 1 , and the inverse of a group element g is $g^{-1}=\frac{1}{g}$. ${ }^{\text {a }}$

$$
{ }^{\text {a }} \text { For example, in the group }(\mathbb{R} \backslash\{0\}, \cdot) \text {, the inverse of } \sqrt{13} \text { is } \frac{1}{\sqrt{13}} \text {. }
$$

- Remark: Monoids (\mathbb{Q}, \cdot), (\mathbb{R}, \cdot), and (\mathbb{C}, \cdot) are not groups because, in each of those cases, 0 does not have an inverse element.

Example 2.2.3

All the following are abelian groups:
(1) $(\mathbb{Q} \backslash\{0\}, \cdot)$;
(2) $(\mathbb{R} \backslash\{0\}, \cdot)$;
(3) $(\mathbb{C} \backslash\{0\}, \cdot)$.

In each of the above cases, the identity element is 1 , and the inverse of a group element g is $g^{-1}=\frac{1}{g}$. ${ }^{\text {a }}$

$$
{ }^{\text {a }} \text { For example, in the group }(\mathbb{R} \backslash\{0\}, \cdot) \text {, the inverse of } \sqrt{13} \text { is } \frac{1}{\sqrt{13}} \text {. }
$$

- Remark: Monoids (\mathbb{Q}, \cdot), (\mathbb{R}, \cdot), and (\mathbb{C}, \cdot) are not groups because, in each of those cases, 0 does not have an inverse element.
- Note also that $(\mathbb{Z} \backslash\{0\}, \cdot)$ is not a group because elements other than 1 and -1 do not have inverses.

Example 2.2.3

All the following are abelian groups:
(1) $(\mathbb{Q} \backslash\{0\}, \cdot)$;
(2) $(\mathbb{R} \backslash\{0\}, \cdot)$;
(3) $(\mathbb{C} \backslash\{0\}, \cdot)$.

In each of the above cases, the identity element is 1 , and the inverse of a group element g is $g^{-1}=\frac{1}{g}$. ${ }^{\text {a }}$

$$
{ }^{\text {a }} \text { For example, in the group }(\mathbb{R} \backslash\{0\}, \cdot) \text {, the inverse of } \sqrt{13} \text { is } \frac{1}{\sqrt{13}} \text {. }
$$

- Remark: Monoids (\mathbb{Q}, \cdot), (\mathbb{R}, \cdot), and (\mathbb{C}, \cdot) are not groups because, in each of those cases, 0 does not have an inverse element.
- Note also that $(\mathbb{Z} \backslash\{0\}, \cdot)$ is not a group because elements other than 1 and -1 do not have inverses.
- Remark: It might now seem that all groups are abelian. However, this is not the case: we will see examples of non-abelian groups later.

Proposition 2.2.1

Each element of a group has a unique inverse.
Proof.

Proposition 2.2.1

Each element of a group has a unique inverse.
Proof. Let (G, \circ) be a group, and let e be its identity element.

Proposition 2.2.1

Each element of a group has a unique inverse.
Proof. Let (G, \circ) be a group, and let e be its identity element. Fix some $g \in G$.

Proposition 2.2.1

Each element of a group has a unique inverse.
Proof. Let (G, \circ) be a group, and let e be its identity element. Fix some $g \in G$. By the definition of a group (and in particular, by axiom 3), g has an inverse in the group (G, \circ); WTS it is unique.

Proposition 2.2.1

Each element of a group has a unique inverse.

Proof. Let (G, \circ) be a group, and let e be its identity element. Fix some $g \in G$. By the definition of a group (and in particular, by axiom 3), g has an inverse in the group (G, \circ); WTS it is unique. Let g_{1} and g_{2} be inverses of g in the group (G, \circ). Then

$$
\begin{array}{rlrl}
g_{1} & =g_{1} \circ e & \text { because } e \text { is the identity element of }(G, \circ) \\
& =g_{1} \circ\left(g \circ g_{2}\right) & & \text { because } g_{2} \text { is an inverse of } g \\
& =\left(g_{1} \circ g\right) \circ g_{2} & & \text { because } \circ \text { is associative } \\
& =e \circ g_{2} & & \text { because } g_{1} \text { is an inverse of } g \\
& =g_{2} & \text { because } e \text { is the identity element of }(G, \circ) .
\end{array}
$$

We have now shown that $g_{1}=g_{2}$. So, the inverse of g is unique. \square

Proposition 2.2.4

Let (G, o) be a group with identity element e. Then all the following hold (here, the inverse of a group element g is denoted by g^{-1}):
(0) $\forall a, b, c \in G$, if $a \circ b=a \circ c$, then $b=c$;
(b) $\forall a, b, c \in G$, if $b \circ a=c \circ a$, then $b=c$;
(0) $\forall a, b \in G, \exists!x \in G$ s.t. $a \circ x=b$;
(0) $\forall a, b \in G, \exists!x \in G$ s.t. $x \circ a=b$;
(0) $\forall a \in G:\left(a^{-1}\right)^{-1}=a$;
(9) $\forall a, b \in G:(a \circ b)^{-1}=b^{-1} \circ a^{-1}$.

Proposition 2.2.4

Let (G, o) be a group with identity element e. Then all the following hold (here, the inverse of a group element g is denoted by g^{-1}):
(a) $\forall a, b, c \in G$, if $a \circ b=a \circ c$, then $b=c$;
(b) $\forall a, b, c \in G$, if $b \circ a=c \circ a$, then $b=c$;
(0) $\forall a, b \in G, \exists!x \in G$ s.t. $a \circ x=b$;
(0) $\forall a, b \in G, \exists!x \in G$ s.t. $x \circ a=b$;
(0) $\forall a \in G:\left(a^{-1}\right)^{-1}=a$;
(1) $\forall a, b \in G:(a \circ b)^{-1}=b^{-1} \circ a^{-1}$.

- We will prove (a), (c), (e), and (f).

Proposition 2.2.4

Let (G, o) be a group with identity element e. Then all the following hold (here, the inverse of a group element g is denoted by g^{-1}):
(a) $\forall a, b, c \in G$, if $a \circ b=a \circ c$, then $b=c$;
(b) $\forall a, b, c \in G$, if $b \circ a=c \circ a$, then $b=c$;
(0) $\forall a, b \in G, \exists!x \in G$ s.t. $a \circ x=b$;
(0) $\forall a, b \in G, \exists!x \in G$ s.t. $x \circ a=b$;
(0) $\forall a \in G:\left(a^{-1}\right)^{-1}=a$;
(()) $\forall a, b \in G:(a \circ b)^{-1}=b^{-1} \circ a^{-1}$.

- We will prove (a), (c), (e), and (f).
- The proof of (b) is similar to that of (a), and the proof of (d) is similar to that of (c).
(0) $\forall a, b, c \in G$, if $a \circ b=a \circ c$, then $b=c$ Proof of (a).
(0) $\forall a, b, c \in G$, if $a \circ b=a \circ c$, then $b=c$

Proof of (a). Fix $a, b, c \in G$, and assume that $a \circ b=a \circ c$.
(a) $\forall a, b, c \in G$, if $a \circ b=a \circ c$, then $b=c$

Proof of (a). Fix $a, b, c \in G$, and assume that $a \circ b=a \circ c$. Then

$$
\begin{array}{rlrl}
b & =e \circ b & & \begin{array}{l}
\text { because } e \text { is the identity } \\
\text { element of }(G, \circ)
\end{array} \\
& =\left(a^{-1} \circ a\right) \circ b & & \text { because } a^{-1} \circ a=e \\
& =a^{-1} \circ(a \circ b) & & \text { because } \circ \text { is associative } \\
& =a^{-1} \circ(a \circ c) & & \text { because } a \circ b=a \circ c \\
& =\left(a^{-1} \circ a\right) \circ c & & \text { because } \circ \text { is associative } \\
& =e \circ c & & \begin{array}{l}
\text { because } a^{-1} \circ a=e
\end{array} \\
& =c & \begin{array}{l}
\text { because } e \text { is the identity } \\
\text { element of }(G, \circ) .
\end{array}
\end{array}
$$

This proves (a).
(0) $\forall a, b \in G, \exists!x \in G$ s.t. $a \circ x=b$ Proof of (c).
(c) $\forall a, b \in G, \exists!x \in G$ s.t. $a \circ x=b$ Proof of (c). Fix $a, b \in G$. WTS $\exists!x \in G$ s.t. $a \circ x=b$.
(0) $\forall a, b \in G, \exists!x \in G$ s.t. $a \circ x=b$

Proof of (c). Fix $a, b \in G$. WTS $\exists!x \in G$ s.t. $a \circ x=b$.
For existence, we set $x:=a^{-1} \circ b$, and we observe that

$$
\begin{aligned}
a \circ x & =a \circ\left(a^{-1} \circ b\right) & & \text { because } x=a^{-1} \circ b \\
& =\left(a \circ a^{-1}\right) \circ b & & \text { because } \circ \text { is associative } \\
& =e \circ b & & \text { because } a \circ a^{-1}=e \\
& =b & & \begin{array}{l}
\text { becuase } e \text { is the identity } \\
\text { element of }(G, \circ) .
\end{array}
\end{aligned}
$$

(0) $\forall a, b \in G, \exists!x \in G$ s.t. $a \circ x=b$

Proof of (c). Fix $a, b \in G$. WTS $\exists!x \in G$ s.t. $a \circ x=b$.
For existence, we set $x:=a^{-1} \circ b$, and we observe that

$$
\begin{aligned}
a \circ x & =a \circ\left(a^{-1} \circ b\right) & & \text { because } x=a^{-1} \circ b \\
& =\left(a \circ a^{-1}\right) \circ b & & \text { because } \circ \text { is associative } \\
& =e \circ b & & \text { because } a \circ a^{-1}=e \\
& =b & & \begin{array}{l}
\text { becuase } e \text { is the identity } \\
\text { element of }(G, \circ) .
\end{array}
\end{aligned}
$$

Uniqueness follows from (a). This proves (c). \square
(0) $\forall a \in G:\left(a^{-1}\right)^{-1}=a$

Proof of (e).
(0) $\forall a \in G:\left(a^{-1}\right)^{-1}=a$

Proof of (e). Fix $a \in G$. It suffices to show that $a^{-1} \circ\left(a^{-1}\right)^{-1}=a^{-1} \circ a$, for then (a) will guarantee that $\left(a^{-1}\right)^{-1}=a$, which is what we need.
(c) $\forall a \in G:\left(a^{-1}\right)^{-1}=a$

Proof of (e). Fix $a \in G$. It suffices to show that $a^{-1} \circ\left(a^{-1}\right)^{-1}=a^{-1} \circ a$, for then (a) will guarantee that $\left(a^{-1}\right)^{-1}=a$, which is what we need.
Since $\left(a^{-1}\right)^{-1}$ is the inverse of a^{-1}, we know that $a^{-1} \circ\left(a^{-1}\right)^{-1}=e$.
(c) $\forall a \in G:\left(a^{-1}\right)^{-1}=a$

Proof of (e). Fix $a \in G$. It suffices to show that $a^{-1} \circ\left(a^{-1}\right)^{-1}=a^{-1} \circ a$, for then (a) will guarantee that $\left(a^{-1}\right)^{-1}=a$, which is what we need.

Since $\left(a^{-1}\right)^{-1}$ is the inverse of a^{-1}, we know that $a^{-1} \circ\left(a^{-1}\right)^{-1}=e$.
On the other hand, since a^{-1} is the inverse of a, we have that $a^{-1} \circ a=e$.
(c) $\forall a \in G:\left(a^{-1}\right)^{-1}=a$

Proof of (e). Fix $a \in G$. It suffices to show that $a^{-1} \circ\left(a^{-1}\right)^{-1}=a^{-1} \circ a$, for then (a) will guarantee that $\left(a^{-1}\right)^{-1}=a$, which is what we need.
Since $\left(a^{-1}\right)^{-1}$ is the inverse of a^{-1}, we know that $a^{-1} \circ\left(a^{-1}\right)^{-1}=e$.
On the other hand, since a^{-1} is the inverse of a, we have that $a^{-1} \circ a=e$.

Thus, $a^{-1} \circ\left(a^{-1}\right)^{-1}=a^{-1} \circ a$.
(c) $\forall a \in G:\left(a^{-1}\right)^{-1}=a$

Proof of (e). Fix $a \in G$. It suffices to show that $a^{-1} \circ\left(a^{-1}\right)^{-1}=a^{-1} \circ a$, for then (a) will guarantee that $\left(a^{-1}\right)^{-1}=a$, which is what we need.
Since $\left(a^{-1}\right)^{-1}$ is the inverse of a^{-1}, we know that $a^{-1} \circ\left(a^{-1}\right)^{-1}=e$.
On the other hand, since a^{-1} is the inverse of a, we have that $a^{-1} \circ a=e$.
Thus, $a^{-1} \circ\left(a^{-1}\right)^{-1}=a^{-1} \circ a$. As explained above, this implies that $\left(a^{-1}\right)^{-1}=a$. This proves (e). \square
(1) $\forall a, b \in G:(a \circ b)^{-1}=b^{-1} \circ a^{-1}$.

Proof of (f).
(1) $\forall a, b \in G:(a \circ b)^{-1}=b^{-1} \circ a^{-1}$.

Proof of (f). Fix $a, b \in G$.
(1) $\forall a, b \in G:(a \circ b)^{-1}=b^{-1} \circ a^{-1}$.

Proof of (f). Fix $a, b \in G$. It suffices to prove the following:
(1) $(a \circ b) \circ\left(b^{-1} \circ a^{-1}\right)=e$;
(2) $\left(b^{-1} \circ a^{-1}\right) \circ(a \circ b)=e$.
(1) $\forall a, b \in G:(a \circ b)^{-1}=b^{-1} \circ a^{-1}$.

Proof of (f). Fix $a, b \in G$. It suffices to prove the following:
(1) $(a \circ b) \circ\left(b^{-1} \circ a^{-1}\right)=e$;
(2) $\left(b^{-1} \circ a^{-1}\right) \circ(a \circ b)=e$.

For (1), we observe that

$$
\left.\left.\begin{array}{rl}
(a \circ b) \circ\left(b^{-1} \circ a^{-1}\right) & =a \circ\left(b \circ b^{-1}\right) \circ a
\end{array} \begin{array}{l}
\text { because } \circ \text { is } \\
\text { associative }
\end{array}\right] \begin{array}{l}
\text { because } \\
b \circ b^{-1}=e
\end{array}\right] \begin{aligned}
& \text { because } e \text { is the } \\
& \text { identity } \\
& \text { element of }(G, \circ) \\
& \\
& =a \circ a^{-1} \\
& \\
& =e
\end{aligned} \begin{aligned}
& \text { because } \\
& a \circ a^{-1}=e .
\end{aligned}
$$

(1) $\forall a, b \in G:(a \circ b)^{-1}=b^{-1} \circ a^{-1}$.

Proof of (f) (continued). For (2), we observe that

$$
\left(b^{-1} \circ a^{-1}\right) \circ(a \circ b)=b^{-1} \circ\left(a^{-1} \circ a\right) \circ b
$$

because \circ is associative

$$
=b^{-1} \circ e \circ b
$$

because $a^{-1} \circ a=e$
because e is the

$$
=b^{-1} \circ b
$$ identity element of (G, \circ)

because
$b^{-1} \circ b=e$.
(1) $\forall a, b \in G:(a \circ b)^{-1}=b^{-1} \circ a^{-1}$.

Proof of (f) (continued). We have now proven the following:
(1) $(a \circ b) \circ\left(b^{-1} \circ a^{-1}\right)=e$;
(2) $\left(b^{-1} \circ a^{-1}\right) \circ(a \circ b)=e$.
(1) $\forall a, b \in G:(a \circ b)^{-1}=b^{-1} \circ a^{-1}$.

Proof of (f) (continued). We have now proven the following:
(1) $(a \circ b) \circ\left(b^{-1} \circ a^{-1}\right)=e$;
(2) $\left(b^{-1} \circ a^{-1}\right) \circ(a \circ b)=e$.

It follows that $(a \circ b)^{-1}=b^{-1} \circ a^{-1}$. This proves (f). \square

Proposition 2.2.4

Let (G, o) be a group with identity element e. Then all the following hold (here, the inverse of a group element g is denoted by g^{-1}):
(0) $\forall a, b, c \in G$, if $a \circ b=a \circ c$, then $b=c$;
(D) $\forall a, b, c \in G$, if $b \circ a=c \circ a$, then $b=c$;
(0) $\forall a, b \in G, \exists!x \in G$ s.t. $a \circ x=b$;
(0) $\forall a, b \in G, \exists!x \in G$ s.t. $x \circ a=b$;
(0) $\forall a \in G:\left(a^{-1}\right)^{-1}=a$;
(9) $\forall a, b \in G:(a \circ b)^{-1}=b^{-1} \circ a^{-1}$.

- We now consider the case of \mathbb{Z}_{n} and \mathbb{Z}_{p}.
- We now consider the case of \mathbb{Z}_{n} and \mathbb{Z}_{p}.
- First of all, let us recall Fermat's Little Theorem.
- We now consider the case of \mathbb{Z}_{n} and \mathbb{Z}_{p}.
- First of all, let us recall Fermat's Little Theorem.

Fermat's Little Theorem

If $p \in \mathbb{N}$ is a prime number and $a \in \mathbb{Z}_{p} \backslash\{0\}$, then $a^{p-1}=1$.

- We now consider the case of \mathbb{Z}_{n} and \mathbb{Z}_{p}.
- First of all, let us recall Fermat's Little Theorem.

Fermat's Little Theorem

If $p \in \mathbb{N}$ is a prime number and $a \in \mathbb{Z}_{p} \backslash\{0\}$, then $a^{p-1}=1$.

Proposition 2.2.5

(3) For all positive integers $n,\left(\mathbb{Z}_{n},+\right)$ is an abelian group whose identity element is $0:=[0]_{n}$.
(D) For all prime numbers $p,\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is an abelian group whose identity element is $1:=[1]_{p}$.

Proposition 2.2.5

(a) For all positive integers $n,\left(\mathbb{Z}_{n},+\right)$ is an abelian group whose identity element is $0:=[0]_{n}$.

Proof of (a).

Proposition 2.2.5

(a) For all positive integers $n,\left(\mathbb{Z}_{n},+\right)$ is an abelian group whose identity element is $0:=[0]_{n}$.

Proof of (a). Fix a positive integer n.

Proposition 2.2.5

(c) For all positive integers $n,\left(\mathbb{Z}_{n},+\right)$ is an abelian group whose identity element is $0:=[0]_{n}$.

Proof of (a). Fix a positive integer n. The fact that + ("addition") is an associative and commutative binary operation on \mathbb{Z}_{n} follows from Proposition 0.2 .11 . The identity element of \mathbb{Z}_{n} is $0:=[0]_{n}$.

Proposition 2.2.5

(c) For all positive integers $n,\left(\mathbb{Z}_{n},+\right)$ is an abelian group whose identity element is $0:=[0]_{n}$.

Proof of (a). Fix a positive integer n. The fact that + ("addition") is an associative and commutative binary operation on \mathbb{Z}_{n} follows from Proposition 0.2 .11 . The identity element of \mathbb{Z}_{n} is $0:=[0]_{n}$. For each element $[a]_{n}$ in $\mathbb{Z}_{n}($ where $a \in \mathbb{Z})$, the additive inverse of $[a]_{n}$ is $[-a]_{n}=[n-a]_{n}$.

Proposition 2.2.5

(c) For all positive integers $n,\left(\mathbb{Z}_{n},+\right)$ is an abelian group whose identity element is $0:=[0]_{n}$.

Proof of (a). Fix a positive integer n. The fact that + ("addition") is an associative and commutative binary operation on \mathbb{Z}_{n} follows from Proposition 0.2 .11 . The identity element of \mathbb{Z}_{n} is $0:=[0]_{n}$. For each element $[a]_{n}$ in $\mathbb{Z}_{n}($ where $a \in \mathbb{Z})$, the additive inverse of $[a]_{n}$ is $[-a]_{n}=[n-a]_{n}$. So, $\left(\mathbb{Z}_{n},+\right)$ is an abelian group with identity element $[0]_{n} . \square$

Proposition 2.2.5
(D) For all prime numbers $p,\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is an abelian group whose identity element is $1:=[1]_{p}$.

Proof of (b).

Proposition 2.2.5
(D) For all prime numbers $p,\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is an abelian group whose identity element is $1:=[1]_{p}$.

Proof of (b). Fix a prime number p.

Proposition 2.2.5

(D) For all prime numbers $p,\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is an abelian group whose identity element is $1:=[1]_{p}$.

Proof of (b). Fix a prime number p. By Proposition 0.2.11, we know that • ("multiplication") is an associative and commutative binary operation on \mathbb{Z}_{p}.

Proposition 2.2.5

(D) For all prime numbers $p,\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is an abelian group whose identity element is $1:=[1]_{p}$.

Proof of (b). Fix a prime number p. By Proposition 0.2.11, we know that • ("multiplication") is an associative and commutative binary operation on \mathbb{Z}_{p}. However, the question is whether multiplication remains a binary operation on $\mathbb{Z}_{p} \backslash\{0\}$, that is, whether $\mathbb{Z}_{p} \backslash\{0\}$ is "closed under multiplication," that is, whether the product of two numbers in $\mathbb{Z}_{p} \backslash\{0\}$ is always another number in $\mathbb{Z}_{p} \backslash\{0\}$.

Proposition 2.2.5

(D) For all prime numbers $p,\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is an abelian group whose identity element is $1:=[1]_{p}$.

Proof of (b). Fix a prime number p. By Proposition 0.2.11, we know that • ("multiplication") is an associative and commutative binary operation on \mathbb{Z}_{p}. However, the question is whether multiplication remains a binary operation on $\mathbb{Z}_{p} \backslash\{0\}$, that is, whether $\mathbb{Z}_{p} \backslash\{0\}$ is "closed under multiplication," that is, whether the product of two numbers in $\mathbb{Z}_{p} \backslash\{0\}$ is always another number in $\mathbb{Z}_{p} \backslash\{0\}$.
So, fix $a, b \in \mathbb{Z}$ s.t. $[a]_{p}$ and $[b]_{p}$ are both non-zero (in \mathbb{Z}_{p}), i.e. p divides neither a nor b.

Proposition 2.2.5

(D) For all prime numbers $p,\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is an abelian group whose identity element is $1:=[1]_{p}$.

Proof of (b). Fix a prime number p. By Proposition 0.2.11, we know that • ("multiplication") is an associative and commutative binary operation on \mathbb{Z}_{p}. However, the question is whether multiplication remains a binary operation on $\mathbb{Z}_{p} \backslash\{0\}$, that is, whether $\mathbb{Z}_{p} \backslash\{0\}$ is "closed under multiplication," that is, whether the product of two numbers in $\mathbb{Z}_{p} \backslash\{0\}$ is always another number in $\mathbb{Z}_{p} \backslash\{0\}$.
So, fix $a, b \in \mathbb{Z}$ s.t. $[a]_{p}$ and $[b]_{p}$ are both non-zero (in \mathbb{Z}_{p}), i.e. p divides neither a nor b. Since p is prime, p does not divide the product $a b$,

Proposition 2.2.5

(D) For all prime numbers $p,\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is an abelian group whose identity element is $1:=[1]_{p}$.

Proof of (b). Fix a prime number p. By Proposition 0.2.11, we know that • ("multiplication") is an associative and commutative binary operation on \mathbb{Z}_{p}. However, the question is whether multiplication remains a binary operation on $\mathbb{Z}_{p} \backslash\{0\}$, that is, whether $\mathbb{Z}_{p} \backslash\{0\}$ is "closed under multiplication," that is, whether the product of two numbers in $\mathbb{Z}_{p} \backslash\{0\}$ is always another number in $\mathbb{Z}_{p} \backslash\{0\}$.
So, fix $a, b \in \mathbb{Z}$ s.t. $[a]_{p}$ and $[b]_{p}$ are both non-zero (in \mathbb{Z}_{p}), i.e. p divides neither a nor b. Since p is prime, p does not divide the product $a b$, and consequently, $[a]_{p}[b]_{p}=[a b]_{p} \neq 0$.

Proposition 2.2.5

(D) For all prime numbers $p,\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is an abelian group whose identity element is $1:=[1]_{p}$.

Proof of (b). Fix a prime number p. By Proposition 0.2.11, we know that • ("multiplication") is an associative and commutative binary operation on \mathbb{Z}_{p}. However, the question is whether multiplication remains a binary operation on $\mathbb{Z}_{p} \backslash\{0\}$, that is, whether $\mathbb{Z}_{p} \backslash\{0\}$ is "closed under multiplication," that is, whether the product of two numbers in $\mathbb{Z}_{p} \backslash\{0\}$ is always another number in $\mathbb{Z}_{p} \backslash\{0\}$.
So, fix $a, b \in \mathbb{Z}$ s.t. $[a]_{p}$ and $[b]_{p}$ are both non-zero (in \mathbb{Z}_{p}), i.e. p divides neither a nor b. Since p is prime, p does not divide the product $a b$, and consequently, $[a]_{p}[b]_{p}=[a b]_{p} \neq 0$. So, multiplication is indeed a binary operation on $\mathbb{Z}_{p} \backslash\{0\}$.

Fermat's Little Theorem

If $p \in \mathbb{N}$ is a prime number and $a \in \mathbb{Z}_{p} \backslash\{0\}$, then $a^{p-1}=1$.

Proposition 2.2.5

(D) For all prime numbers $p,\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is an abelian group whose identity element is $1:=[1]_{p}$.

Proof of (b) (continued).

Fermat's Little Theorem

If $p \in \mathbb{N}$ is a prime number and $a \in \mathbb{Z}_{p} \backslash\{0\}$, then $a^{p-1}=1$.

Proposition 2.2.5

(D) For all prime numbers $p,\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is an abelian group whose identity element is $1:=[1]_{p}$.

Proof of (b) (continued). The identity element of $\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is $1:=[1]_{p}$.

Fermat's Little Theorem

If $p \in \mathbb{N}$ is a prime number and $a \in \mathbb{Z}_{p} \backslash\{0\}$, then $a^{p-1}=1$.

Proposition 2.2.5

(D) For all prime numbers $p,\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is an abelian group whose identity element is $1:=[1]_{p}$.

Proof of (b) (continued). The identity element of $\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is $1:=[1]_{p}$.

Moreover, by Fermat's Little Theorem, each number $a \in \mathbb{Z}_{p} \backslash\{0\}$ has a multiplicative inverse, namely, a^{p-2}.

Fermat's Little Theorem

If $p \in \mathbb{N}$ is a prime number and $a \in \mathbb{Z}_{p} \backslash\{0\}$, then $a^{p-1}=1$.

Proposition 2.2.5

(D) For all prime numbers $p,\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is an abelian group whose identity element is $1:=[1]_{p}$.

Proof of (b) (continued). The identity element of $\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is $1:=[1]_{p}$.

Moreover, by Fermat's Little Theorem, each number $a \in \mathbb{Z}_{p} \backslash\{0\}$ has a multiplicative inverse, namely, a^{p-2}.

This proves that $\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is indeed an abelian group. \square

Proposition 2.2.5

(a) For all positive integers $n,\left(\mathbb{Z}_{n},+\right)$ is an abelian group whose identity element is $0:=[0]_{n}$.
(b) For all prime numbers $p,\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is an abelian group whose identity element is $1:=[1]_{p}$.

Proposition 2.2.5

(a) For all positive integers $n,\left(\mathbb{Z}_{n},+\right)$ is an abelian group whose identity element is $0:=[0]_{n}$.
(b) For all prime numbers $p,\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is an abelian group whose identity element is $1:=[1]_{p}$.

- Remark: If n is a positive integer that is not prime, then $\left(\mathbb{Z}_{n} \backslash\{0\}, \cdot\right)$ is not a group.

Proposition 2.2.5

(a) For all positive integers $n,\left(\mathbb{Z}_{n},+\right)$ is an abelian group whose identity element is $0:=[0]_{n}$.
(D) For all prime numbers $p,\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is an abelian group whose identity element is $1:=[1]_{p}$.

- Remark: If n is a positive integer that is not prime, then $\left(\mathbb{Z}_{n} \backslash\{0\}, \cdot\right)$ is not a group.
- Indeed, if $n=1$, then $\mathbb{Z}_{n} \backslash\{0\}$ is empty and therefore not a group under any operation (no group is empty, since it must, at a minimum, contain an identity element).

Proposition 2.2.5

(a) For all positive integers $n,\left(\mathbb{Z}_{n},+\right)$ is an abelian group whose identity element is $0:=[0]_{n}$.
(D) For all prime numbers $p,\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ is an abelian group whose identity element is $1:=[1]_{p}$.

- Remark: If n is a positive integer that is not prime, then $\left(\mathbb{Z}_{n} \backslash\{0\}, \cdot\right)$ is not a group.
- Indeed, if $n=1$, then $\mathbb{Z}_{n} \backslash\{0\}$ is empty and therefore not a group under any operation (no group is empty, since it must, at a minimum, contain an identity element).
- On the other hand, if $n \geq 2$ is a composite number, say $n=p q$ for some integers $p, q \geq 2$, then we have that $[p]_{n},[q]_{n} \in \mathbb{Z}_{n} \backslash\{0\}$, but $[p]_{n}[q]_{n}=[p q]_{n}=[n]_{n}=0$, and it follows that $\mathbb{Z}_{n} \backslash\{0\}$ is not closed under multiplication, i.e. multiplication is not a binary operation on $\mathbb{Z}_{n} \backslash\{0\}$.
- We now consider some groups of vectors and matrices.
- We now consider some groups of vectors and matrices.
- Let \mathbb{F} be a field.
- Since we have not formally studied fields yet, let us assume for now that \mathbb{F} is one of the following: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, or \mathbb{Z}_{p} (where p is a prime number).
- However, the examples that we consider work for all fields, not just the four listed above.
- We now consider some groups of vectors and matrices.
- Let \mathbb{F} be a field.
- Since we have not formally studied fields yet, let us assume for now that \mathbb{F} is one of the following: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, or \mathbb{Z}_{p} (where p is a prime number).
- However, the examples that we consider work for all fields, not just the four listed above.
- It is obvious that $\left(\mathbb{F}^{n \times m},+\right)$ is an abelian group whose identity element is the zero matrix $O_{n \times m}$.
- The (additive) inverse of a matrix $\left[a_{i, j}\right]_{n \times m}$ in the group $\left(\mathbb{F}^{n \times m},+\right)$ is the matrix $\left[-a_{i, j}\right]_{n \times m}$ (i.e. the $n \times m$ matrix whose i, j-th entry is $-a_{i, j}$ for all indices $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, m\}$).
- We now consider some groups of vectors and matrices.
- Let \mathbb{F} be a field.
- Since we have not formally studied fields yet, let us assume for now that \mathbb{F} is one of the following: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, or \mathbb{Z}_{p} (where p is a prime number).
- However, the examples that we consider work for all fields, not just the four listed above.
- It is obvious that $\left(\mathbb{F}^{n \times m},+\right)$ is an abelian group whose identity element is the zero matrix $O_{n \times m}$.
- The (additive) inverse of a matrix $\left[a_{i, j}\right]_{n \times m}$ in the group $\left(\mathbb{F}^{n \times m},+\right)$ is the matrix $\left[-a_{i, j}\right]_{n \times m}$ (i.e. the $n \times m$ matrix whose i, j-th entry is $-a_{i, j}$ for all indices $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, m\})$.
- In particular, $\left(\mathbb{F}^{n},+\right)$ is an abelian group (with identity element 0).
- We are using the fact that, by definition, $\mathbb{F}^{n}=\mathbb{F}^{n \times 1}$.
- More interestingly, consider the set $\mathrm{GL}_{n}(\mathbb{F})$ of all invertible matrices in $\mathbb{F}^{n \times n}$.
- More interestingly, consider the set $\mathrm{GL}_{n}(\mathbb{F})$ of all invertible matrices in $\mathbb{F}^{n \times n}$.
- $\mathrm{GL}_{n}(\mathbb{F})$ is a group under matrix multiplication, called the general linear group of degree n over the field \mathbb{F}.
- The identity element of $G L_{n}(\mathbb{F})$ is the identity matrix I_{n}, and the inverse of a matrix A in $\mathrm{GL}_{n}(\mathbb{F})$ is the matrix A^{-1} (the usual matrix inverse).
- More interestingly, consider the set $G L_{n}(\mathbb{F})$ of all invertible matrices in $\mathbb{F}^{n \times n}$.
- $G L_{n}(\mathbb{F})$ is a group under matrix multiplication, called the general linear group of degree n over the field \mathbb{F}.
- The identity element of $G L_{n}(\mathbb{F})$ is the identity matrix I_{n}, and the inverse of a matrix A in $G L_{n}(\mathbb{F})$ is the matrix A^{-1} (the usual matrix inverse).
- The group $\mathrm{GL}_{1}(\mathbb{F})$ is abelian (because multiplication is commutative in the field \mathbb{F}).
- More interestingly, consider the set $G L_{n}(\mathbb{F})$ of all invertible matrices in $\mathbb{F}^{n \times n}$.
- $\mathrm{GL}_{n}(\mathbb{F})$ is a group under matrix multiplication, called the general linear group of degree n over the field \mathbb{F}.
- The identity element of $G L_{n}(\mathbb{F})$ is the identity matrix I_{n}, and the inverse of a matrix A in $G L_{n}(\mathbb{F})$ is the matrix A^{-1} (the usual matrix inverse).
- The group $\mathrm{GL}_{1}(\mathbb{F})$ is abelian (because multiplication is commutative in the field \mathbb{F}).
- However, for $n \geq 2$, the group $G L_{n}(\mathbb{F})$ is not abelian.
- We check this for $n=2$.
- The general case of $n \geq 2$ is discussed in the Lecture Notes.
- Consider the following two matrices in $\mathbb{F}^{2 \times 2}$:

$$
A_{2}:=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad B_{2}:=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] .
$$

- Consider the following two matrices in $\mathbb{F}^{2 \times 2}$:

$$
A_{2}:=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad B_{2}:=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] .
$$

- Both of these matrices have rank 2, and so by the Invertible Matrix Theorem, they are both invertible and therefore belong to $\mathrm{GL}_{2}(\mathbb{F})$.
- Consider the following two matrices in $\mathbb{F}^{2 \times 2}$:

$$
A_{2}:=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad B_{2}:=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] .
$$

- Both of these matrices have rank 2, and so by the Invertible Matrix Theorem, they are both invertible and therefore belong to $\mathrm{GL}_{2}(\mathbb{F})$.
- However, we have that
- $\begin{aligned} & A_{2} B_{2}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}1+1 & 1 \\ 1 & 1\end{array}\right], \\ & \text { - } B_{2} A_{2}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 1 \\ 1 & 1+1\end{array}\right] .\end{aligned}$
- Consider the following two matrices in $\mathbb{F}^{2 \times 2}$:

$$
A_{2}:=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad B_{2}:=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] .
$$

- Both of these matrices have rank 2, and so by the Invertible Matrix Theorem, they are both invertible and therefore belong to $\mathrm{GL}_{2}(\mathbb{F})$.
- However, we have that

$$
\begin{aligned}
& \text { - } A_{2} B_{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1+1 & 1 \\
1 & 1
\end{array}\right], \\
& \text { - } B_{2} A_{2}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & 1+1
\end{array}\right] .
\end{aligned}
$$

- Since $1+1 \neq 1$, we see that $A_{2} B_{2} \neq B_{2} A_{2}$.
- Consider the following two matrices in $\mathbb{F}^{2 \times 2}$:

$$
A_{2}:=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad B_{2}:=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] .
$$

- Both of these matrices have rank 2, and so by the Invertible Matrix Theorem, they are both invertible and therefore belong to $\mathrm{GL}_{2}(\mathbb{F})$.
- However, we have that

$$
\begin{aligned}
& \text { - } A_{2} B_{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1+1 & 1 \\
1 & 1
\end{array}\right], \\
& \text { - } B_{2} A_{2}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & 1+1
\end{array}\right] .
\end{aligned}
$$

- Since $1+1 \neq 1$, we see that $A_{2} B_{2} \neq B_{2} A_{2}$.
- So, $\mathrm{GL}_{2}(\mathbb{F})$ is not abelian.
- Consider the following two matrices in $\mathbb{F}^{2 \times 2}$:

$$
A_{2}:=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad B_{2}:=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] .
$$

- Both of these matrices have rank 2, and so by the Invertible Matrix Theorem, they are both invertible and therefore belong to $\mathrm{GL}_{2}(\mathbb{F})$.
- However, we have that

$$
\begin{aligned}
& \text { - } A_{2} B_{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1+1 & 1 \\
1 & 1
\end{array}\right], \\
& \text { - } B_{2} A_{2}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & 1+1
\end{array}\right] .
\end{aligned}
$$

- Since $1+1 \neq 1$, we see that $A_{2} B_{2} \neq B_{2} A_{2}$.
- So, $\mathrm{GL}_{2}(\mathbb{F})$ is not abelian.
- This construction is not hard to generalize to $n \geq 2$ (see the Lecture Notes).
- Remark: The fact that

$$
1+1 \neq 1
$$

is obviously true for the fields that we are familiar with.

- Remark: The fact that

$$
1+1 \neq 1
$$

is obviously true for the fields that we are familiar with.

- But in fact, this is true in any field \mathbb{F}, not just those that we have seen so far, and it essentially follows from the fact that

$$
1 \neq 0
$$

(which is true for any field).

- Remark: The fact that

$$
1+1 \neq 1
$$

is obviously true for the fields that we are familiar with.

- But in fact, this is true in any field \mathbb{F}, not just those that we have seen so far, and it essentially follows from the fact that

$$
1 \neq 0
$$

(which is true for any field).

- On the other hand,

$$
1+1+1=1
$$

is true in some fields (for example, it is true for the field \mathbb{Z}_{2}).

Definition

A subgroup of a group (G, \circ) is a group (H, \diamond) s.t. $H \subseteq G$ and for all $a, b \in H$, we have that $a \diamond b=a \circ b .^{a}$ If (H, \diamond) is a subgroup of (G, \circ), then we write $(H, \diamond) \leq(G, \circ)$.
${ }^{a}$ Here, \diamond is the restriction of \circ to H, and it is important that $a \diamond b=a \circ b \in H$ for all $a, b \in H$ (otherwise, H is not "closed under" \diamond, which means that \diamond is not a binary operation on H, and in particular, (H, \diamond) is not a group).

- Normally, we do not notationally distinguish between \diamond and \circ, and we speak about (H, \circ) being a subgroup of (G, \circ), where it is understood from context that the operation \circ from (H, \circ) is the restriction of the the binary operation \circ on G to H.

Example 2.2.6

Every group (G, \circ) has at least two subgroups: (G, \circ) and $(\{e\}, \circ)$, where e is the identity element of G.

Example 2.2.6

Every group (G, \circ) has at least two subgroups: (G, \circ) and $(\{e\}, \circ)$, where e is the identity element of G.

Example 2.2.7

$$
(\mathbb{Z},+) \leq(\mathbb{Q},+) \leq(\mathbb{R},+) \leq(\mathbb{C},+)
$$

Example 2.2.6

Every group (G, \circ) has at least two subgroups: (G, \circ) and $(\{e\}, \circ)$, where e is the identity element of G.

Example 2.2.7

$(\mathbb{Z},+) \leq(\mathbb{Q},+) \leq(\mathbb{R},+) \leq(\mathbb{C},+)$.
Example 2.2.8
$(\mathbb{Q} \backslash\{0\}, \cdot) \leq(\mathbb{R} \backslash\{0\}, \cdot) \leq(\mathbb{C} \backslash\{0\}, \cdot)$.

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1.) H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof.

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1.) H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof. Fix $H \subseteq G$. Suppose first that (i), (ii), and (iii) hold.

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1.) H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof. Fix $H \subseteq G$. Suppose first that (i), (ii), and (iii) hold. By (ii), the binary operation o on G can be restricted to H (so that it becomes a binary operation on H).

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1.) H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof. Fix $H \subseteq G$. Suppose first that (i), (ii), and (iii) hold. By (ii), the binary operation o on G can be restricted to H (so that it becomes a binary operation on H). The fact that \circ is associative in (H, \circ) follows simply from the fact that \circ is inherited from the group (G, \circ), where it is associative.

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1. H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof. Fix $H \subseteq G$. Suppose first that (i), (ii), and (iii) hold. By (ii), the binary operation \circ on G can be restricted to H (so that it becomes a binary operation on H). The fact that \circ is associative in (H, \circ) follows simply from the fact that \circ is inherited from the group (G, \circ), where it is associative. By (i), H contains an identity element, and by (iii), every element of H has an inverse in (H, \circ).

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1. H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof (continued). Suppose, conversely, that (H, \circ) is a subgroup of (G, \circ).

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1. H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof (continued). Suppose, conversely, that (H, \circ) is a subgroup of (G, \circ). Then (ii) holds, because \circ (properly restricted) is a binary operation on H.

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1. H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof (continued). Suppose, conversely, that (H, \circ) is a subgroup of (G, \circ). Then (ii) holds, because \circ (properly restricted) is a binary operation on H. It remains to prove that (i) and (iii) hold.

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1.) H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof (continued). Suppose, conversely, that (H, \circ) is a subgroup of (G, \circ). Then (ii) holds, because \circ (properly restricted) is a binary operation on H. It remains to prove that (i) and (iii) hold.

Since H is a group, it must have an identity element e_{H}, and each element of H must have inverse in (H, \circ).

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1.) H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof (continued). Suppose, conversely, that (H, \circ) is a subgroup of (G, \circ). Then (ii) holds, because \circ (properly restricted) is a binary operation on H. It remains to prove that (i) and (iii) hold.

Since H is a group, it must have an identity element e_{H}, and each element of H must have inverse in (H, \circ). The question is whether the identity element of (H, \circ) is the same as in (G, \circ), and similar for inverses.

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1.) H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof (continued). We first deal with the identity element.

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1.) H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof (continued). We first deal with the identity element. If we compute in (H, \circ), we have that $e_{H} \circ e_{H}=e_{H}$ (because e_{H} is the identity element of (H, \circ)),

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1) H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof (continued). We first deal with the identity element. If we compute in (H, \circ), we have that $e_{H} \circ e_{H}=e_{H}$ (because e_{H} is the identity element of (H, \circ)), and if we compute in (G, \circ), then we have that $e_{H} \circ e=e_{H}$ (because e is the identity element of (G, \circ)).

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1) H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof (continued). We first deal with the identity element. If we compute in (H, \circ), we have that $e_{H} \circ e_{H}=e_{H}$ (because e_{H} is the identity element of (H, \circ)), and if we compute in (G, \circ), then we have that $e_{H} \circ e=e_{H}$ (because e is the identity element of (G, \circ)). But now $e_{H} \circ e_{H}=e_{H} \circ e$,

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1.) H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof (continued). We first deal with the identity element. If we compute in (H, \circ), we have that $e_{H} \circ e_{H}=e_{H}$ (because e_{H} is the identity element of (H, \circ)), and if we compute in (G, \circ), then we have that $e_{H} \circ e=e_{H}$ (because e is the identity element of $(G, \circ))$. But now $e_{H} \circ e_{H}=e_{H} \circ e$, and so by Proposition 2.2.4(a) applied to (G, \circ), we have that $e_{H}=e$.

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1.) H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof (continued). We first deal with the identity element. If we compute in (H, \circ), we have that $e_{H} \circ e_{H}=e_{H}$ (because e_{H} is the identity element of (H, \circ)), and if we compute in (G, \circ), then we have that $e_{H} \circ e=e_{H}$ (because e is the identity element of $(G, \circ))$. But now $e_{H} \circ e_{H}=e_{H} \circ e$, and so by Proposition 2.2.4(a) applied to (G, \circ), we have that $e_{H}=e$. So, $e \in H$, and it follows that (i) holds.

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1.) H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof (continued). Finally, fix $a \in H$.

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1) H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof (continued). Finally, fix $a \in H$. Since (H, \circ) is a group, a has an inverse a^{\prime} in (H, \circ), so that $a \circ a^{\prime}=e_{H}=e$.

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1. H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof (continued). Finally, fix $a \in H$. Since (H, \circ) is a group, a has an inverse a^{\prime} in (H, \circ), so that $a \circ a^{\prime}=e_{H}=e$. On the other hand, if we compute in (G, \circ), we get that $a \circ a^{-1}=e$.

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1) H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof (continued). Finally, fix $a \in H$. Since (H, \circ) is a group, a has an inverse a^{\prime} in (H, \circ), so that $a \circ a^{\prime}=e_{H}=e$. On the other hand, if we compute in (G, \circ), we get that $a \circ a^{-1}=e$. It follows that $a \circ a^{\prime}=a \circ a^{-1}$,

Theorem 2.2.9

Let (G, \circ) be a group with identity element e, and with the inverse of an element $a \in G$ denoted by a^{-1}. Then for all $H \subseteq G$, we have that (H, \circ) is a subgroup of (G, \circ) iff all the following hold:
(1) $e \in H$;
(1) H is closed under \circ, that is, $\forall a, b \in H: a \circ b \in H$;
(1) H is closed under inverses, that is, $\forall a \in H: a^{-1} \in H$.

Proof (continued). Finally, fix $a \in H$. Since (H, \circ) is a group, a has an inverse a^{\prime} in (H, \circ), so that $a \circ a^{\prime}=e_{H}=e$. On the other hand, if we compute in (G, \circ), we get that $a \circ a^{-1}=e$. It follows that $a \circ a^{\prime}=a \circ a^{-1}$, and so by Proposition 2.2.4(a) applied to (G, \circ), we have that $a^{\prime}=a^{-1}$, and consequently, $a^{-1} \in H$. This proves (ii). \square

[^0]: ${ }^{a}$ For example, in the group $(\mathbb{R} \backslash\{0\}, \cdot)$, the inverse of $\sqrt{13}$ is $\frac{1}{\sqrt{13}}$.

