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1 Monoids

Definition
A monoid is an ordered pair (S, ◦), where S is a set and ◦ is a
binary operation on S (i.e. ◦ : S × S → S), satisfying the following
two axioms:

1 the operation ◦ is associative, i.e. ∀a, b, c ∈ S, we have that
a ◦ (b ◦ c) = (a ◦ b) ◦ c;

2 there exists some e ∈ S, called the identity element of (S, ◦),
s.t. ∀a ∈ S, we have that e ◦ a = a and a ◦ e = a.

Proposition 2.1.1
Every monoid has a unique identity element.

Proof: Later!
First, some examples.
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Example 2.1.2
All the following are monoids:

1 (N0, +);
2 (Z, +);

3 (Q, +);
4 (R, +);

5 (C, +).

In each of the above, 0 is the identity element.

Remark: (N, +) is not a monoid, since it does not have an
identity element.
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Example 2.1.3
All the following are monoids (“·” denotes multiplication):

1 (N0, ·);
2 (N, ·);

3 (Z, ·);
4 (Q, ·);

5 (R, ·);
6 (C, ·).

In each of the above, 1 is the identity element.

Example 2.1.4
All the following are monoids (“·” denotes multiplication):

1 (N, ·);
2 (Z \ {0}, ·);

3 (Q \ {0}, ·);
4 (R \ {0}, ·);

5 (C \ {0}, ·).

In each of the above, 1 is the identity element.
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Proposition 2.1.1
Every monoid has a unique identity element.

Proof.

Let (S, ◦) be a monoid. By definition (in particular, by
axiom 2), the monoid (S, ◦) has an identity element; we must
show that this identity element is unique. Suppose that e1, e2 are
identity elements of (S, ◦). Then

e1
(∗)= e1 ◦ e2

(∗∗)= e2

where (*) follows from the fact that e2 is the identity element of
the monoid (S, ◦), and (**) follows from the fact that e1 is the
identity element of the monoid (S, ◦). So, the identity element of
the monoid (S, ◦) is unique. □
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2 Groups

Definition
A group is an ordered pair (G , ◦), where G is a set and ◦ is a
binary operation on G (i.e. ◦ : G × G → G) that satisfy the
following three axioms:

1 the operation ◦ is associative, i.e. ∀a, b, c ∈ G , we have that
a ◦ (b ◦ c) = (a ◦ b) ◦ c;

2 there exists some e ∈ G , called the identity element of (G , ◦),
s.t. ∀a ∈ G , we have that e ◦ a = a and a ◦ e = a;

3 ∀a ∈ G , ∃a′ ∈ G , called the inverse of a, s.t. a ◦ a′ = e and
a′ ◦ a = e.

An abelian group is a group (G , ◦) that satisfies the following
additional axiom:

4 the operation ◦ is commutative, i.e. ∀a, b ∈ G , we have that
a ◦ b = b ◦ a.

A non-abelian group is a group that is not abelian.
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Remark: Note that the first two axioms (axioms 1 and 2)
from the definition of a group are precisely the monoid
axioms.

So, every group is a monoid.
By Proposition 2.1.1, it follows that the identity element e of a
group is unique.
In particular, the third axiom (axiom 3) makes sense.

Terminology/Notation: If the operation ◦ of the group
(G , ◦) is clear from context, then we may say that G is a
group, rather than that (G , ◦) is a group.

However, this is only done if there is no chance of confusion,
and so when in doubt, you should specify the operation.
Sometimes, we say “G is a group under the operation ◦,”
which means exactly the same thing as “(G , ◦) is a group.”
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Proposition 2.2.1
Each element of a group has a unique inverse.

Proof: Later!

First, we introduce some notation and consider a few
examples.

Notation: Typically, the (unique) inverse of an element g of
a group (G , ◦) is denoted by g−1.

However, when the group operation is denoted by + (note:
this is typically done only if the group is abelian), then the
inverse of an element g is denoted by −g .
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Example 2.2.2
All the following are abelian groups:

1 (Z, +); 2 (Q, +); 3 (R, +); 4 (C, +).

In each of the above cases, the identity element is 0, and the
inverse of a group element g is −g .a

aFor example, in the group (R, +), the inverse of
√

13 is −
√

13.

Note that the monoid (N0, +) is not a group because
elements other than 0 do not have inverses, and so axiom 3
from the definition of a group is not satisfied.
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Example 2.2.3
All the following are abelian groups:

1 (Q \ {0}, ·); 2 (R \ {0}, ·); 3 (C \ {0}, ·).

In each of the above cases, the identity element is 1, and the
inverse of a group element g is g−1 = 1

g .a

aFor example, in the group (R \ {0}, ·), the inverse of
√

13 is 1√
13 .

Remark: Monoids (Q, ·), (R, ·), and (C, ·) are not groups
because, in each of those cases, 0 does not have an inverse
element.
Note also that (Z \ {0}, ·) is not a group because elements
other than 1 and −1 do not have inverses.
Remark: It might now seem that all groups are abelian.
However, this is not the case: we will see examples of
non-abelian groups later.
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Proposition 2.2.1
Each element of a group has a unique inverse.

Proof.

Let (G , ◦) be a group, and let e be its identity element. Fix
some g ∈ G . By the definition of a group (and in particular, by
axiom 3), g has an inverse in the group (G , ◦); WTS it is unique.
Let g1 and g2 be inverses of g in the group (G , ◦). Then

g1 = g1 ◦ e because e is the identity element of (G , ◦)

= g1 ◦ (g ◦ g2) because g2 is an inverse of g

= (g1 ◦ g) ◦ g2 because ◦ is associative

= e ◦ g2 because g1 is an inverse of g

= g2 because e is the identity element of (G , ◦).

We have now shown that g1 = g2. So, the inverse of g is unique. □
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Proposition 2.2.4
Let (G , ◦) be a group with identity element e. Then all the
following hold (here, the inverse of a group element g is denoted
by g−1):

(a) ∀a, b, c ∈ G , if a ◦ b = a ◦ c, then b = c;
(b) ∀a, b, c ∈ G , if b ◦ a = c ◦ a, then b = c;
(c) ∀a, b ∈ G , ∃!x ∈ G s.t. a ◦ x = b;
(d) ∀a, b ∈ G , ∃!x ∈ G s.t. x ◦ a = b;
(e) ∀a ∈ G : (a−1)−1 = a;
(f) ∀a, b ∈ G : (a ◦ b)−1 = b−1 ◦ a−1.

We will prove (a), (c), (e), and (f).
The proof of (b) is similar to that of (a), and the proof of (d)
is similar to that of (c).
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(a) ∀a, b, c ∈ G , if a ◦ b = a ◦ c, then b = c
Proof of (a).

Fix a, b, c ∈ G , and assume that a ◦ b = a ◦ c. Then

b = e ◦ b because e is the identity
element of (G , ◦)

= (a−1 ◦ a) ◦ b because a−1 ◦ a = e
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(e) ∀a ∈ G : (a−1)−1 = a
Proof of (e).

Fix a ∈ G . It suffices to show that
a−1 ◦ (a−1)−1 = a−1 ◦ a, for then (a) will guarantee that
(a−1)−1 = a, which is what we need.

Since (a−1)−1 is the inverse of a−1, we know that
a−1 ◦ (a−1)−1 = e.

On the other hand, since a−1 is the inverse of a, we have that
a−1 ◦ a = e.

Thus, a−1 ◦ (a−1)−1 = a−1 ◦ a. As explained above, this implies
that (a−1)−1 = a. This proves (e). □
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Proposition 2.2.4
Let (G , ◦) be a group with identity element e. Then all the
following hold (here, the inverse of a group element g is denoted
by g−1):

(a) ∀a, b, c ∈ G , if a ◦ b = a ◦ c, then b = c;
(b) ∀a, b, c ∈ G , if b ◦ a = c ◦ a, then b = c;
(c) ∀a, b ∈ G , ∃!x ∈ G s.t. a ◦ x = b;
(d) ∀a, b ∈ G , ∃!x ∈ G s.t. x ◦ a = b;
(e) ∀a ∈ G : (a−1)−1 = a;
(f) ∀a, b ∈ G : (a ◦ b)−1 = b−1 ◦ a−1.



We now consider the case of Zn and Zp.

First of all, let us recall Fermat’s Little Theorem.

Fermat’s Little Theorem
If p ∈ N is a prime number and a ∈ Zp \ {0}, then ap−1 = 1.

Proposition 2.2.5
(a) For all positive integers n, (Zn, +) is an abelian group whose

identity element is 0 := [0]n.
(b) For all prime numbers p, (Zp \ {0}, ·) is an abelian group

whose identity element is 1 := [1]p.
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Proposition 2.2.5
(a) For all positive integers n, (Zn, +) is an abelian group whose

identity element is 0 := [0]n.

Proof of (a).

Fix a positive integer n. The fact that +
(“addition”) is an associative and commutative binary operation on
Zn follows from Proposition 0.2.11. The identity element of Zn is
0 := [0]n. For each element [a]n in Zn (where a ∈ Z), the additive
inverse of [a]n is [−a]n = [n − a]n. So, (Zn, +) is an abelian group
with identity element [0]n. □
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Proposition 2.2.5
(b) For all prime numbers p, (Zp \ {0}, ·) is an abelian group

whose identity element is 1 := [1]p.

Proof of (b).

Fix a prime number p. By Proposition 0.2.11, we
know that · (“multiplication”) is an associative and commutative
binary operation on Zp. However, the question is whether
multiplication remains a binary operation on Zp \ {0}, that is,
whether Zp \ {0} is “closed under multiplication,” that is, whether
the product of two numbers in Zp \ {0} is always another number
in Zp \ {0}.

So, fix a, b ∈ Z s.t. [a]p and [b]p are both non-zero (in Zp), i.e. p
divides neither a nor b. Since p is prime, p does not divide the
product ab, and consequently, [a]p[b]p = [ab]p ̸= 0. So,
multiplication is indeed a binary operation on Zp \ {0}.
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Proof of (b) (continued).

The identity element of (Zp \ {0}, ·) is
1 := [1]p.

Moreover, by Fermat’s Little Theorem, each number a ∈ Zp \ {0}
has a multiplicative inverse, namely, ap−2.

This proves that (Zp \ {0}, ·) is indeed an abelian group. □
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Proposition 2.2.5
(a) For all positive integers n, (Zn, +) is an abelian group whose

identity element is 0 := [0]n.
(b) For all prime numbers p, (Zp \ {0}, ·) is an abelian group

whose identity element is 1 := [1]p.

Remark: If n is a positive integer that is not prime, then
(Zn \ {0}, ·) is not a group.

Indeed, if n = 1, then Zn \ {0} is empty and therefore not a
group under any operation (no group is empty, since it must,
at a minimum, contain an identity element).
On the other hand, if n ≥ 2 is a composite number, say
n = pq for some integers p, q ≥ 2, then we have that
[p]n, [q]n ∈ Zn \ {0}, but [p]n[q]n = [pq]n = [n]n = 0, and it
follows that Zn \ {0} is not closed under multiplication, i.e.
multiplication is not a binary operation on Zn \ {0}.
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We now consider some groups of vectors and matrices.

Let F be a field.
Since we have not formally studied fields yet, let us assume for
now that F is one of the following: Q, R, C, or Zp (where p is
a prime number).
However, the examples that we consider work for all fields, not
just the four listed above.

It is obvious that (Fn×m, +) is an abelian group whose
identity element is the zero matrix On×m.

The (additive) inverse of a matrix
[

ai,j
]

n×m in the group
(Fn×m, +) is the matrix

[
−ai,j

]
n×m (i.e. the n × m matrix

whose i , j-th entry is −ai,j for all indices i ∈ {1, . . . , n} and
j ∈ {1, . . . , m}).

In particular, (Fn, +) is an abelian group (with identity
element 0).

We are using the fact that, by definition, Fn = Fn×1.
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More interestingly, consider the set GLn(F) of all invertible
matrices in Fn×n.

GLn(F) is a group under matrix multiplication, called the
general linear group of degree n over the field F.

The identity element of GLn(F) is the identity matrix In, and
the inverse of a matrix A in GLn(F) is the matrix A−1 (the
usual matrix inverse).

The group GL1(F) is abelian (because multiplication is
commutative in the field F).
However, for n ≥ 2, the group GLn(F) is not abelian.

We check this for n = 2.
The general case of n ≥ 2 is discussed in the Lecture Notes.
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Consider the following two matrices in F2×2:

A2 :=
[

1 1
0 1

]
, B2 :=

[
1 0
1 1

]
.

Both of these matrices have rank 2, and so by the Invertible
Matrix Theorem, they are both invertible and therefore belong
to GL2(F).
However, we have that

A2B2 =
[

1 1
0 1

][
1 0
1 1

]
=

[
1 + 1 1

1 1

]
,

B2A2 =
[

1 0
1 1

][
1 1
0 1

]
=

[
1 1
1 1 + 1

]
.

Since 1 + 1 ̸= 1, we see that A2B2 ̸= B2A2.
So, GL2(F) is not abelian.
This construction is not hard to generalize to n ≥ 2 (see the
Lecture Notes).
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Remark: The fact that

1 + 1 ̸= 1

is obviously true for the fields that we are familiar with.

But in fact, this is true in any field F, not just those that we
have seen so far, and it essentially follows from the fact that

1 ̸= 0

(which is true for any field).
On the other hand,

1 + 1 + 1 = 1

is true in some fields (for example, it is true for the field Z2).
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Definition
A subgroup of a group (G , ◦) is a group (H, ⋄) s.t. H ⊆ G and for
all a, b ∈ H, we have that a ⋄ b = a ◦ b.a If (H, ⋄) is a subgroup of
(G , ◦), then we write (H, ⋄) ≤ (G , ◦).

aHere, ⋄ is the restriction of ◦ to H, and it is important that
a ⋄ b = a ◦ b ∈ H for all a, b ∈ H (otherwise, H is not “closed under” ⋄, which
means that ⋄ is not a binary operation on H, and in particular, (H, ⋄) is not a
group).

Normally, we do not notationally distinguish between ⋄ and ◦,
and we speak about (H, ◦) being a subgroup of (G , ◦), where
it is understood from context that the operation ◦ from (H, ◦)
is the restriction of the the binary operation ◦ on G to H.



Example 2.2.6
Every group (G , ◦) has at least two subgroups: (G , ◦) and ({e}, ◦),
where e is the identity element of G .

Example 2.2.7
(Z, +) ≤ (Q, +) ≤ (R, +) ≤ (C, +).

Example 2.2.8
(Q \ {0}, ·) ≤ (R \ {0}, ·) ≤ (C \ {0}, ·).
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Theorem 2.2.9
Let (G , ◦) be a group with identity element e, and with the inverse
of an element a ∈ G denoted by a−1. Then for all H ⊆ G , we have
that (H, ◦) is a subgroup of (G , ◦) iff all the following hold:

(i) e ∈ H;
(ii) H is closed under ◦, that is, ∀a, b ∈ H: a ◦ b ∈ H;
(iii) H is closed under inverses, that is, ∀a ∈ H: a−1 ∈ H.

Proof.

Fix H ⊆ G . Suppose first that (i), (ii), and (iii) hold.
By (ii), the binary operation ◦ on G can be restricted to H (so that
it becomes a binary operation on H). The fact that ◦ is associative
in (H, ◦) follows simply from the fact that ◦ is inherited from the
group (G , ◦), where it is associative. By (i), H contains an identity
element, and by (iii), every element of H has an inverse in (H, ◦).
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Proof (continued). Suppose, conversely, that (H, ◦) is a subgroup
of (G , ◦).

Then (ii) holds, because ◦ (properly restricted) is a
binary operation on H. It remains to prove that (i) and (iii) hold.

Since H is a group, it must have an identity element eH , and each
element of H must have inverse in (H, ◦). The question is whether
the identity element of (H, ◦) is the same as in (G , ◦), and similar
for inverses.
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