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Definition
A square matrix A ∈ Fn×n (where F is a field) is invertible if there
exists a matrix B ∈ Fn×n, called an inverse of A, s.t.
AB = BA = In. A square matrix that is not invertible is called
non-invertible.

Proposition 1.11.1
Let F be a field, and let A ∈ Fn×n be an invertible matrix. Then A
has a unique inverse.

Proof: later!
Notation: The unique inverse of A is denoted by A−1.
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Example 1.11.2

The matrix A :=
[

1 1
0 1

]
in R2×2 is invertible, and its inverse is

A−1 :=
[

1 −1
0 1

]
, which we can easily verify by checking that

[
1 1
0 1

][
1 −1
0 1

]
= I2 and

[
1 −1
0 1

][
1 1
0 1

]
= I2.

We will soon give a recipe for checking whether a matrix is
invertible, and if so, for finding its inverse.
But first, we discuss some alternative terminology (i.e. other
terms for invertible matrices), and we give a proof of
Proposition 1.11.1.
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A square matrix A ∈ Fn×n (where F is a field) is invertible if there
exists a matrix B ∈ Fn×n, called an inverse of A, s.t.
AB = BA = In. A square matrix that is not invertible is called
non-invertible.

Terminology: Inverible matrices are also called non-singular
or non-degenerate, whereas non-invertible matrices are also
called singular or degenerate.

The Czech term for an invertible matrix is “regulárńı matice,”
and for this reason, Czech mathematicians sometimes use the
term “regular matrix” instead of “invertible matrix”; however,
this usage (“regular matrix”) is quite rare in the English
speaking world.
In this course, we will consistently use the term “invertible
matrix.”
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Proposition 1.11.1
Let F be a field, and let A ∈ Fn×n be an invertible matrix. Then A
has a unique inverse.

Proof.

Since A is invertible, it has an inverse, and we just need to
show that it is unique. So, suppose that B, C ∈ Fn×n are both
inverses of A, so that AB = BA = In and AC = CA = In. Then

B = BIn by Proposition 1.7.2

= B(AC) because AC = In

= (BA)C by the associativity of
matrix multiplication

= InC because BA = In

= C by Proposition 1.7.2.

This completes the argument. □
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Proposition 1.11.1
Let F be a field, and let A ∈ Fn×n be an invertible matrix. Then A
has a unique inverse.

Notation: The unique inverse of A is denoted by A−1.
Here’s a technical proposition whose proof is very similar to
that of Proposition 1.11.1.

Proposition 1.11.3
Let F be a field, and let A, B ∈ Fn×n. Assume that A is invertible
and that AB = In or BA = In. Then A−1 = B.

Proof:

For the case when BA = In, this is virtually identical to the
proof of Proposition 1.11.1 (details: Lecture Notes).
The case when AB = In is similar (details: exercise).
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Proposition 1.11.1
Let F be a field, and let A ∈ Fn×n be an invertible matrix. Then A
has a unique inverse.

Proposition 1.11.3
Let F be a field, and let A, B ∈ Fn×n. Assume that A is invertible
and that AB = In or BA = In. Then A−1 = B.

Remark: Note that Proposition 1.11.3 can only be applied if
we already know that A is invertible.

Once we have developed a lot more theory, we will be able to
eliminate this hypothesis and show that if A, B ∈ Fn×n are
square matrices that satisfy AB = In, then both A and B are
invertible and are each other’s inverses.
However, we cannot prove this stronger statement yet, and
therefore, we cannot use it yet.
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Theorem 1.11.4
Let F be a field, let A ∈ Fn×n be a square matrix, and set[

U B
]

= RREF
( [

A In
] )

, where each of U and B has n
columns. Then

(a) if U = In, then A is invertible and B = A−1;
(b) if U ̸= In, then A is not invertible.

Theorem 1.11.4 gives a recipe for checking if a square matrix
is invertible, and if so, for finding its inverse.
We first consider an example, and then we develop the theory
that we need to actually prove Theorem 1.11.4.
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Example 1.11.5
Consider the following matrices.

(a) A =
[

1 2
3 4

]
, with entries understood to be in R;

(b) B =

 1 1 0
0 1 1
1 1 1

, with entries understood to be in Z2;

(c) C =

 1 2 0
1 1 1
2 0 1

, with entries understood to be in Z3.

For each of these three matrices, determine if the matrix is
invertible, and if so, find its inverse.



Example 1.11.5

(a) A =
[

1 2
3 4

]
, with entries understood to be in R.

Solution.

We form the matrix[
A I2

]
=

[
1 2 1 0
3 4 0 1

]
,

and by row reducing, we obtain

RREF
( [

A I2
] )

=
[

1 0 −2 1
0 1 3

2 − 1
2

]
.

The submatrix of RREF
( [

A I2
] )

to the left of the vertical
dotted line is I2. So, A is invertible, and its inverse is

A−1 =
[

−2 1
3
2 − 1

2

]
.

□
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Example 1.11.5

(b) B =

 1 1 0
0 1 1
1 1 1

, with entries understood to be in Z2.

Solution.

We form the matrix

[
B I3

]
=

 1 1 0 1 0 0
0 1 1 0 1 0
1 1 1 0 0 1

 ,

and by row reducing, we obtain

RREF
( [

B I3
] )

=

 1 0 0 0 1 1
0 1 0 1 1 1
0 0 1 1 0 1
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(b) B =
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1 1 1
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1 1 1 0 0 1
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Example 1.11.5

(b) B =

 1 1 0
0 1 1
1 1 1

, with entries understood to be in Z2.

Solution (continued). Reminder:

RREF
( [

B I3
] )

=

 1 0 0 0 1 1
0 1 0 1 1 1
0 0 1 1 0 1



The submatrix of RREF
( [

B I3
] )

to the left of the vertical
dotted line is I3. So, B is invertible, and its inverse is

B−1 =

 0 1 1
1 1 1
1 0 1

 .

□
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(b) B =

 1 1 0
0 1 1
1 1 1

, with entries understood to be in Z2.

Solution (continued). Reminder:

RREF
( [

B I3
] )

=

 1 0 0 0 1 1
0 1 0 1 1 1
0 0 1 1 0 1


The submatrix of RREF

( [
B I3

] )
to the left of the vertical

dotted line is I3. So, B is invertible, and its inverse is
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1 1 1
1 0 1

 .

□



Example 1.11.5

(c) C =

 1 2 0
1 1 1
2 0 1

, with entries understood to be in Z3.

Solution.

We form the matrix

[
C I3

]
=

 1 2 0 1 0 0
1 1 1 0 1 0
2 0 1 0 0 1

 ,

and by row reducing, we obtain

RREF
( [

C I3
] )

=

 1 0 2 0 0 2
0 1 2 0 1 1
0 0 0 1 1 2

 .

The submatrix of RREF
( [

C I3
] )

to the left of the vertical
dotted line is not I3. So, C is not invertible. □



Example 1.11.5

(c) C =
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Solution. We form the matrix
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( [

C I3
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to the left of the vertical
dotted line is not I3. So, C is not invertible. □
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Let F be a field, let A ∈ Fn×n be a square matrix, and set[

U B
]

= RREF
( [

A In
] )

, where each of U and B has n
columns. Then

(a) if U = In, then A is invertible and B = A−1;
(b) if U ̸= In, then A is not invertible.

The main goals for the remainder of this lecture are:

to prove Theorem 1.11.4;
First, we prove some basic results about invertible matrices.
Then, we introduce “elementary matrices” (matrices obtained
by applying an elementary row operation to the identity
matrix In), and we prove some results about such matrices.
Finally, using all this, we prove Theorem 1.11.4.

to state and prove the first version of the Invertible Matrix
Theorem (which gives a long list of statements about a square
matrix A that are equivalent to A being invertible).
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We now prove some basic properties of invertible matrices.

Theorem 1.11.6
Let F be a field, and let A ∈ Fn×n be an invertible matrix. Then
for all vectors b ∈ Fn, the matrix-vector equation Ax = b has a
unique solution, and that solution is A−1b.

Theorem 1.11.6 is one of the main reasons we care about
invertible matrices.

Note that it implies that if the coefficient matrix of a linear
system is invertible, then that linear system has a unique
solution.

We first take a look at an example, and then we prove
Theorem 1.11.6.
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Theorem 1.11.6
Let F be a field, and let A ∈ Fn×n be an invertible matrix. Then
for all vectors b ∈ Fn, the matrix-vector equation Ax = b has a
unique solution, and that solution is A−1b.

Example 1.11.7
Set

A :=
[

1 1
0 1

]
and b :=

[
2

−3

]
,

with entries understood to be in R. Solve the matrix-vector
equation Ax = b.

Solution.

As we saw in Example 1.11.2, the matrix A is invertible,
and its inverse is

A−1 =
[

1 −1
0 1

]
.
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Example 1.11.7
Set

A :=
[

1 1
0 1

]
and b :=

[
2

−3

]
,

with entries understood to be in R. Solve the matrix-vector
equation Ax = b.

Solution (continued). So, by Theorem 1.11.6, the matrix-vector
equation Ax = b has a unique solution, namely

x = A−1b =
[

1 −1
0 1

] [
2

−3

]
=

[
5

−3

]
.

□



Theorem 1.11.6
Let F be a field, and let A ∈ Fn×n be an invertible matrix. Then
for all vectors b ∈ Fn, the matrix-vector equation Ax = b has a
unique solution, and that solution is A−1b.

Proof.

Fix any vector b ∈ Fn. To show that A−1b is indeed a
solution of the matrix-vector equation Ax = b, we compute

A(A−1b) (∗)= (AA−1︸ ︷︷ ︸
=In

)b = Inb (∗∗)= b,

where (*) follows from Corollary 1.7.6(g), and (**) follows from
Proposition 1.4.5.

So far, we have proven that A−1b is a solution of the matrix-vector
equation Ax = b. It remains to prove uniqueness (next slide).
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Theorem 1.11.6
Let F be a field, and let A ∈ Fn×n be an invertible matrix. Then
for all vectors b ∈ Fn, the matrix-vector equation Ax = b has a
unique solution, and that solution is A−1b.

Proof (continued). Fix any solution x0 ∈ Fn of the matrix-vector
equation Ax = b.

Then Ax0 = b, and consequently,
A−1(Ax0) = A−1x0. We now compute:

A−1b = A−1(Ax0) (∗)= (A−1A︸ ︷︷ ︸
=In

)x0 = Inx0
(∗∗)= x0.

where once again, (*) follows from Corollary 1.7.6(g), and (**)
follows from Proposition 1.4.5. This proves that A−1b is in fact
the unique solution of the matrix-vector equation Ax = b. □
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Theorem 1.11.6
Let F be a field, and let A ∈ Fn×n be an invertible matrix. Then
for all vectors b ∈ Fn, the matrix-vector equation Ax = b has a
unique solution, and that solution is A−1b.

We already saw how one can check if a square matrix (with
entries in some field) is invertible, and if so, how one can
compute its inverse.

Granted, we still need to prove that this “recipe”
(Theorem 1.11.4) works.

However, if we do not already know whether A is invertible (or
we know that A is invertible, but have not yet computed its
inverse), then the most efficient way to solve our
matrix-vector equation Ax = b is by row reducing the
augmented matrix

[
A b

]
.

Using the formula x = A−1b is only efficient if we already
happen to know that A is invertible and have already
computed its inverse A−1 for some reason other than solving
the equation Ax = b.
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Proposition 1.11.8
Let F be a field. Then all the following hold:

(a) the identity matrix In is invertible and is its own inverse (i.e.
I−1
n = In);

(b) if a matrix A ∈ Fn×n is invertible, then its inverse A−1 is also
invertible, and moreover, (A−1)−1 = A;

(c) if a matrix A ∈ Fn×n is invertible, then its transpose AT is
also invertible, and moreover, (AT )−1 = (A−1)T ;

(d) if matrices A, B ∈ Fn×n are invertible matrices, then AB is
also invertible, and moreover, (AB)−1 = B−1A−1;

(e) if matrices A1, . . . , Ak ∈ Fn×n are invertible, then the matrix
A1 . . . Ak is also invertible, and moreover,
(A1 . . . Ak)−1 = A−1

k . . . A−1
1 ;

(f) if a matrix A ∈ Fn×n is invertible, then for all non-negative
integers m, the matrix Am is also invertible, and moreover,
(Am)−1 = (A−1)m.



Definition
A square matrix A ∈ Fn×n (where F is a field) is invertible if there
exists a matrix B ∈ Fn×n, called an inverse of A, s.t.
AB = BA = In. A square matrix that is not invertible is called
non-invertible.

Proposition 1.11.8
(a) the identity matrix In is invertible and is its own inverse (i.e.

I−1
n = In)

Proof.

Part (a) follows immediately from the fact that InIn = In. □

Essentially: InIn = In and InIn = In.
So, In is invertible, and In is its inverse.
By the uniqueness of inverses, it follows that In−1 = In.
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AT (A−1)T (∗)= (A−1A)T = IT
n = In,

where (*) follows from Proposition 1.8.1(d). An analogous
argument shows that (A−1)T AT = In. So, AT is invertible and its
inverse is (A−1)T . □
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also invertible, and moreover, (AB)−1 = B−1A−1

Proof.

Fix invertible matrices A, B ∈ Fn×n. It suffices to show that
(AB)(B−1A−1) = (B−1A−1)(AB) = In. For this, we compute
(using the associativity of matrix multiplication):

(AB)(B−1A−1) = A(BB−1)A−1 = AInA−1 = AA−1 = In;
(B−1A−1)(AB) = B−1(A−1A)B = B−1InB = B−1B = In.
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Proposition 1.11.8
(d) if matrices A, B ∈ Fn×n are invertible matrices, then AB is

also invertible, and moreover, (AB)−1 = B−1A−1;
(e) if matrices A1, . . . , Ak ∈ Fn×n are invertible, then the matrix

A1 . . . Ak is also invertible, and moreover,
(A1 . . . Ak)−1 = A−1

k . . . A−1
1 ;

Proof.

Part (e) follows from (d) via an easy induction on k (the
details are left as an exercise). □
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Proposition 1.11.8
(a) the identity matrix In is invertible and is its own inverse (i.e.

I−1
n = In);

(e) if matrices A1, . . . , Ak ∈ Fn×n are invertible, then the matrix
A1 . . . Ak is also invertible, and moreover,
(A1 . . . Ak)−1 = A−1

k . . . A−1
1 ;

(f) if a matrix A ∈ Fn×n is invertible, then for all non-negative
integers m, the matrix Am is also invertible, and moreover,
(Am)−1 = (A−1)m.

Proof.

Part (f) follows from (a) when m = 0 (this is because
A0 = In for all matrices A ∈ Fn×n), and is a special case of (e)
when m ≥ 1. □
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Proposition 1.11.8
Let F be a field. Then all the following hold:

(a) the identity matrix In is invertible and is its own inverse (i.e.
I−1
n = In);
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invertible, and moreover, (A−1)−1 = A;
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Theorem 1.11.9
Let F be a field, let A ∈ Fn×n be a square matrix, and let
f : Fn → Fn be given by f (x) = Ax for all x ∈ Fn. Then f is linear
and its standard matrix is A. Furthermore, the following are
equivalent:

(a) f is an isomorphism;
(b) A is invertible;
(c) RREF(A) = In;
(d) rank(A) = n.

Moreover, in this case, f −1 is an isomorphism and its standard
matrix is A−1.

Proof.

The function f is a matrix transformation, and so by
Proposition 1.10.4, it is linear. The fact that A is its standard
matrix follows from the definition of a standard matrix.
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Proof (continued). By Theorem 1.10.19, (a) and (d) are
equivalent,

and by Proposition 1.6.7, (c) and (d) are equivalent.
So, (a), (c), and (d) are equivalent. Moreover, Proposition 1.10.20
guarantees that if f is an isomorphism, then so is f −1.

It now suffices to prove the following:
(1) if f is an isomorphism, then A is invertible, and moreover, the

standard matrix of f −1 is A−1;
Note that (1) states that (a) implies (b), and moreover, that if
(a) holds, then the standard matrix of f −1 is A−1.

(2) if A is invertible, then f is an isomorphism.
Note that (2) states that (b) implies (a).
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(1) if f is an isomorphism, then A is invertible, and moreover, the
standard matrix of f −1 is A−1

We first prove (1).

Assume that f is an isomorphism. Then by
Proposition 1.10.20, f −1 : Fn → Fn is an isomorphism; let
B ∈ Fn×n be the standard matrix of the isomorphism f −1. We
must show that A is invertible and that B = A−1. Since f and f −1

are linear, Proposition 1.10.13(c) guarantees that f ◦ f −1 and
f −1 ◦ f are also linear, and moreover, that their standard matrices
are AB and BA, respectively. On the other hand, we have that
f −1 ◦ f = f ◦ f −1 = IdFn , and clearly (or by Proposition 1.10.8),
the standard matrix of IdFn is In. So, AB = BA = In. But now A is
invertible and B is its inverse, i.e. B = A−1.
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(2) if A is invertible, then f is an isomorphism.
It remains to prove (2).

Assume that A is invertible. We must
show that f is an isomorphism. By hypothesis, f is linear; it
remains to show that f is a bijection.

Define g : Fn → Fn by setting g(u) = A−1u for all u ∈ Fn. (So,
g : Fn → Fn is the linear function whose standard matrix is A−1.)
Our goal is to show that f ◦ g = g ◦ f = IdFn . In view of
Proposition 1.10.15, this will imply that f is a bijection, which is
what we need.

But indeed, for any u ∈ Fn, we have that
(f ◦ g)(u) = f

(
g(u)

)
= A(A−1u) = (AA−1)u = Inu = u;

(g ◦ f )(u) = g
(
f (u)

)
= A−1(Au) = (A−1A)u = Inu = u.

This proves that f ◦ g = g ◦ f = IdFn , and it follows that f is
indeed a bijection. □
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Theorem 1.11.9
Let F be a field, let A ∈ Fn×n be a square matrix, and let
f : Fn → Fn be given by f (x) = Ax for all x ∈ Fn. Then f is linear
and its standard matrix is A. Furthermore, the following are
equivalent:

(a) f is an isomorphism;
(b) A is invertible;
(c) RREF(A) = In;
(d) rank(A) = n.

Moreover, in this case, f −1 is an isomorphism and its standard
matrix is A−1.



Corollary 1.11.10
Let F be a field, and let A ∈ Fn×n be a square matrix. Then the
following are equivalent:

(a) A is invertible;
(b) AT is invertible;
(c) rank(A) = n;
(d) rank(AT ) = n.

Proof.

By Theorem 1.11.9 applied to the matrix A, we have
that (a) and (c) are equivalent. Similarly, by Theorem 1.11.10
applied to the matrix AT , we have that (b) and (d) are equivalent.

By Proposition 1.11.8(c) applied to the matrix A, we have that (a)
implies (b). On the other hand, Proposition 1.11.8(c) applied to
AT guarantees that if AT is invertible, then so is (AT )T = A, and
so (b) implies (a). □
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following are equivalent:

(a) A is invertible;
(b) AT is invertible;
(c) rank(A) = n;
(d) rank(AT ) = n.

By Corollary 1.11.10, a square matrix (with entries in some
field) has full rank iff its transpose has full rank.
In fact, the rank of any matrix is equal to the rank of its
transpose, but we cannot prove this yet.
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An elementary matrix is any matrix obtained by performing
one elementary row operation on an identity matrix In.

For an elementary row operation performed on a matrix with
n rows, the elementary matrix that corresponds to this
elementary row operation is the matrix obtained by performing
that same elementary row operation on the identity matrix In.
Let us consider some examples.
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1 The elementary matrix that corresponds to swapping rows 2
and 4 (“R2 ↔ R4”) of a matrix with 5 rows is

1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1

 .

2 The elementary matrix that corresponds to multiplying the
second row of a matrix with three rows by a scalar α ̸= 0
(“R2 → αR2”) is  1 0 0

0 α 0
0 0 1

 .

3 The elementary matrix that corresponds to adding α times
the third row to the second row (“R2 → R2 + αR3”) of a
matrix with three rows is 1 0 0

0 1 α
0 0 1

 .
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Proposition 1.11.11
Let F be a field, and let A ∈ Fn×m be a matrix. Then all the
following hold:

(a) if R is any elementary row operation (performed on a matrix
with n rows and with entries in F) and E is the corresponding
elementary matrix, then the matrix obtained from A by
performing R on it is precisely the matrix EA;

(b) if R1, . . . , Rk are elementary row operations (performed on a
matrix with n rows and with entries in F) and
E1, . . . , Ek ∈ Fn×n are, respectively, the corresponding
elementary matrices, then the matrix obtained from A by
performing R1, . . . , Rk (in that order) on it is precisely the
matrix Ek . . . E1A.

Part (b) follows from (a) via an easy induction (details:
exercise).

A R1∼ E1A R2∼ E2E1A R3∼ E3E2E1A R4∼ . . .
Rk∼ Ek . . . E3E2E1A.



Proposition 1.11.11
(a) if R is any elementary row operation (performed on a matrix

with n rows and with entries in F) and E is the corresponding
elementary matrix, then the matrix obtained from A by
performing R on it is precisely the matrix EA;

Proof of (a).

Consider any elementary row operation R performed
on a matrix with n rows (and with entries in the field F). Define
fR : Fn → Fn by, for each u ∈ Fn, letting f (u) be the vector
obtained by performing the elementary row operation R on u. It is
easy to see that fR is linear. So, fR has a standard matrix. But
clearly, the standard matrix of fR is precisely the matrix E : indeed,
the standard matrix of R is[

fR(e1) . . . fR(en)
]

,

which is precisely the matrix obtained from In by applying the
elementary row operation R to it, and this matrix is precisely the
elementary matrix E .
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Proposition 1.11.11
(a) if R is any elementary row operation (performed on a matrix

with n rows and with entries in F) and E is the corresponding
elementary matrix, then the matrix obtained from A by
performing R on it is precisely the matrix EA;

Proof of (a). Reminder: fR : Fn → Fn performs R on each vector
in Fn, it is linear, and its standard matrix is E .

Now, fix any matrix A ∈ Fn×m, and set A =
[

a1 . . . am
]
.

Then

EA =
[

Ea1 . . . Eam
] (∗)=

[
fR(a1) . . . fR(am)

]
=: M,

where (*) follows from the fact that E is the standard matrix of
fR . But obviously, the matrix M is precisely the matrix obtained by
performing the elementary row operation R on A. This
proves (a). □
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Proposition 1.11.11
Let F be a field, and let A ∈ Fn×m be a matrix. Then all the
following hold:

(a) if R is any elementary row operation (performed on a matrix
with n rows and with entries in F) and E is the corresponding
elementary matrix, then the matrix obtained from A by
performing R on it is precisely the matrix EA;

(b) if R1, . . . , Rk are elementary row operations (performed on a
matrix with n rows and with entries in F) and
E1, . . . , Ek ∈ Fn×n are, respectively, the corresponding
elementary matrices, then the matrix obtained from A by
performing R1, . . . , Rk (in that order) on it is precisely the
matrix Ek . . . E1A.



Proposition 1.11.12
Let F be a field. Then all the following hold:

(a) elementary matrices in Fn×n are invertible;
(b) the inverse of an elementary matrix in Fn×n is an elementary

matrix in Fn×n;
(c) a matrix A ∈ Fn×n is invertible iff there exist elementary

matrices E1, . . . , Ek s.t. A = E1 . . . Ek (that is, a matrix is
invertible iff it can be written as a product of elementary
matrices).

Proof.

We prove (a) and (b) simultaneously, and we prove (c)
separately.
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Proposition 1.11.12
(a) elementary matrices in Fn×n are invertible;
(b) the inverse of an elementary matrix in Fn×n is an elementary

matrix in Fn×n;

Proof of (a) and (b).

Let R be an elementary row operation
performed on a matrix with n rows (and with entries in the field
F), and let E be the elementary matrix that corresponds to R. Let
R ′ be the elementary row operation that “undoes” R, and let E ′

be the elementary matrix that corresponds to R ′. But now
Proposition 1.11.11 guarantees that EE ′ = E ′E = In.

Essentially (and slightly informally):

In
R∼ EIn

R′
∼ E ′EIn︸ ︷︷ ︸

=E ′E

because R′
undoes R= In

This proves that E is invertible, and that its inverse is the
elementary matrix E ′. This proves (a) and (b).
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Proposition 1.11.12
Let F be a field. Then all the following hold:

(a) elementary matrices in Fn×n are invertible;
(b) the inverse of an elementary matrix in Fn×n is an elementary

matrix in Fn×n;
(c) a matrix A ∈ Fn×n is invertible iff there exist elementary

matrices E1, . . . , Ek s.t. A = E1 . . . Ek (that is, a matrix is
invertible iff it can be written as a product of elementary
matrices).

Proof of (c).

The fact that products of elementary matrices are
invertible follows immediately from part (a) and from the fact that
(by Proposition 1.11.8(e)) products of invertible matrices are
invertible.

For the reverse direction, we fix an arbitrary invertible matrix
A ∈ Fn×n, and we show that A can be written as a product of
elementary matrices.
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Proposition 1.11.12
(c) a matrix A ∈ Fn×n is invertible iff there exist elementary

matrices E1, . . . , Ek s.t. A = E1 . . . Ek (that is, a matrix is
invertible iff it can be written as a product of elementary
matrices).

Proof of (c) (continued). Reminder: A ∈ Fn×n is invertible; WTS
A is a product of elementary matrices.

Since A is invertible, Proposition 1.11.9 guarantees that
RREF(A) = In. In particular, A and In are row equivalent, and it
follows that we can transform In into A via some sequence
R1, . . . , Rk of elementary row operations:

In
R1∼ . . .

Rk∼ A.

For each index i ∈ {1, . . . , k}, let Ei ∈ Fn×n be the elementary
matrix that corresponds to the elementary row operation Ri . But
then by Proposition 1.11.11(b), we have that
A = Ek . . . E1In = Ek . . . E1. This proves (c). □
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For each index i ∈ {1, . . . , k}, let Ei ∈ Fn×n be the elementary
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A = Ek . . . E1In = Ek . . . E1. This proves (c). □
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Proposition 1.11.12
Let F be a field. Then all the following hold:

(a) elementary matrices in Fn×n are invertible;
(b) the inverse of an elementary matrix in Fn×n is an elementary

matrix in Fn×n;
(c) a matrix A ∈ Fn×n is invertible iff there exist elementary
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Theorem 1.11.13
Let F be a field, and let A, B ∈ Fn×m. Then the following are
equivalent:

(a) A ∼ B;
(b) there exist elementary matrices E1, . . . , Ek ∈ Fn×n s.t.

B = E1 . . . EkA;
(c) there exists an invertible matrix C ∈ Fn×n s.t. B = CA.

Proof.

By definition, (a) is equivalent to:
(a’) B can be obtained from A via some sequence of elementary

row operations.
But Proposition 1.11.11(b) guarantees that (a’) and (b) are
equivalent, and Proposition 1.11.12(c) guarantees that (b) and (c)
are equivalent. This completes the argument. □
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Theorem 1.11.4
Let F be a field, let A ∈ Fn×n be a square matrix, and set[

U B
]

= RREF
( [

A In
] )

, where each of U and B has n
columns. Then

(a) if U = In, then A is invertible and B = A−1;
(b) if U ̸= In, then A is not invertible.

Proof.

By Theorem 1.11.9, we have that A is invertible iff
RREF(A) = In, and since

[
U B

]
= RREF

( [
A In

] )
, we have

that RREF(A) = U.

So, if U ̸= In, then A is not invertible; this proves (b) holds.

Assume now that U = In, so that A is invertible. To prove (a), it
now remains to show that B = A−1.
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Proof (continued). Reminder: U = In, A is invertible,
RREF

( [
A In

] )
=

[
In B

]
. WTS B = A−1.

Since
[

A In
]

∼
[

In B
]
, Theorem 1.11.13 guarantees that

there exists an invertible matrix C ∈ Fn×n s.t.
C

[
A In

]
=

[
In B

]
. But note that

C
[

A In
]

=
[

CA C
]
. So,[

CA C
]

= C
[

A In
]

=
[

In B
]
, which in turn implies that

CA = In and C = B, and consequently, BA = In. But we already
saw that A is invertible, and so Proposition 1.11.3 (below)
guarantees that A−1 = B. □

Proposition 1.11.3
Let F be a field, and let A, B ∈ Fn×n. Assume that A is invertible
and that AB = In or BA = In. Then A−1 = B.



Proof (continued). Reminder: U = In, A is invertible,
RREF

( [
A In

] )
=

[
In B

]
. WTS B = A−1.

Since
[

A In
]

∼
[

In B
]
, Theorem 1.11.13 guarantees that

there exists an invertible matrix C ∈ Fn×n s.t.
C

[
A In

]
=

[
In B

]
.

But note that

C
[

A In
]

=
[

CA C
]
. So,[

CA C
]

= C
[

A In
]

=
[

In B
]
, which in turn implies that

CA = In and C = B, and consequently, BA = In. But we already
saw that A is invertible, and so Proposition 1.11.3 (below)
guarantees that A−1 = B. □

Proposition 1.11.3
Let F be a field, and let A, B ∈ Fn×n. Assume that A is invertible
and that AB = In or BA = In. Then A−1 = B.



Proof (continued). Reminder: U = In, A is invertible,
RREF

( [
A In

] )
=

[
In B

]
. WTS B = A−1.

Since
[

A In
]

∼
[

In B
]
, Theorem 1.11.13 guarantees that

there exists an invertible matrix C ∈ Fn×n s.t.
C

[
A In

]
=

[
In B

]
. But note that

C
[

A In
]

=
[

CA C
]
.

So,[
CA C

]
= C

[
A In

]
=

[
In B

]
, which in turn implies that

CA = In and C = B, and consequently, BA = In. But we already
saw that A is invertible, and so Proposition 1.11.3 (below)
guarantees that A−1 = B. □

Proposition 1.11.3
Let F be a field, and let A, B ∈ Fn×n. Assume that A is invertible
and that AB = In or BA = In. Then A−1 = B.



Proof (continued). Reminder: U = In, A is invertible,
RREF

( [
A In

] )
=

[
In B

]
. WTS B = A−1.

Since
[

A In
]

∼
[

In B
]
, Theorem 1.11.13 guarantees that

there exists an invertible matrix C ∈ Fn×n s.t.
C

[
A In

]
=

[
In B

]
. But note that

C
[

A In
]

=
[

CA C
]
. So,[

CA C
]

= C
[

A In
]

=
[

In B
]
,

which in turn implies that
CA = In and C = B, and consequently, BA = In. But we already
saw that A is invertible, and so Proposition 1.11.3 (below)
guarantees that A−1 = B. □

Proposition 1.11.3
Let F be a field, and let A, B ∈ Fn×n. Assume that A is invertible
and that AB = In or BA = In. Then A−1 = B.



Proof (continued). Reminder: U = In, A is invertible,
RREF

( [
A In

] )
=

[
In B

]
. WTS B = A−1.

Since
[

A In
]

∼
[

In B
]
, Theorem 1.11.13 guarantees that

there exists an invertible matrix C ∈ Fn×n s.t.
C

[
A In

]
=

[
In B

]
. But note that

C
[

A In
]

=
[

CA C
]
. So,[

CA C
]

= C
[

A In
]

=
[

In B
]
, which in turn implies that

CA = In and C = B, and consequently, BA = In.

But we already
saw that A is invertible, and so Proposition 1.11.3 (below)
guarantees that A−1 = B. □

Proposition 1.11.3
Let F be a field, and let A, B ∈ Fn×n. Assume that A is invertible
and that AB = In or BA = In. Then A−1 = B.



Proof (continued). Reminder: U = In, A is invertible,
RREF

( [
A In

] )
=

[
In B

]
. WTS B = A−1.

Since
[

A In
]

∼
[

In B
]
, Theorem 1.11.13 guarantees that

there exists an invertible matrix C ∈ Fn×n s.t.
C

[
A In

]
=

[
In B

]
. But note that

C
[

A In
]

=
[

CA C
]
. So,[

CA C
]

= C
[

A In
]

=
[

In B
]
, which in turn implies that

CA = In and C = B, and consequently, BA = In. But we already
saw that A is invertible, and so Proposition 1.11.3 (below)
guarantees that A−1 = B. □

Proposition 1.11.3
Let F be a field, and let A, B ∈ Fn×n. Assume that A is invertible
and that AB = In or BA = In. Then A−1 = B.



Theorem 1.11.4
Let F be a field, let A ∈ Fn×n be a square matrix, and set[

U B
]

= RREF
( [

A In
] )

, where each of U and B has n
columns. Then

(a) if U = In, then A is invertible and B = A−1;
(b) if U ̸= In, then A is not invertible.



The Invertible Matrix Theorem (next two slides) gives a long
list of statements that are equivalent to a square matrix being
invertible.

The theorem is so long that it does not fit onto one slide!

This theorem is essentially a summary of the results that we
have proven so far.

The proof of the Invertible Matrix Theorem is given in the
Lecture Notes.
Essentially, it is a long list of references to results that we have
already proven.

Later in the course, we will extend the Invertible Matrix
Theorem (i.e. add more equivalent statements) to it.
Importantly, the Invertible Matrix Theorem applies only to
square matrices, and may not be applies to non-square
matrices.
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The Invertible Matrix Theorem (version 1)
Let F be a field, and let A ∈ Fn×n be a square matrix. Further, let
f : Fn → Fn be given by f (x) = Ax for all x ∈ Fn.a Then the
following are equivalent:

(a) A is invertible (i.e. A has an inverse);
(b) AT is invertible;
(c) RREF(A) = In;
(d) RREF

( [
A In

] )
=

[
In B

]
for some matrix B ∈ Fn×n;

(e) rank(A) = n;
(f) rank(AT ) = n;
(g) A is a product of elementary matrices;

aSince f is a matrix equation, Proposition 1.10.4 guarantees that f is linear.
Moreover, A is the standard matrix of f .



The Invertible Matrix Theorem (version 1) - continued

(h) the homogeneous matrix-vector equation Ax = 0 has only the
trivial solution (i.e. the solution x = 0);

(i) there exists some vector b ∈ Fn s.t. the matrix-vector
equation Ax = b has a unique solution;

(j) for all vectors b ∈ Fn, the matrix-vector equation Ax = b has
a unique solution;

(k) for all vectors b ∈ Fn, the matrix-vector equation Ax = b has
at most one solution;

(l) for all vectors b ∈ Fn, the matrix-vector equation Ax = b is
consistent;

(m) f is one-to-one;
(n) f is onto;
(o) f is an isomorphism.


