Linear Algebra 1

Lecture #4

Linear functions

Irena Penev

October 30, 2023

Definition

For a field \mathbb{F} , a function $f : \mathbb{F}^m \to \mathbb{F}^n$ is said to be a *linear function* (or a *linear transformation*) if it satisfies the following two conditions (axioms):

() for all vectors $\mathbf{u}, \mathbf{v} \in \mathbb{F}^m$, we have that $f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$;

2 for all vectors $\mathbf{u} \in \mathbb{F}^m$ and scalars $\alpha \in \mathbb{F}$, we have that $f(\alpha \mathbf{u}) = \alpha f(\mathbf{u})$.

Definition

For a field \mathbb{F} , a function $f : \mathbb{F}^m \to \mathbb{F}^n$ is said to be a *linear function* (or a *linear transformation*) if it satisfies the following two conditions (axioms):

() for all vectors $\mathbf{u}, \mathbf{v} \in \mathbb{F}^m$, we have that $f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$;

2 for all vectors $\mathbf{u} \in \mathbb{F}^m$ and scalars $\alpha \in \mathbb{F}$, we have that $f(\alpha \mathbf{u}) = \alpha f(\mathbf{u})$.

Proposition 1.10.1

Let \mathbb{F} be a field, and let $f: \mathbb{F}^m \to \mathbb{F}^n$ be a linear function. Then for all vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathbb{F}^m$ and all scalars $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$, we have that

$$f(\alpha_1\mathbf{v}_1+\cdots+\alpha_k\mathbf{v}_k) = \alpha_1f(\mathbf{v}_1)+\cdots+\alpha_kf(\mathbf{v}_k).$$

Proof. Easy induction (details: exercise).

Example 1.10.2

Determine whether the following functions are linear (and prove your answer):

•
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
 given by $f\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 - x_2 + x_3 \\ x_1 + x_2 \end{bmatrix}$ for all $x_1, x_2, x_3 \in \mathbb{R}$.
 • $g: \mathbb{Z}_2^2 \to \mathbb{Z}_2^4$ given by $g\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 \\ x_1 + x_2 \\ x_2 \\ 1 \end{bmatrix}$ for all $x_1, x_2 \in \mathbb{Z}_2$.
 • $h: \mathbb{Z}_3^3 \to \mathbb{Z}_3^2$ given by $h\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 \\ x_1 + x_2 \end{bmatrix}$ for all $x_1, x_2 \in \mathbb{Z}_3$.

• Remark:

To show that a function is linear, we must show that it satisfies both axioms from the definition of a linear function; in particular, axiom 1 must hold for all vectors u and v, and axiom 2 must hold for all vectors u and scalars α.

• Remark:

- To show that a function is linear, we must show that it satisfies both axioms from the definition of a linear function; in particular, axiom 1 must hold for all vectors u and v, and axiom 2 must hold for all vectors u and scalars α.
- On the other hand, to show that a function is **not** linear, it is enough to show that it fails to satisfy at least one of the axioms 1 and 2 from the definition of a linear function.

• Remark:

- To show that a function is linear, we must show that it satisfies both axioms from the definition of a linear function; in particular, axiom 1 must hold for all vectors u and v, and axiom 2 must hold for all vectors u and scalars α.
- On the other hand, to show that a function is **not** linear, it is enough to show that it fails to satisfy at least one of the axioms 1 and 2 from the definition of a linear function.
- To show that a function does **not** satisfy axiom 1, it is enough to exhibit **one particular pair of vectors u** and **v** for which that axiom does not hold.
- Similarly, to show that a function does not satisfy axiom 2, it is enough to exhibit one particular vector u and one particular scalar α for which axiom 2 fails.

Example 1.10.2
•
$$f : \mathbb{R}^3 \to \mathbb{R}^2$$
 given by $f\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_1 - x_2 + x_3\\x_1 + x_2\end{bmatrix}$ for all $x_1, x_2, x_3 \in \mathbb{R}$.

Solution.

100

Example 1.10.2
•
$$f : \mathbb{R}^3 \to \mathbb{R}^2$$
 given by $f\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_1 - x_2 + x_3\\x_1 + x_2\end{bmatrix}$ for all $x_1, x_2, x_3 \in \mathbb{R}$.

Solution. (a) The function f is linear. We prove this by verifying the axioms of a linear function for the function f, as follows.

$$f: \mathbb{R}^3 \to \mathbb{R}^2 \text{ given by } f\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_1 - x_2 + x_3\\x_1 + x_2\end{bmatrix} \text{ for all}$$
$$x_1, x_2, x_3 \in \mathbb{R}.$$

Solution. (a) The function f is linear. We prove this by verifying the axioms of a linear function for the function f, as follows.

1. Fix vectors
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ in \mathbb{R}^3 . WTS $f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$.

• **Example 1.10.2**
•
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
 given by $f\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_1 - x_2 + x_3\\x_1 + x_2\end{bmatrix}$ for all $x_1, x_2, x_3 \in \mathbb{R}$.

Solution. (a) The function f is linear. We prove this by verifying the axioms of a linear function for the function f, as follows.

1. Fix vectors
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ in \mathbb{R}^3 . WTS $f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$. For this, we compute (next slide):

Solution (continued).

$$f(\mathbf{u} + \mathbf{v}) = f\left(\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}\right) = f\left(\begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{bmatrix}\right)$$

$$\stackrel{(*)}{=} \begin{bmatrix} (u_1 + v_1) - (u_2 + v_2) + (u_3 + v_3) \\ (u_1 + v_1) + (u_2 + v_2) \end{bmatrix}$$

$$= \begin{bmatrix} (u_1 - u_2 + u_3) + (v_1 - v_2 + v_3) \\ (u_1 + u_2) + (v_1 + v_2) \end{bmatrix}$$

$$= \begin{bmatrix} u_1 - u_2 + u_3 \\ u_1 + u_2 \end{bmatrix} + \begin{bmatrix} v_1 - v_2 + v_3 \\ v_1 + v_2 \end{bmatrix}$$

$$\stackrel{(**)}{=} f\left(\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}\right) + f\left(\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}\right)$$

$$= f(\mathbf{u}) + f(\mathbf{v}),$$

where both (*) and (**) follow from the definition of f.

Solution (continued). Fix a vector
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
 in \mathbb{R}^3 and a scalar $\alpha \in \mathbb{R}$. WTS $f(\alpha \mathbf{u}) = \alpha f(\mathbf{u})$. For this, we compute:

$$f(\alpha \mathbf{u}) = f\left(\alpha \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}\right) = f\left(\begin{bmatrix} \alpha u_1 \\ \alpha u_2 \\ \alpha u_3 \end{bmatrix}\right)$$
$$\stackrel{(*)}{=} \begin{bmatrix} \alpha u_1 - \alpha u_2 + \alpha u_3 \\ \alpha u_1 + \alpha u_2 \end{bmatrix} = \begin{bmatrix} \alpha (u_1 - u_2 + u_3) \\ \alpha (u_1 + u_2) \end{bmatrix}$$
$$= \alpha \begin{bmatrix} u_1 - u_2 + u_3 \\ u_1 + u_2 \end{bmatrix} \stackrel{(**)}{=} \alpha f\left(\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}\right),$$

where both (*) and (**) follow from the definition of f.

Solution (continued). Fix a vector
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
 in \mathbb{R}^3 and a scalar $\alpha \in \mathbb{R}$. WTS $f(\alpha \mathbf{u}) = \alpha f(\mathbf{u})$. For this, we compute:

 $f(\alpha \mathbf{u}) = f\left(\alpha \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}\right) = f\left(\begin{bmatrix} \alpha u_1 \\ \alpha u_2 \\ \alpha u_3 \end{bmatrix}\right)$ $\stackrel{(*)}{=} \begin{bmatrix} \alpha u_1 - \alpha u_2 + \alpha u_3 \\ \alpha u_1 + \alpha u_2 \end{bmatrix} = \begin{bmatrix} \alpha (u_1 - u_2 + u_3) \\ \alpha (u_1 + u_2) \end{bmatrix}$ $= \alpha \begin{bmatrix} u_1 - u_2 + u_3 \\ u_1 + u_2 \end{bmatrix} \stackrel{(**)}{=} \alpha f\left(\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}\right),$

where both (*) and (**) follow from the definition of f.

We have now shown that f satisfies both axioms from the definition of a linear function. So, f is linear, as we had claimed. \Box

Example 1.10.2

$$g: \mathbb{Z}_2^2 \to \mathbb{Z}_2^4 \text{ given by } g\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 \\ x_1 + x_2 \\ x_2 \\ 1 \end{bmatrix} \text{ for all}$$

$$x_1, x_2 \in \mathbb{Z}_2.$$

Solution.

$$g: \mathbb{Z}_{2}^{2} \to \mathbb{Z}_{2}^{4} \text{ given by } g\left(\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}\right) = \begin{bmatrix} x_{1} \\ x_{1} + x_{2} \\ x_{2} \\ 1 \end{bmatrix} \text{ for all}$$
$$x_{1}, x_{2} \in \mathbb{Z}_{2}.$$

10

Solution. (b) The function g is **not** linear because it does not satisfy axiom 1 of the definition of a linear function.

Example 1.10.2

$$g: \mathbb{Z}_2^2 \to \mathbb{Z}_2^4 \text{ given by } g\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 \\ x_1 + x_2 \\ x_2 \\ 1 \end{bmatrix} \text{ for all}$$
$$x_1, x_2 \in \mathbb{Z}_2.$$

Solution. (b) The function g is **not** linear because it does not satisfy axiom 1 of the definition of a linear function. To see this, we consider, for example, the vectors $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ in \mathbb{Z}_2^2 , and we observe that (next slide):

Solution (continued).

$$g(\mathbf{u}+\mathbf{v}) = g\left(\begin{bmatrix}1\\1\end{bmatrix}+\begin{bmatrix}1\\1\end{bmatrix}\right) = g\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}0\\0\\1\end{bmatrix}$$

whereas

$$g(\mathbf{u}) + g(\mathbf{v}) = g\left(\begin{bmatrix} 1\\1 \end{bmatrix} \right) + g\left(\begin{bmatrix} 1\\1 \end{bmatrix} \right) = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix} + \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}$$
$$= \begin{bmatrix} 0\\0\\0 \end{bmatrix}.$$

As we can see, $g(\mathbf{u} + \mathbf{v}) \neq g(\mathbf{u}) + g(\mathbf{v})$, and we deduce that g is not linear. \Box

Example 1.10.2

$$\begin{array}{l} \textcircled{9} \quad h: \mathbb{Z}_3^3 \to \mathbb{Z}_3^2 \text{ given by } h\Big(\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right] \Big) = \left[\begin{array}{c} x_1 + x_2 \\ x_1 x_2 \end{array} \right] \text{ for all} \\ x_1, x_2, x_3 \in \mathbb{Z}_3. \end{array}$$

Solution.

$$h: \mathbb{Z}_3^3 \to \mathbb{Z}_3^2 \text{ given by } h\left(\begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix} \right) = \begin{bmatrix} x_1 + x_2\\x_1 x_2 \end{bmatrix} \text{ for all}$$
$$x_1, x_2, x_3 \in \mathbb{Z}_3.$$

Solution. (c) The function h is **not** linear because it does not satisfy axiom 2 of the definition of a linear function.

$$h: \mathbb{Z}_3^3 \to \mathbb{Z}_3^2 \text{ given by } h\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} x_1 + x_2 \\ x_1 x_2 \end{bmatrix} \text{ for all}$$
$$x_1, x_2, x_3 \in \mathbb{Z}_3.$$

Solution. (c) The function h is **not** linear because it does not satisfy axiom 2 of the definition of a linear function. To see this,

we consider, for example, the vector $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ in \mathbb{Z}_3^3 and the

scalar $\alpha = 2$ in \mathbb{Z}_3 , and we observe that • $h(\alpha \mathbf{u}) = h\left(2 \begin{bmatrix} 1\\2\\0\\ \end{bmatrix}\right) = h\left(\begin{bmatrix} 2\\1\\0\\ \end{bmatrix}\right) = \begin{bmatrix} 2+1\\2\cdot1\\ \end{bmatrix} = \begin{bmatrix} 0\\2\\ \end{bmatrix};$ • $\alpha h(\mathbf{u}) = 2h\left(\begin{bmatrix} 1\\2\\0\\ \end{bmatrix}\right) = 2\begin{bmatrix} 1+2\\1\cdot2\\ \end{bmatrix} = 2\begin{bmatrix} 0\\2\\ \end{bmatrix} = \begin{bmatrix} 0\\1\\ \end{bmatrix}.$ Thus, $h(\alpha \mathbf{u}) \neq \alpha h(\mathbf{u})$, and we deduce that h is not linear. \Box

Let \mathbb{F} be a field, and let $f: \mathbb{F}^m \to \mathbb{F}^n$ be a linear function. Then $f(\mathbf{0}) = \mathbf{0}.^a$

^aNote that in $f(\mathbf{0}) = \mathbf{0}$, we have that $\mathbf{0} \in \mathbb{F}^m$, whereas $\mathbf{0} \in \mathbb{F}^n$.

Proof.

Let $\mathbb F$ be a field, and let $f:\mathbb F^m\to\mathbb F^n$ be a linear function. Then $f(\mathbf 0)=\mathbf 0.^a$

^aNote that in $f(\mathbf{0}) = \mathbf{0}$, we have that $\mathbf{0} \in \mathbb{F}^m$, whereas $\mathbf{0} \in \mathbb{F}^n$.

Proof. We observe that

$$f(\mathbf{0}) = f(\mathbf{0} \cdot \mathbf{0}) \stackrel{(*)}{=} 0f(\mathbf{0}) = \mathbf{0},$$

where (*) follows from the fact that f is linear. \Box

Let \mathbb{F} be a field, and let $f: \mathbb{F}^m \to \mathbb{F}^n$ be a linear function. Then $f(\mathbf{0}) = \mathbf{0}.^a$

^aNote that in $f(\mathbf{0}) = \mathbf{0}$, we have that $\mathbf{0} \in \mathbb{F}^m$, whereas $\mathbf{0} \in \mathbb{F}^n$.

Proof. We observe that

$$f(\mathbf{0}) = f(\mathbf{0} \cdot \mathbf{0}) \stackrel{(*)}{=} 0f(\mathbf{0}) = \mathbf{0},$$

where (*) follows from the fact that f is linear. \Box

• **Remark:** Proposition 1.10.3 can sometimes be used to show that a function is not linear.

Let \mathbb{F} be a field, and let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function. Then $f(\mathbf{0}) = \mathbf{0}$.

Example 1.10.2
•
$$g: \mathbb{Z}_2^2 \to \mathbb{Z}_2^4$$
 given by $g\left(\begin{bmatrix} x_1\\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1\\ x_1+x_2\\ x_2\\ 1 \end{bmatrix}$ for all $x_1, x_2 \in \mathbb{Z}_2$.

• For example, for the function g from Example 1.10.2(b), we have that $g(\mathbf{0}) \neq \mathbf{0}$, and so g is not linear.

Let \mathbb{F} be a field, and let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function. Then $f(\mathbf{0}) = \mathbf{0}$.

Example 1.10.2
•
$$g: \mathbb{Z}_2^2 \to \mathbb{Z}_2^4$$
 given by $g\left(\begin{bmatrix} x_1\\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1\\ x_1 + x_2\\ x_2\\ 1 \end{bmatrix}$ for all $x_1, x_2 \in \mathbb{Z}_2$.

- For example, for the function g from Example 1.10.2(b), we have that $g(\mathbf{0}) \neq \mathbf{0}$, and so g is not linear.
- However, note that the converse of Proposition 1.10.3: it is possible that a function $f : \mathbb{F}^m \to \mathbb{F}^n$ (where \mathbb{F} is some field) satisfies $f(\mathbf{0}) = \mathbf{0}$, but that the function f is still not linear.

Let \mathbb{F} be a field, and let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function. Then $f(\mathbf{0}) = \mathbf{0}$.

Example 1.10.2

For instance, the function h from Example 1.10.2(c) satisfies h(0) = 0, but h is nevertheless not linear.

• Let us consider some geometric properties of linear functions from \mathbb{R}^m to \mathbb{R}^n .

- Let us consider some geometric properties of linear functions from \mathbb{R}^m to \mathbb{R}^n .
- Suppose that $f : \mathbb{R}^m \to \mathbb{R}^n$ is a linear function.

- Let us consider some geometric properties of linear functions from ℝ^m to ℝⁿ.
- Suppose that $f : \mathbb{R}^m \to \mathbb{R}^n$ is a linear function.
- It turns out that the image of any line in ℝ^m under f is either a line in ℝⁿ or a point in ℝⁿ (technically, a set that contains only one point/vector of ℝⁿ; we can think of such one-point sets as "degenerate lines").
 - This is one of the reasons why linear functions are called linear.

- Let us consider some geometric properties of linear functions from ℝ^m to ℝⁿ.
- Suppose that $f : \mathbb{R}^m \to \mathbb{R}^n$ is a linear function.
- It turns out that the image of any line in ℝ^m under f is either a line in ℝⁿ or a point in ℝⁿ (technically, a set that contains only one point/vector of ℝⁿ; we can think of such one-point sets as "degenerate lines").
 - This is one of the reasons why linear functions are called linear.
- Let us give a formal proof.

• Lines through the origin in \mathbb{R}^m are simply sets of the form Span(a) = { $\alpha \mathbf{a} \mid \alpha \in \mathbb{R}$ },

where **a** is a non-zero vector in \mathbb{R}^m .

• Lines through the origin in \mathbb{R}^m are simply sets of the form

$$\mathsf{Span}(\mathbf{a}) = \{\alpha \mathbf{a} \mid \alpha \in \mathbb{R}\},\$$

where **a** is a non-zero vector in \mathbb{R}^m .

Any line in ℝ^m is obtained by shifting a line through the origin by some vector b ∈ ℝ^m (if b = 0, then our line still passes though the origin).

• Lines through the origin in \mathbb{R}^m are simply sets of the form

$$\mathsf{Span}(\mathbf{a}) = \{ \alpha \mathbf{a} \mid \alpha \in \mathbb{R} \},\$$

where **a** is a non-zero vector in \mathbb{R}^m .

- Any line in ℝ^m is obtained by shifting a line through the origin by some vector b ∈ ℝ^m (if b = 0, then our line still passes though the origin).
- So, consider some line

$$L := \mathbf{b} + \mathsf{Span}(\mathbf{a}) = \{\mathbf{b} + \alpha \mathbf{a} \mid \alpha \in \mathbb{R}\},\$$

where $\mathbf{a} \neq \mathbf{0}$ and \mathbf{b} are fixed vectors in \mathbb{R}^m .

• For any point $\mathbf{b} + \alpha \mathbf{a} \ (\alpha \in \mathbb{R})$ on the line L, we have that $f(\mathbf{b} + \alpha \mathbf{a}) \stackrel{(*)}{=} f(\mathbf{b}) + f(\alpha \mathbf{a}) \stackrel{(**)}{=} f(\mathbf{b}) + \alpha f(\mathbf{a})$

where both (*) and (**) follow from the linearity of f, but in (*) we used axiom 1 from the definition of a linear function, and in (**) we used axiom 2.

• For any point $\mathbf{b} + \alpha \mathbf{a}$ ($\alpha \in \mathbb{R}$) on the line *L*, we have that

$$f(\mathbf{b} + \alpha \mathbf{a}) \stackrel{(*)}{=} f(\mathbf{b}) + f(\alpha \mathbf{a}) \stackrel{(**)}{=} f(\mathbf{b}) + \alpha f(\mathbf{a})$$

where both (*) and (**) follow from the linearity of f, but in (*) we used axiom 1 from the definition of a linear function, and in (**) we used axiom 2.

• So, the image of our line L under f, denoted by f[L], is

$$f[L] = \{f(\mathbf{b}) + \alpha f(\mathbf{a}) \mid \alpha \in \mathbb{R}\} = f(\mathbf{b}) + \operatorname{Span}(f(\mathbf{a})).$$

• Reminder:

$$f[L] = \{f(\mathbf{b}) + lpha f(\mathbf{a}) \mid lpha \in \mathbb{R}\} = f(\mathbf{b}) + \mathsf{Span}(f(\mathbf{a})).$$

• Reminder:

 $f[L] = \{f(\mathbf{b}) + \alpha f(\mathbf{a}) \mid \alpha \in \mathbb{R}\} = f(\mathbf{b}) + \mathsf{Span}(f(\mathbf{a})).$

• If $f(\mathbf{a}) \neq \mathbf{0}$, then f[L] is a line in \mathbb{R}^n .

• Reminder:

$$f[L] = \{f(\mathbf{b}) + \alpha f(\mathbf{a}) \mid \alpha \in \mathbb{R}\} = f(\mathbf{b}) + \operatorname{Span}(f(\mathbf{a})).$$

- If $f(\mathbf{a}) \neq \mathbf{0}$, then f[L] is a line in \mathbb{R}^n .
- On the other hand, if f(a) = 0, then f[L] = {f(b)}, which is a one-point subset ("degenerate line") of Rⁿ.

- Linear functions f : ℝ^m → ℝⁿ map line segments onto line segments (possibly degenerate ones, i.e. those that contain only one point).
 - The proof is similar to the above and is left as an exercise.

• We note, however, that not all functions $f : \mathbb{R}^m \to \mathbb{R}^n$ that map lines to lines (or points) are linear.

- We note, however, that not all functions f : ℝ^m → ℝⁿ that map lines to lines (or points) are linear.
- An obvious example might be a function $f : \mathbb{R}^n \to \mathbb{R}^n$ given by $f(\mathbf{x}) = \mathbf{x} + \mathbf{b}$ for all $\mathbf{x} \in \mathbb{R}^n$, where **b** is a fixed non-zero vector in \mathbb{R}^n .
 - This function is not linear because $f(\mathbf{0}) \neq \mathbf{0}$, and we know (by Proposition 1.10.3) that all linear functions map $\mathbf{0}$ to $\mathbf{0}$.

- We note, however, that not all functions f : ℝ^m → ℝⁿ that map lines to lines (or points) are linear.
- An obvious example might be a function $f : \mathbb{R}^n \to \mathbb{R}^n$ given by $f(\mathbf{x}) = \mathbf{x} + \mathbf{b}$ for all $\mathbf{x} \in \mathbb{R}^n$, where **b** is a fixed non-zero vector in \mathbb{R}^n .
 - This function is not linear because $f(\mathbf{0}) \neq \mathbf{0}$, and we know (by Proposition 1.10.3) that all linear functions map $\mathbf{0}$ to $\mathbf{0}$.
- However, even if a function $f : \mathbb{R}^m \to \mathbb{R}^n$ maps lines to lines (or points) and maps **0** to **0**, it might still fail to be linear.

• For example, consider the function $g:\mathbb{R}^2
ightarrow\mathbb{R}^2$ given by

$$g\left(\left[\begin{array}{c}x_1\\x_2\end{array}
ight]
ight) = \left[\begin{array}{c}x_1^3\\0\end{array}
ight]$$
 for all $x_1,x_2\in\mathbb{R}.$

• For example, consider the function $g:\mathbb{R}^2
ightarrow\mathbb{R}^2$ given by

$$g\left(\left[\begin{array}{c}x_1\\x_2\end{array}
ight]
ight) = \left[\begin{array}{c}x_1^3\\0\end{array}
ight]$$
 for all $x_1,x_2\in\mathbb{R}$.

• This function is not linear, although it does map all lines onto either lines or points, and it does map **0** to **0**.

• For example, consider the function $g: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$g\left(\left[\begin{array}{c}x_1\\x_2\end{array}
ight]
ight) = \left[\begin{array}{c}x_1^3\\0\end{array}
ight]$$
 for all $x_1,x_2\in\mathbb{R}$.

- This function is not linear, although it does map all lines onto either lines or points, and it does map **0** to **0**.
- In particular, g maps any non-vertical line in \mathbb{R}^2 onto the x_1 -axis, and it maps any vertical line onto a one-point set.

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f : \mathbb{F}^m \to \mathbb{F}^n$ by setting $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$. Then f is a linear function.

Proof.

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f : \mathbb{F}^m \to \mathbb{F}^n$ by setting $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$. Then f is a linear function.

Proof. By Corollary 1.7.6, the following hold:

- **(**) for all vectors $\mathbf{u}, \mathbf{v} \in \mathbb{F}^m$, we have $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$;
- () for all vectors $\mathbf{u} \in \mathbb{F}^m$ and scalars $\alpha \in \mathbb{F}$, we have that $A(\alpha \mathbf{u}) = \alpha(A\mathbf{u})$.

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f : \mathbb{F}^m \to \mathbb{F}^n$ by setting $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$. Then f is a linear function.

Proof. By Corollary 1.7.6, the following hold:

- **(**) for all vectors $\mathbf{u}, \mathbf{v} \in \mathbb{F}^m$, we have $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$;
- () for all vectors $\mathbf{u} \in \mathbb{F}^m$ and scalars $\alpha \in \mathbb{F}$, we have that $A(\alpha \mathbf{u}) = \alpha(A\mathbf{u})$.

But now we have the following:

() for all vectors $\mathbf{u}, \mathbf{v} \in \mathbb{F}^m$, we have that

$$f(\mathbf{u} + \mathbf{v}) = A(\mathbf{u} + \mathbf{v}) \stackrel{(i)}{=} A\mathbf{u} + A\mathbf{v} = f(\mathbf{u}) + f(\mathbf{v});$$

② for all vectors $\mathbf{u} \in \mathbb{F}^m$ and scalars $\alpha \in \mathbb{F}$, we have that

$$f(\alpha \mathbf{u}) = A(\alpha \mathbf{u}) \stackrel{(ii)}{=} \alpha(A\mathbf{u}) = \alpha f(\mathbf{u}).$$

So, f is linear. \Box

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f : \mathbb{F}^m \to \mathbb{F}^n$ by setting $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$. Then f is a linear function.

 Mappings of the form x → Ax, where A is some matrix, are sometimes called *matrix transformations*.

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f : \mathbb{F}^m \to \mathbb{F}^n$ by setting $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$. Then f is a linear function.

- Mappings of the form x → Ax, where A is some matrix, are sometimes called *matrix transformations*.
- By Proposition 1.10.4, all matrix transformations are linear. Let us try to describe matrix transformations in a bit more detail.

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f : \mathbb{F}^m \to \mathbb{F}^n$ by setting $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$. Then f is a linear function.

- Mappings of the form x → Ax, where A is some matrix, are sometimes called *matrix transformations*.
- By Proposition 1.10.4, all matrix transformations are linear. Let us try to describe matrix transformations in a bit more detail.
- Suppose we are given a matrix A = [a_{i,j}]_{n×m} in ℝ^{n×m} (where ℝ is some field), and define the function f : ℝ^m → ℝⁿ by setting f(x) = Ax for all x ∈ ℝ^m.

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f : \mathbb{F}^m \to \mathbb{F}^n$ by setting $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$. Then f is a linear function.

- Mappings of the form x → Ax, where A is some matrix, are sometimes called *matrix transformations*.
- By Proposition 1.10.4, all matrix transformations are linear. Let us try to describe matrix transformations in a bit more detail.
- Suppose we are given a matrix A = [a_{i,j}]_{n×m} in ℝ^{n×m} (where 𝔅 is some field), and define the function f : 𝔅^m → 𝔅ⁿ by setting f(x) = Ax for all x ∈ 𝔅^m.
- But now for all vectors $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_m \end{bmatrix}^T$ in \mathbb{F}^m , we have the following (next slide):

$$f(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,m} \\ a_{2,1} & a_{2,2} & \dots & a_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$
$$= \begin{bmatrix} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,m}x_m \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,m}x_m \\ \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,m}x_m \end{bmatrix}$$

$$f(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,m} \\ a_{2,1} & a_{2,2} & \dots & a_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$
$$= \begin{bmatrix} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,m}x_m \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,m}x_m \\ \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,m}x_m \end{bmatrix}$$

So, our matrix transformation maps each vector x ∈ F^m to a vector in Fⁿ, each of whose entries is a linear combination of the entries of x, and the scalars/weights are determined by the corresponding row of the matrix A.

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f : \mathbb{F}^m \to \mathbb{F}^n$ by setting $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$. Then f is a linear function.

• By Proposition 1.10.4, every matrix transformation is a linear function.

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f : \mathbb{F}^m \to \mathbb{F}^n$ by setting $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$. Then f is a linear function.

- By Proposition 1.10.4, every matrix transformation is a linear function.
- Interestingly, a converse of sorts also holds.

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f : \mathbb{F}^m \to \mathbb{F}^n$ by setting $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$. Then f is a linear function.

- By Proposition 1.10.4, every matrix transformation is a linear function.
- Interestingly, a converse of sorts also holds.

Theorem 1.10.6

Let \mathbb{F} be a field, and let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function. Then there exists a unique matrix A (called the *standard matrix of f*) such that for all $\mathbf{x} \in \mathbb{F}^m$, we have that $f(\mathbf{x}) = A\mathbf{x}$. Moreover, the standard matrix A of f is given by

$$A = \left[f(\mathbf{e}_1) \ldots f(\mathbf{e}_m) \right],$$

where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m .

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f : \mathbb{F}^m \to \mathbb{F}^n$ by setting $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$. Then f is a linear function.

- By Proposition 1.10.4, every matrix transformation is a linear function.
- Interestingly, a converse of sorts also holds.

Theorem 1.10.6

Let \mathbb{F} be a field, and let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function. Then there exists a unique matrix A (called the *standard matrix of f*) such that for all $\mathbf{x} \in \mathbb{F}^m$, we have that $f(\mathbf{x}) = A\mathbf{x}$. Moreover, the standard matrix A of f is given by

$$A = \left[f(\mathbf{e}_1) \ldots f(\mathbf{e}_m) \right],$$

where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m .

• We begin with another important theorem, which readily implies Theorem 1.10.6.

Let \mathbb{F} be a field, and let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be any vectors in \mathbb{F}^n . Then there exists a **unique** linear function $f : \mathbb{F}^m \to \mathbb{F}^n$ that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$, where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m . Moreover, this linear function f is given by $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$, where $A = \begin{bmatrix} \mathbf{a}_1 & \ldots & \mathbf{a}_m \end{bmatrix}$.

Let \mathbb{F} be a field, and let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be any vectors in \mathbb{F}^n . Then there exists a **unique** linear function $f : \mathbb{F}^m \to \mathbb{F}^n$ that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$, where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m . Moreover, this linear function f is given by $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$, where $A = \begin{bmatrix} \mathbf{a}_1 & \ldots & \mathbf{a}_m \end{bmatrix}$.

- Remark: Theorem 1.10.5 essentially states that we can fully determine a linear function f : 𝔽^m → 𝔽ⁿ (where 𝔽 is a field) by simply specifying what the standard basis vectors of 𝔽^m get mapped to.

Let \mathbb{F} be a field, and let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be any vectors in \mathbb{F}^n . Then there exists a **unique** linear function $f : \mathbb{F}^m \to \mathbb{F}^n$ that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$, where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m . Moreover, this linear function f is given by $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$, where $A = \begin{bmatrix} \mathbf{a}_1 & \ldots & \mathbf{a}_m \end{bmatrix}$.

Proof.

Let \mathbb{F} be a field, and let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be any vectors in \mathbb{F}^n . Then there exists a **unique** linear function $f : \mathbb{F}^m \to \mathbb{F}^n$ that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$, where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m . Moreover, this linear function f is given by $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$, where $A = \begin{bmatrix} \mathbf{a}_1 & \ldots & \mathbf{a}_m \end{bmatrix}$.

Proof. Existence. Define $f : \mathbb{F}^m \to \mathbb{F}^n$ by setting $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$.

Let \mathbb{F} be a field, and let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be any vectors in \mathbb{F}^n . Then there exists a **unique** linear function $f : \mathbb{F}^m \to \mathbb{F}^n$ that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$, where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m . Moreover, this linear function f is given by $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$, where $A = \begin{bmatrix} \mathbf{a}_1 & \ldots & \mathbf{a}_m \end{bmatrix}$.

Proof. Existence. Define $f : \mathbb{F}^m \to \mathbb{F}^n$ by setting $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$. Then f is a matrix transformation, and so by Proposition 1.10.4, it is linear.

Let \mathbb{F} be a field, and let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be any vectors in \mathbb{F}^n . Then there exists a **unique** linear function $f : \mathbb{F}^m \to \mathbb{F}^n$ that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$, where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m . Moreover, this linear function f is given by $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$, where $A = \begin{bmatrix} \mathbf{a}_1 & \ldots & \mathbf{a}_m \end{bmatrix}$.

Proof. Existence. Define $f : \mathbb{F}^m \to \mathbb{F}^n$ by setting $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$. Then f is a matrix transformation, and so by Proposition 1.10.4, it is linear. Moreover, for all indices $i \in \{1, ..., m\}$, we have that

$$f(\mathbf{e}_i) = A\mathbf{e}_i = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_m \end{bmatrix} \mathbf{e}_i \stackrel{(*)}{=} \mathbf{a}_i,$$

where (*) follows from Proposition 1.4.4.

Let \mathbb{F} be a field, and let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be any vectors in \mathbb{F}^n . Then there exists a **unique** linear function $f : \mathbb{F}^m \to \mathbb{F}^n$ that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$, where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m . Moreover, this linear function f is given by $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$, where $A = \begin{bmatrix} \mathbf{a}_1 & \ldots & \mathbf{a}_m \end{bmatrix}$.

Proof (continued).

Let \mathbb{F} be a field, and let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be any vectors in \mathbb{F}^n . Then there exists a **unique** linear function $f : \mathbb{F}^m \to \mathbb{F}^n$ that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$, where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m . Moreover, this linear function f is given by $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$, where $A = \begin{bmatrix} \mathbf{a}_1 & \ldots & \mathbf{a}_m \end{bmatrix}$.

Proof (continued). Uniqueness. Suppose that $f : \mathbb{F}^m \to \mathbb{F}^n$ is any linear function that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$.

Let \mathbb{F} be a field, and let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be any vectors in \mathbb{F}^n . Then there exists a **unique** linear function $f : \mathbb{F}^m \to \mathbb{F}^n$ that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$, where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m . Moreover, this linear function f is given by $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$, where $A = \begin{bmatrix} \mathbf{a}_1 & \ldots & \mathbf{a}_m \end{bmatrix}$.

Proof (continued). Uniqueness. Suppose that $f : \mathbb{F}^m \to \mathbb{F}^n$ is any linear function that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$. WTS $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$.

Let \mathbb{F} be a field, and let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be any vectors in \mathbb{F}^n . Then there exists a **unique** linear function $f : \mathbb{F}^m \to \mathbb{F}^n$ that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$, where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m . Moreover, this linear function f is given by $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$, where $A = \begin{bmatrix} \mathbf{a}_1 & \ldots & \mathbf{a}_m \end{bmatrix}$.

Proof (continued). Uniqueness. Suppose that $f : \mathbb{F}^m \to \mathbb{F}^n$ is any linear function that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$. WTS $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$. Fix any vector $\mathbf{x} = \begin{bmatrix} x_1 & \ldots & x_m \end{bmatrix}^T$ in \mathbb{F}^m .

Let \mathbb{F} be a field, and let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be any vectors in \mathbb{F}^n . Then there exists a **unique** linear function $f : \mathbb{F}^m \to \mathbb{F}^n$ that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$, where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m . Moreover, this linear function f is given by $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$, where $A = \begin{bmatrix} \mathbf{a}_1 & \ldots & \mathbf{a}_m \end{bmatrix}$.

Proof (continued). Uniqueness. Suppose that $f : \mathbb{F}^m \to \mathbb{F}^n$ is any linear function that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$. WTS $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$. Fix any vector $\mathbf{x} = \begin{bmatrix} x_1 & \ldots & x_m \end{bmatrix}^T$ in \mathbb{F}^m . Then we have that

$$\mathbf{x} = x_1 \mathbf{e}_1 + \cdots + x_m \mathbf{e}_m$$

and we compute (next slide):

Proof (continued). Reminder: $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$.

$$f(\mathbf{x}) = f\left(x_1\mathbf{e}_1 + \dots + x_m\mathbf{e}_m\right)$$

$$\stackrel{(*)}{=} x_1f(\mathbf{e}_1) + \dots + x_mf(\mathbf{e}_m)$$

$$\stackrel{(**)}{=} x_1\mathbf{a}_1 + \dots + x_m\mathbf{a}_m$$

$$\stackrel{(***)}{=} \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_m \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$

$$= A\mathbf{x}.$$

where f follows from the linearity of f (and more precisely, from Proposition 1.10.1), (**) follows from the fact that $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$, and (***) follows from the definition of matrix-vector multiplication. \Box

Let \mathbb{F} be a field, and let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be any vectors in \mathbb{F}^n . Then there exists a **unique** linear function $f : \mathbb{F}^m \to \mathbb{F}^n$ that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$, where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m . Moreover, this linear function f is given by $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$, where $A = \begin{bmatrix} \mathbf{a}_1 & \ldots & \mathbf{a}_m \end{bmatrix}$.
Let \mathbb{F} be a field, and let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be any vectors in \mathbb{F}^n . Then there exists a **unique** linear function $f : \mathbb{F}^m \to \mathbb{F}^n$ that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \ldots, f(\mathbf{e}_m) = \mathbf{a}_m$, where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m . Moreover, this linear function f is given by $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$, where $A = \begin{bmatrix} \mathbf{a}_1 & \ldots & \mathbf{a}_m \end{bmatrix}$.

Theorem 1.10.6

Let \mathbb{F} be a field, and let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function. Then there exists a unique matrix A (called the *standard matrix of* f) such that for all $\mathbf{x} \in \mathbb{F}^m$, we have that $f(\mathbf{x}) = A\mathbf{x}$. Moreover, the standard matrix A of f is given by

$$A = \left[f(\mathbf{e}_1) \ldots f(\mathbf{e}_m) \right],$$

where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m .

Let \mathbb{F} be a field, and let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function. Then there exists a unique matrix A (called the *standard matrix of f*) such that for all $\mathbf{x} \in \mathbb{F}^m$, we have that $f(\mathbf{x}) = A\mathbf{x}$. Moreover, the standard matrix A of f is given by

$$A = \left[f(\mathbf{e}_1) \ldots f(\mathbf{e}_m) \right],$$

where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m .

Proof.

Let \mathbb{F} be a field, and let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function. Then there exists a unique matrix A (called the *standard matrix of f*) such that for all $\mathbf{x} \in \mathbb{F}^m$, we have that $f(\mathbf{x}) = A\mathbf{x}$. Moreover, the standard matrix A of f is given by

$$A = \left[f(\mathbf{e}_1) \ldots f(\mathbf{e}_m) \right],$$

where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m .

Proof. Existence. Set
$$\mathbf{a}_1 := f(\mathbf{e}_1), \dots, \mathbf{a}_m := f(\mathbf{e}_m)$$
 and

$$A := \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_m \end{bmatrix} = \begin{bmatrix} f(\mathbf{e}_1) & \dots & f(\mathbf{e}_m) \end{bmatrix}.$$

Then by Theorem 1.10.5, we have that $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$.

Let \mathbb{F} be a field, and let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function. Then there exists a unique matrix A (called the *standard matrix of* f) such that for all $\mathbf{x} \in \mathbb{F}^m$, we have that $f(\mathbf{x}) = A\mathbf{x}$. Moreover, the standard matrix A of f is given by

$$A = \left[f(\mathbf{e}_1) \ldots f(\mathbf{e}_m) \right],$$

where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m .

Proof. Existence. Set
$$\mathbf{a}_1 := f(\mathbf{e}_1), \dots, \mathbf{a}_m := f(\mathbf{e}_m)$$
 and

$$A := \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_m \end{bmatrix} = \begin{bmatrix} f(\mathbf{e}_1) & \dots & f(\mathbf{e}_m) \end{bmatrix}.$$

Then by Theorem 1.10.5, we have that $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$.

• Indeed, $f : \mathbb{F}^m \to \mathbb{F}^n$ is a linear function that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \dots, f(\mathbf{e}_m) = \mathbf{a}_m$.

Let \mathbb{F} be a field, and let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function. Then there exists a unique matrix A (called the *standard matrix of* f) such that for all $\mathbf{x} \in \mathbb{F}^m$, we have that $f(\mathbf{x}) = A\mathbf{x}$. Moreover, the standard matrix A of f is given by

$$A = \left[f(\mathbf{e}_1) \ldots f(\mathbf{e}_m) \right],$$

where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m .

Proof. Existence. Set
$$\mathbf{a}_1 := f(\mathbf{e}_1), \dots, \mathbf{a}_m := f(\mathbf{e}_m)$$
 and

$$A := \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_m \end{bmatrix} = \begin{bmatrix} f(\mathbf{e}_1) & \dots & f(\mathbf{e}_m) \end{bmatrix}.$$

Then by Theorem 1.10.5, we have that $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$.

- Indeed, $f : \mathbb{F}^m \to \mathbb{F}^n$ is a linear function that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \dots, f(\mathbf{e}_m) = \mathbf{a}_m$.
- So, by Theorem 1.10.5, we have that $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$.

Let \mathbb{F} be a field, and let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function. Then there exists a unique matrix A (called the *standard matrix of* f) such that for all $\mathbf{x} \in \mathbb{F}^m$, we have that $f(\mathbf{x}) = A\mathbf{x}$. Moreover, the standard matrix A of f is given by

$$A = \left[f(\mathbf{e}_1) \ldots f(\mathbf{e}_m) \right],$$

where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m .

Proof. Existence. Set
$$\mathbf{a}_1 := f(\mathbf{e}_1), \dots, \mathbf{a}_m := f(\mathbf{e}_m)$$
 and

$$A := \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_m \end{bmatrix} = \begin{bmatrix} f(\mathbf{e}_1) & \dots & f(\mathbf{e}_m) \end{bmatrix}.$$

Then by Theorem 1.10.5, we have that $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$.

- Indeed, $f : \mathbb{F}^m \to \mathbb{F}^n$ is a linear function that satisfies $f(\mathbf{e}_1) = \mathbf{a}_1, \dots, f(\mathbf{e}_m) = \mathbf{a}_m$.
- So, by Theorem 1.10.5, we have that $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$.

This proves existence.

Let \mathbb{F} be a field, and let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function. Then there exists a unique matrix A (called the *standard matrix of* f) such that for all $\mathbf{x} \in \mathbb{F}^m$, we have that $f(\mathbf{x}) = A\mathbf{x}$. Moreover, the standard matrix A of f is given by

$$A = \left[f(\mathbf{e}_1) \ldots f(\mathbf{e}_m) \right],$$

where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m .

Proof (continued). Uniqueness.

Let \mathbb{F} be a field, and let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function. Then there exists a unique matrix A (called the *standard matrix of* f) such that for all $\mathbf{x} \in \mathbb{F}^m$, we have that $f(\mathbf{x}) = A\mathbf{x}$. Moreover, the standard matrix A of f is given by

$$A = \left[f(\mathbf{e}_1) \ldots f(\mathbf{e}_m) \right],$$

where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m .

Proof (continued). Uniqueness. Let $B = \begin{bmatrix} \mathbf{b}_1 & \dots & \mathbf{b}_m \end{bmatrix}$ be any matrix in $\mathbb{F}^{n \times m}$ such that $f(\mathbf{x}) = B\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$.

Let \mathbb{F} be a field, and let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function. Then there exists a unique matrix A (called the *standard matrix of* f) such that for all $\mathbf{x} \in \mathbb{F}^m$, we have that $f(\mathbf{x}) = A\mathbf{x}$. Moreover, the standard matrix A of f is given by

$$A = \left[f(\mathbf{e}_1) \ldots f(\mathbf{e}_m) \right],$$

where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m .

Proof (continued). Uniqueness. Let $B = \begin{bmatrix} \mathbf{b}_1 & \dots & \mathbf{b}_m \end{bmatrix}$ be any matrix in $\mathbb{F}^{n \times m}$ such that $f(\mathbf{x}) = B\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$. Then for all $i \in \{1, \dots, m\}$, we have that

$$f(\mathbf{e}_i) = B\mathbf{e}_i \stackrel{(*)}{=} \mathbf{b}_i$$

where (*) follows from Proposition 1.4.4.

Let \mathbb{F} be a field, and let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function. Then there exists a unique matrix A (called the *standard matrix of* f) such that for all $\mathbf{x} \in \mathbb{F}^m$, we have that $f(\mathbf{x}) = A\mathbf{x}$. Moreover, the standard matrix A of f is given by

$$A = \left[f(\mathbf{e}_1) \ldots f(\mathbf{e}_m) \right],$$

where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m .

Proof (continued). Uniqueness. Let $B = \begin{bmatrix} \mathbf{b}_1 & \dots & \mathbf{b}_m \end{bmatrix}$ be any matrix in $\mathbb{F}^{n \times m}$ such that $f(\mathbf{x}) = B\mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^m$. Then for all $i \in \{1, \dots, m\}$, we have that

$$f(\mathbf{e}_i) = B\mathbf{e}_i \stackrel{(*)}{=} \mathbf{b}_i$$

where (*) follows from Proposition 1.4.4. Consequently,

$$B = \begin{bmatrix} \mathbf{b}_1 & \dots & \mathbf{b}_m \end{bmatrix} = \begin{bmatrix} f(\mathbf{e}_1) & \dots & f(\mathbf{e}_m) \end{bmatrix}.$$

This proves uniqueness. \Box

Example 1.10.7

Find the standard matrix of the linear function $f: \mathbb{R}^3 \to \mathbb{R}^2$ given by

$$f\left(\left[\begin{array}{c}x_1\\x_2\\x_3\end{array}\right]\right) = \left[\begin{array}{c}x_1-x_2+x_3\\x_1+x_2\end{array}\right]$$

for all $x_1, x_2, x_3 \in \mathbb{R}$. (The fact that f is linear was proven in the solution of Example 1.10.2(a).)

Solution.

Example 1.10.7

Find the standard matrix of the linear function $f: \mathbb{R}^3 \to \mathbb{R}^2$ given by

$$f\left(\left[\begin{array}{c}x_1\\x_2\\x_3\end{array}\right]\right) = \left[\begin{array}{c}x_1-x_2+x_3\\x_1+x_2\end{array}\right]$$

for all $x_1, x_2, x_3 \in \mathbb{R}$. (The fact that f is linear was proven in the solution of Example 1.10.2(a).)

Solution. The standard matrix of f is

$$A := \left[\begin{array}{ccc} f(\mathbf{e}_1) & f(\mathbf{e}_2) & f(\mathbf{e}_3) \end{array} \right] = \left[\begin{array}{ccc} 1 & -1 & 1 \\ 1 & 1 & 0 \end{array} \right]$$

For any set X, the *identity function* on X is the function Id_X : X → X given by Id_X(x) = x for all x ∈ X.

Proposition 1.10.8

Let \mathbb{F} be a field. Then the identity function $\mathrm{Id}_{\mathbb{F}^n} : \mathbb{F}^n \to \mathbb{F}^n$ is linear, and its standard matrix is the identity matrix I_n .

Proof.

Proposition 1.10.8

Let \mathbb{F} be a field. Then the identity function $\mathrm{Id}_{\mathbb{F}^n} : \mathbb{F}^n \to \mathbb{F}^n$ is linear, and its standard matrix is the identity matrix I_n .

Proof. Obviously, the identity function $Id_{\mathbb{F}^n}$ satisfies the two axioms from the definition of a linear function, and by Theorem 1.10.6, its standard matrix is

$$\begin{bmatrix} \mathsf{Id}_{\mathbb{F}^n}(\mathbf{e}_1) & \dots & \mathsf{Id}_{\mathbb{F}^n}(\mathbf{e}_n) \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \dots & \mathbf{e}_n \end{bmatrix} = I_n.$$

Proposition 1.10.8

Let \mathbb{F} be a field. Then the identity function $\mathrm{Id}_{\mathbb{F}^n}: \mathbb{F}^n \to \mathbb{F}^n$ is linear, and its standard matrix is the identity matrix I_n .

Proof. Obviously, the identity function $Id_{\mathbb{F}^n}$ satisfies the two axioms from the definition of a linear function, and by Theorem 1.10.6, its standard matrix is

$$\begin{bmatrix} \mathsf{Id}_{\mathbb{F}^n}(\mathbf{e}_1) & \dots & \mathsf{Id}_{\mathbb{F}^n}(\mathbf{e}_n) \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \dots & \mathbf{e}_n \end{bmatrix} = I_n.$$

Alternatively, we observe that for any vector $\mathbf{x} \in \mathbb{F}^n$, we have that

$$\mathsf{Id}_{\mathbb{F}^n}(\mathsf{x}) \stackrel{(*)}{=} \mathsf{x} \stackrel{(**)}{=} I_n \mathsf{x},$$

where (*) follows from the definition of the identity function, and (**) follows from Proposition 1.4.5.

Proposition 1.10.8

Let \mathbb{F} be a field. Then the identity function $\mathrm{Id}_{\mathbb{F}^n}: \mathbb{F}^n \to \mathbb{F}^n$ is linear, and its standard matrix is the identity matrix I_n .

Proof. Obviously, the identity function $Id_{\mathbb{F}^n}$ satisfies the two axioms from the definition of a linear function, and by Theorem 1.10.6, its standard matrix is

$$\begin{bmatrix} \mathsf{Id}_{\mathbb{F}^n}(\mathbf{e}_1) & \dots & \mathsf{Id}_{\mathbb{F}^n}(\mathbf{e}_n) \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \dots & \mathbf{e}_n \end{bmatrix} = I_n.$$

Alternatively, we observe that for any vector $\mathbf{x} \in \mathbb{F}^n$, we have that

$$\mathsf{Id}_{\mathbb{F}^n}(\mathsf{x}) \stackrel{(*)}{=} \mathsf{x} \stackrel{(**)}{=} I_n \mathsf{x},$$

where (*) follows from the definition of the identity function, and (**) follows from Proposition 1.4.5. So, $Id_{\mathbb{F}^n}$ is a matrix transformation and is therefore linear (by Proposition 1.10.4), and its standard matrix is I_n . \Box

• Let us now consider some geometric examples (with pretty pictures).

- Let us now consider some geometric examples (with pretty pictures).
- In particular, we consider a few special linear functions $f : \mathbb{R}^2 \to \mathbb{R}^2$.

- Let us now consider some geometric examples (with pretty pictures).
- In particular, we consider a few special linear functions $f : \mathbb{R}^2 \to \mathbb{R}^2$.
 - We will not formally prove that these functions are all linear.

- Let us now consider some geometric examples (with pretty pictures).
- In particular, we consider a few special linear functions $f : \mathbb{R}^2 \to \mathbb{R}^2$.
 - We will not formally prove that these functions are all linear.
 - To convince yourself that they are linear, think about what happens geometrically to sums and scalar multiples of vectors under these functions.

Rotation. The function r_θ : ℝ² → ℝ² that rotates each vector about the origin counterclockwise by the angle θ (see the picture below) is linear, and its standard matrix is

$$\begin{bmatrix} r_{\theta}(\mathbf{e}_{1}) & r_{\theta}(\mathbf{e}_{2}) \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Rotation. The function r_θ : ℝ² → ℝ² that rotates each vector about the origin counterclockwise by the angle θ (see the picture below) is linear, and its standard matrix is

$$\begin{bmatrix} r_{\theta}(\mathbf{e}_{1}) & r_{\theta}(\mathbf{e}_{2}) \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Note that rotating by the angle θ clockwise is the same as rotating by the angle $-\theta$ counterclockwise (which is why it is enough to consider only counterclockwise rotation, as long as we allow negative angles as well).

Orthogonal projection. Given a line L in ℝ² that passes through the origin, the orthogonal projection proj_L : ℝ² → ℝ² onto L (see the picture below) is linear.

 Orthogonal projection. Given a line L in ℝ² that passes through the origin, the orthogonal projection proj_L : ℝ² → ℝ² onto L (see the picture below) is linear.

• We cannot yet compute the standard matrix of orthogonal projection onto an arbitrary line through the origin; we will be able to do so only after we have developed a lot more theory.

 Orthogonal projection. Given a line L in ℝ² that passes through the origin, the orthogonal projection proj_L : ℝ² → ℝ² onto L (see the picture below) is linear.

- We cannot yet compute the standard matrix of orthogonal projection onto an arbitrary line through the origin; we will be able to do so only after we have developed a lot more theory.
- However, we can already compute this matrix in some special cases.

• Orthogonal projection.

• Consider the projection $\operatorname{proj}_{x_1} : \mathbb{R}^2 \to \mathbb{R}^2$ onto the x_1 -axis and the projection $\operatorname{proj}_{x_2} : \mathbb{R}^2 \to \mathbb{R}^2$ onto the x_2 -axis.

Orthogonal projection.

 Consider the projection proj_{x1}: ℝ² → ℝ² onto the x₁-axis and the projection proj_{x2}: ℝ² → ℝ² onto the x₂-axis.

 $\bullet~$ The standard matrix of proj_{x_1} is

$$\begin{bmatrix} \operatorname{proj}_{x_1}(\mathbf{e}_1) & \operatorname{proj}_{x_1}(\mathbf{e}_2) \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix},$$

and the standard matrix of $\operatorname{proj}_{x_2}$ is

$$\left[\text{ proj}_{x_2}(\mathbf{e}_1) \text{ proj}_{x_2}(\mathbf{e}_2) \right] = \left[\begin{array}{cc} \mathbf{0} & \mathbf{e}_2 \end{array} \right] = \left[\begin{array}{cc} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{array} \right].$$

Reflection. Given a line L in ℝ² that passes through the origin, the reflection ref_L : ℝ² → ℝ² about the line L is linear.

Reflection. Given a line L in ℝ² that passes through the origin, the reflection ref_L : ℝ² → ℝ² about the line L is linear.

• As in the case of orthogonal projections, we cannot yet compute the standard matrix of the reflection about an arbitrary line through the origin; we will only be able to do so once we have developed a lot more theory. Reflection. Given a line L in ℝ² that passes through the origin, the reflection ref_L : ℝ² → ℝ² about the line L is linear.

- As in the case of orthogonal projections, we cannot yet compute the standard matrix of the reflection about an arbitrary line through the origin; we will only be able to do so once we have developed a lot more theory.
- However, we can already compute this matrix in some special cases.

• Reflection.

• Consider the reflection $\operatorname{ref}_{x_1} : \mathbb{R}^2 \to \mathbb{R}^2$ about the x_1 -axis and the reflection $\operatorname{ref}_{x_2} : \mathbb{R}^2 \to \mathbb{R}^2$ about the x_2 -axis.

Reflection.

 Consider the reflection ref_{x1}: ℝ² → ℝ² about the x₁-axis and the reflection ref_{x2}: ℝ² → ℝ² about the x₂-axis.

• The standard matrix of ref_{x_1} is

$$\begin{bmatrix} \mathsf{ref}_{x_1}(\mathbf{e}_1) & \mathsf{ref}_{x_1}(\mathbf{e}_2) \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & -\mathbf{e}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$$

-

-

and the standard matrix of ref_{x_2} is

$$\begin{bmatrix} \operatorname{ref}_{x_2}(\mathbf{e}_1) & \operatorname{ref}_{x_2}(\mathbf{e}_2) \end{bmatrix} = \begin{bmatrix} -\mathbf{e}_1 & \mathbf{e}_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Scaling. Given a scalar α ∈ ℝ, the function that scales each vector in ℝ² by α (see the picture below) is linear.

Scaling. Given a scalar α ∈ ℝ, the function that scales each vector in ℝ² by α (see the picture below) is linear.

• The standard matrix of this linear function is

$$\left[\begin{array}{cc} \alpha \mathbf{e}_1 & \alpha \mathbf{e}_2 \end{array}\right] = \left[\begin{array}{cc} \alpha & \mathbf{0} \\ \mathbf{0} & \alpha \end{array}\right]$$

Scaling. Given a scalar α ∈ ℝ, the function that scales each vector in ℝ² by α (see the picture below) is linear.

• The standard matrix of this linear function is

$$\left[\begin{array}{cc} \alpha \mathbf{e}_1 & \alpha \mathbf{e}_2 \end{array}\right] = \left[\begin{array}{cc} \alpha & \mathbf{0} \\ \mathbf{0} & \alpha \end{array}\right]$$

 If α = 0, then scaling by α is the same as mapping each vector to the origin. Horizontal Shear. A horizontal shear in ℝ² is a mapping from ℝ² to ℝ² given by the formula

$$\mathbf{u}\mapsto \left[egin{array}{cc} 1 & k \ 0 & 1 \end{array}
ight]\mathbf{u},$$

i.e. by the formula

$$\left[\begin{array}{c} u_1 \\ u_2 \end{array}\right] \mapsto \left[\begin{array}{c} u_1 + k u_2 \\ u_2 \end{array}\right],$$

where k is a fixed real constant.

Horizontal Shear. A horizontal shear in ℝ² is a mapping from ℝ² to ℝ² given by the formula

$$\mathbf{u}\mapsto \left[egin{array}{cc} 1&k\0&1\end{array}
ight]\mathbf{u},$$

i.e. by the formula

$$\left[\begin{array}{c} u_1 \\ u_2 \end{array}\right] \mapsto \left[\begin{array}{c} u_1 + k u_2 \\ u_2 \end{array}\right],$$

where k is a fixed real constant.

• This mapping has the effect of horizontally tilting objects in the coordinate plane (while keeping the vertical component unchanged).

Horizontal Shear. A horizontal shear in ℝ² is a mapping from ℝ² to ℝ² given by the formula

$$\mathbf{u}\mapsto \left[egin{array}{cc} 1&k\0&1\end{array}
ight]\mathbf{u},$$

i.e. by the formula

$$\left[\begin{array}{c} u_1 \\ u_2 \end{array}\right] \mapsto \left[\begin{array}{c} u_1 + k u_2 \\ u_2 \end{array}\right],$$

where k is a fixed real constant.

- This mapping has the effect of horizontally tilting objects in the coordinate plane (while keeping the vertical component unchanged).
- This is illustrated on the next slide for the cases when k = 1 and k = −1.

Vertical Shear. A vertical shear in ℝ² is a mapping from ℝ² to ℝ² given by the formula

$$\mathbf{u}\mapsto \left[egin{array}{cc} 1 & 0\ k & 1 \end{array}
ight]\mathbf{u},$$

i.e. by the formula

$$\left[\begin{array}{c} u_1\\ u_2 \end{array}\right] \mapsto \left[\begin{array}{c} u_1\\ ku_1+u_2 \end{array}\right],$$

where k is a fixed real constant.

 Vertical Shear. A vertical shear in ℝ² is a mapping from ℝ² to ℝ² given by the formula

$$\mathbf{u}\mapsto \left[egin{array}{cc} 1 & 0\ k & 1 \end{array}
ight]\mathbf{u},$$

i.e. by the formula

$$\left[\begin{array}{c} u_1\\ u_2\end{array}\right]\mapsto \left[\begin{array}{c} u_1\\ ku_1+u_2\end{array}\right],$$

where k is a fixed real constant.

• This mapping has the effect of vertically tilting objects in the coordinate plane (while keeping the horizontal component unchanged).

 Vertical Shear. A vertical shear in ℝ² is a mapping from ℝ² to ℝ² given by the formula

$$\mathbf{u}\mapsto\left[egin{array}{cc} 1&0\k&1\end{array}
ight]\mathbf{u},$$

i.e. by the formula

$$\left[\begin{array}{c} u_1\\ u_2 \end{array}\right] \mapsto \left[\begin{array}{c} u_1\\ ku_1+u_2 \end{array}\right],$$

where k is a fixed real constant.

- This mapping has the effect of vertically tilting objects in the coordinate plane (while keeping the horizontal component unchanged).
- This is illustrated on the next slide for the cases when k = 1and k = -1.

Given functions f : A → B and g : B → C (where A, B, and C are sets), we define the composition of functions g and f to be the function g ∘ f : A → C given by

$$(g \circ f)(a) = g(f(a))$$

for all $a \in A$.

Proposition 1.10.1

Let ${\mathbb F}$ be a field. Then all the following hold:

- for all linear functions $f, g : \mathbb{F}^m \to \mathbb{F}^n$, the function f + g is linear, and moreover, if A and B (both in $\mathbb{F}^{n \times m}$) are the standard matrices of f and g, respectively, then A + B is the standard matrix of f + g;
- for all linear functions $f : \mathbb{F}^m \to \mathbb{F}^n$ and scalars $\alpha \in \mathbb{F}$, the function αf is linear, and moreover, if $A \in \mathbb{F}^{n \times m}$ is the standard matrix of f, then αA is the standard matrix of αf ;
- (a) for all linear functions $f : \mathbb{F}^p \to \mathbb{F}^m$ and $g : \mathbb{F}^m \to \mathbb{F}^n$, the function $g \circ f$ is liner, and moreover, if $A \in \mathbb{F}^{m \times p}$ and $B \in \mathbb{F}^{n \times m}$ are the standard matrices of f and g, respectively, then BA is the standard matrix of $g \circ f$.

Proof of (c).

Proof of (c). Fix linear functions $f : \mathbb{F}^p \to \mathbb{F}^m$ and $g : \mathbb{F}^m \to \mathbb{F}^n$. Let $A \in \mathbb{F}^{m \times p}$ be the standard matrix of f, and let $B \in \mathbb{F}^{n \times m}$ be the standard matrix of g.

Proof of (c). Fix linear functions $f : \mathbb{F}^p \to \mathbb{F}^m$ and $g : \mathbb{F}^m \to \mathbb{F}^n$. Let $A \in \mathbb{F}^{m \times p}$ be the standard matrix of f, and let $B \in \mathbb{F}^{n \times m}$ be the standard matrix of g. Then for any $\mathbf{u} \in \mathbb{F}^p$, we have that

$$(g \circ f)(\mathbf{u}) = g(f(\mathbf{u})) \stackrel{(*)}{=} g(A\mathbf{u}) \stackrel{(**)}{=} B(A\mathbf{u}) \stackrel{(***)}{=} (BA)\mathbf{u},$$

where (*) follows from the fact that A is the standard matrix of f, (**) follows from the fact that B is the standard matrix of g, and (***) follows from Corollary 1.7.6(g).

Proof of (c). Fix linear functions $f : \mathbb{F}^p \to \mathbb{F}^m$ and $g : \mathbb{F}^m \to \mathbb{F}^n$. Let $A \in \mathbb{F}^{m \times p}$ be the standard matrix of f, and let $B \in \mathbb{F}^{n \times m}$ be the standard matrix of g. Then for any $\mathbf{u} \in \mathbb{F}^p$, we have that

$$(g \circ f)(\mathbf{u}) = g(f(\mathbf{u})) \stackrel{(*)}{=} g(A\mathbf{u}) \stackrel{(**)}{=} B(A\mathbf{u}) \stackrel{(***)}{=} (BA)\mathbf{u},$$

where (*) follows from the fact that A is the standard matrix of f, (**) follows from the fact that B is the standard matrix of g, and (***) follows from Corollary 1.7.6(g). We have now shown that $g \circ f$ is a matrix transformation, and so (by Proposition 1.10.4) it is linear.

Proof of (c). Fix linear functions $f : \mathbb{F}^p \to \mathbb{F}^m$ and $g : \mathbb{F}^m \to \mathbb{F}^n$. Let $A \in \mathbb{F}^{m \times p}$ be the standard matrix of f, and let $B \in \mathbb{F}^{n \times m}$ be the standard matrix of g. Then for any $\mathbf{u} \in \mathbb{F}^p$, we have that

$$(g \circ f)(\mathbf{u}) = g(f(\mathbf{u})) \stackrel{(*)}{=} g(A\mathbf{u}) \stackrel{(**)}{=} B(A\mathbf{u}) \stackrel{(***)}{=} (BA)\mathbf{u},$$

where (*) follows from the fact that A is the standard matrix of f, (**) follows from the fact that B is the standard matrix of g, and (***) follows from Corollary 1.7.6(g). We have now shown that $g \circ f$ is a matrix transformation, and so (by Proposition 1.10.4) it is linear. Moreover, since (by the calculation above) we have that

$$(g \circ f)(\mathbf{u}) = (BA)\mathbf{u}$$

for all vectors $\mathbf{u} \in \mathbb{F}^p$, we see that *BA* is the standard matrix of $g \circ f$. \Box

Example 1.10.14

- Find the standard matrix of the linear function $f_1 : \mathbb{R}^2 \to \mathbb{R}^2$ that first reflects about the x_1 -axis and then rotates about the origin counterclockwise by 90°.
- Find the standard matrix of the linear function f₂ : ℝ² → ℝ² that first rotates about the origin counterclockwise by 90° and then reflects about the x₁-axis.

You may assume that f_1 and f_2 are indeed linear.

Solution.

Example 1.10.14

- Find the standard matrix of the linear function $f_1 : \mathbb{R}^2 \to \mathbb{R}^2$ that first reflects about the x_1 -axis and then rotates about the origin counterclockwise by 90°.
- Find the standard matrix of the linear function $f_2 : \mathbb{R}^2 \to \mathbb{R}^2$ that first rotates about the origin counterclockwise by 90° and then reflects about the x_1 -axis.

You may assume that f_1 and f_2 are indeed linear.

Solution. First, we note that the standard matrix of $\operatorname{ref}_{x_1} : \mathbb{R}^2 \to \mathbb{R}^2$, the reflection about the x_1 -axis, is

 $A = \begin{bmatrix} \operatorname{ref}_{x_1}(\mathbf{e}_1) & \operatorname{ref}_{x_1}(\mathbf{e}_2) \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & -\mathbf{e}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$

whereas the standard matrix of $r_{90^\circ} : \mathbb{R}^2 \to \mathbb{R}^2$, the counterclockwise rotation by 90° about the origin, is

 $B = \begin{bmatrix} r_{90^{\circ}}(\mathbf{e}_1) & r_{90^{\circ}}(\mathbf{e}_2) \end{bmatrix} = \begin{bmatrix} \mathbf{e}_2 & -\mathbf{e}_1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$

Example 1.10.14

- Find the standard matrix of the linear function $f_1 : \mathbb{R}^2 \to \mathbb{R}^2$ that first reflects about the x_1 -axis and then rotates about the origin counterclockwise by 90°.
- Find the standard matrix of the linear function f₂ : ℝ² → ℝ² that first rotates about the origin counterclockwise by 90° and then reflects about the x₁-axis.

You may assume that f_1 and f_2 are indeed linear.

Solution (continued). Note that $f_1 = r_{90^\circ} \circ \operatorname{ref}_{x_1}$ and $f_2 = \operatorname{ref}_{x_1} \circ r_{90^\circ}$. So, by Proposition 1.10.13(c), the standard matrix of f_1 is

$$BA = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

whereas by the standard matrix of f_2 is

$$AB = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

• We now briefly review one-to-one (injective) functions, onto (surjective) functions, and bijections.

- We now briefly review one-to-one (injective) functions, onto (surjective) functions, and bijections.
- This material properly belongs to Discrete Math.

- We now briefly review one-to-one (injective) functions, onto (surjective) functions, and bijections.
- This material properly belongs to Discrete Math.
- Here, we state (without proof) the results that we need.
 - However, all the proofs are in the Lecture Notes.

- We now briefly review one-to-one (injective) functions, onto (surjective) functions, and bijections.
- This material properly belongs to Discrete Math.
- Here, we state (without proof) the results that we need.
 - However, all the proofs are in the Lecture Notes.

Definition

A function $f : A \rightarrow B$ is said to be

- one-to-one (or injective, or an injection) if for all a₁, a₂ ∈ A such that a₁ ≠ a₂, we have f(a₁) ≠ f(a₂);^a
- onto (or surjective, or a surjection) if for all b ∈ B, there exists some a ∈ A such that f(a) = b;
- *bijective* or a *bijection* if it is both one-to-one and onto.

^aEquivalently, $f : A \to B$ is one-to-one if for all $a_1, a_2 \in A$ such that $f(a_1) = f(a_2)$, we have that $a_1 = a_2$.

Proposition 1.10.15

Let $f : A \rightarrow B$ be a function. Then the following are equivalent:

- () f is a bijection;
- there exists some function $g : B \to A$ such that $g \circ f = Id_A$ and $f \circ g = Id_B$.

Proposition 1.10.15

Let $f : A \rightarrow B$ be a function. Then the following are equivalent:

- f is a bijection;
- In there exists some function g : B → A such that g ∘ f = Id_A and f ∘ g = Id_B.

Proposition 1.10.16

Let $f : A \to B$ be a bijection. Then there exists a **unique** function $g : B \to A$ such that $g \circ f = Id_A$ and $f \circ g = Id_B$.

• **Terminology/Notation:** If $f : A \to B$ is a bijection, then the unique function $g : B \to A$ that satisfies $g \circ f = Id_A$ and $f \circ g = Id_B$ (i.e. the function g from Proposition 1.10.16) is called the *inverse* of f and is denoted by f^{-1} .

- **Terminology/Notation:** If $f : A \to B$ is a bijection, then the unique function $g : B \to A$ that satisfies $g \circ f = Id_A$ and $f \circ g = Id_B$ (i.e. the function g from Proposition 1.10.16) is called the *inverse* of f and is denoted by f^{-1} .
- Note that this means that:

•
$$f^{-1} \circ f = \operatorname{Id}_A;$$

- $f \circ f^{-1} = \operatorname{Id}_B;$
- for all $a \in A$ and $b \in B$, we have that b = f(a) iff $a = f^{-1}(b)$.

- **Terminology/Notation:** If $f : A \to B$ is a bijection, then the unique function $g : B \to A$ that satisfies $g \circ f = Id_A$ and $f \circ g = Id_B$ (i.e. the function g from Proposition 1.10.16) is called the *inverse* of f and is denoted by f^{-1} .
- Note that this means that:

•
$$f^{-1} \circ f = \operatorname{Id}_A;$$

•
$$f \circ f^{-1} = \operatorname{Id}_B;$$

• for all $a \in A$ and $b \in B$, we have that b = f(a) iff $a = f^{-1}(b)$.

• Note that the inverse of a bijection is also a bijection (by Proposition 1.10.15), and moreover, $(f^{-1})^{-1} = f$.

Proposition 1.10.17

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be functions. Then all the following hold:

- if f and g are one-to-one, then $g \circ f$ is also one-to-one;
- if f and g are onto, then $g \circ f$ is also onto;
- () if f and g are bijections, then $g \circ f$ is also a bijection, and moreover, $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ (see the diagram below).

• Back to linear functions!

- Back to linear functions!
- As the following theorem shows, we can easily check whether a linear function is one-to-one or onto by computing the rank of its standard matrix.

- Back to linear functions!
- As the following theorem shows, we can easily check whether a linear function is one-to-one or onto by computing the rank of its standard matrix.

Theorem 1.10.18

Let \mathbb{F} be a field, let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function, and let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f. Then both the following hold:

- If is one-to-one iff rank(A) = m (i.e. A has full column rank);
- If is onto iff rank(A) = n (i.e. A has full row rank).

(a) f is one-to-one iff rank(A) = m (i.e. A has full column rank)Proof of (a).

(a) f is one-to-one iff rank(A) = m (i.e. A has full column rank) *Proof of (a).* We have the following sequence of equivalent statements:

f is one-to-one
$$\stackrel{(*)}{\longleftrightarrow}$$
 for all $\mathbf{b} \in \mathbb{F}^n$, $f(\mathbf{x}) = \mathbf{b}$ has at most one solution

for all
$$\mathbf{b} \in \mathbb{F}^n$$
, $A\mathbf{x} = \mathbf{b}$
has at most one solution,

$$\overset{(***)}{\Longleftrightarrow}$$
 rank $(A)=m,$

where (*) follows from the definition of a one-to-one function, (**) follows from the fact that A is the standard matrix of f, and (***) follows from Corollary 1.6.5. \Box

(b) f is onto iff rank(A) = n (i.e. A has full row rank).Proof of (b).
(b) f is onto iff rank(A) = n (i.e. A has full row rank).

Proof of (b). (b) We have the following sequence of equivalent statements:

$$f \text{ is onto} \quad \stackrel{(*)}{\longleftrightarrow} \quad \begin{array}{l} \text{for all } \mathbf{b} \in \mathbb{F}^n, \ f(\mathbf{x}) = \mathbf{b} \\ \text{has at least one solution} \\ \\ \stackrel{(**)}{\longleftrightarrow} \quad \begin{array}{l} \text{for all } \mathbf{b} \in \mathbb{F}^n, \ A\mathbf{x} = \mathbf{b} \\ \text{has at least one solution} \\ \text{(i.e. } A\mathbf{x} = \mathbf{b} \text{ is consistent)} \\ \\ \stackrel{(***)}{\longleftrightarrow} \quad \operatorname{rank}(A) = n, \end{array}$$

where (*) follows from the definition of an onto function, (**) follows from the fact that A is the standard matrix of f, and (***) follows from Corollary 1.6.6. \Box

- If is one-to-one iff rank(A) = m (i.e. A has full column rank);
- If is onto iff rank(A) = n (i.e. A has full row rank).

Let \mathbb{F} be a field. A function $f : \mathbb{F}^m \to \mathbb{F}^n$ is an *isomorphism* if it is both linear and a bijection.

Let \mathbb{F} be a field. A function $f : \mathbb{F}^m \to \mathbb{F}^n$ is an *isomorphism* if it is both linear and a bijection.

Theorem 1.10.19

- f is an isomorphism;
- If rank(A) = m = n (i.e. A is a square matrix of full rank).

Let \mathbb{F} be a field. A function $f : \mathbb{F}^m \to \mathbb{F}^n$ is an *isomorphism* if it is both linear and a bijection.

Theorem 1.10.19

- f is an isomorphism;
- If rank(A) = m = n (i.e. A is a square matrix of full rank).
 - By Theorem 1.10.19, if we know the standard matrix of a linear function, then we can easily determine whether that linear function is an isomorphism.

Let \mathbb{F} be a field. A function $f : \mathbb{F}^m \to \mathbb{F}^n$ is an *isomorphism* if it is both linear and a bijection.

Theorem 1.10.19

- f is an isomorphism;
- If rank(A) = m = n (i.e. A is a square matrix of full rank).
 - By Theorem 1.10.19, if we know the standard matrix of a linear function, then we can easily determine whether that linear function is an isomorphism.
 - Moreover, Theorem 1.10.19 implies, in particular, that for a field 𝔽, there can be no isomorphism from 𝔽^m to 𝔽ⁿ for m ≠ n.

Let \mathbb{F} be a field, let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function, and let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f. Then the following are equivalent:

- f is an isomorphism;
- If rank(A) = m = n (i.e. A is a square matrix of full rank).

Proof.

Let \mathbb{F} be a field, let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function, and let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f. Then the following are equivalent:

- f is an isomorphism;
- If rank(A) = m = n (i.e. A is a square matrix of full rank).

Proof. Suppose first that (a) holds. Since f is a one-to-one linear function, Theorem 1.10.18(a) guarantees that rank(A) = m.

Let \mathbb{F} be a field, let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function, and let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f. Then the following are equivalent:

- f is an isomorphism;
- If rank(A) = m = n (i.e. A is a square matrix of full rank).

Proof. Suppose first that (a) holds. Since f is a one-to-one linear function, Theorem 1.10.18(a) guarantees that rank(A) = m. On the other hand, since f is an onto linear function, Theorem 1.10.18(b) guarantees that rank(A) = n.

Let \mathbb{F} be a field, let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function, and let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f. Then the following are equivalent:

- (a) f is an isomorphism;
- If rank(A) = m = n (i.e. A is a square matrix of full rank).

Proof. Suppose first that (a) holds. Since f is a one-to-one linear function, Theorem 1.10.18(a) guarantees that rank(A) = m. On the other hand, since f is an onto linear function, Theorem 1.10.18(b) guarantees that rank(A) = n. But now m = rank(A) = n, and (b) follows.

Let \mathbb{F} be a field, let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function, and let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f. Then the following are equivalent:

- (a) f is an isomorphism;
- If rank(A) = m = n (i.e. A is a square matrix of full rank).

Proof. Suppose first that (a) holds. Since f is a one-to-one linear function, Theorem 1.10.18(a) guarantees that rank(A) = m. On the other hand, since f is an onto linear function, Theorem 1.10.18(b) guarantees that rank(A) = n. But now m = rank(A) = n, and (b) follows.

Suppose now that (b) holds. Then by Theorem 1.10.18(a), f is one-to-one, and by Theorem 1.10.18(b), f is onto. So, f is a bijection. Since f is also linear (by hypothesis), we deduce that f is an isomorphism, i.e. (a) holds. \Box

Let \mathbb{F} be a field, let $f : \mathbb{F}^m \to \mathbb{F}^n$ be a linear function, and let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f. Then both the following hold:

- If is one-to-one iff rank(A) = m (i.e. A has full column rank);
- f is onto iff rank(A) = n (i.e. A has full row rank).

Theorem 1.10.19

- f is an isomorphism;
- If rank(A) = m = n (i.e. A is a square matrix of full rank).

Let \mathbb{F} be a field, and let $f : \mathbb{F}^n \to \mathbb{F}^n$ be an isomorphism. Then $f^{-1} : \mathbb{F}^n \to \mathbb{F}^n$ is also an isomorphism.

Proof.

Let \mathbb{F} be a field, and let $f : \mathbb{F}^n \to \mathbb{F}^n$ be an isomorphism. Then $f^{-1} : \mathbb{F}^n \to \mathbb{F}^n$ is also an isomorphism.

Proof. Since $f : \mathbb{F}^n \to \mathbb{F}^n$ is an isomorphism, it is, in particular, a bijection; consequently, f has an inverse $f^{-1} : \mathbb{F}^n \to \mathbb{F}^n$, which is also a bijection.

Let \mathbb{F} be a field, and let $f : \mathbb{F}^n \to \mathbb{F}^n$ be an isomorphism. Then $f^{-1} : \mathbb{F}^n \to \mathbb{F}^n$ is also an isomorphism.

Proof. Since $f : \mathbb{F}^n \to \mathbb{F}^n$ is an isomorphism, it is, in particular, a bijection; consequently, f has an inverse $f^{-1} : \mathbb{F}^n \to \mathbb{F}^n$, which is also a bijection. So, to show that f^{-1} is an isomorphism, it suffices to show that f^{-1} is linear.

Let \mathbb{F} be a field, and let $f : \mathbb{F}^n \to \mathbb{F}^n$ be an isomorphism. Then $f^{-1} : \mathbb{F}^n \to \mathbb{F}^n$ is also an isomorphism.

Proof. Since $f : \mathbb{F}^n \to \mathbb{F}^n$ is an isomorphism, it is, in particular, a bijection; consequently, f has an inverse $f^{-1} : \mathbb{F}^n \to \mathbb{F}^n$, which is also a bijection. So, to show that f^{-1} is an isomorphism, it suffices to show that f^{-1} is linear.

First, fix $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{F}^n$. WTS $f^{-1}(\mathbf{v}_1 + \mathbf{v}_2) = f^{-1}(\mathbf{v}_1) + f^{-1}(\mathbf{v}_2)$.

Let \mathbb{F} be a field, and let $f : \mathbb{F}^n \to \mathbb{F}^n$ be an isomorphism. Then $f^{-1} : \mathbb{F}^n \to \mathbb{F}^n$ is also an isomorphism.

Proof. Since $f : \mathbb{F}^n \to \mathbb{F}^n$ is an isomorphism, it is, in particular, a bijection; consequently, f has an inverse $f^{-1} : \mathbb{F}^n \to \mathbb{F}^n$, which is also a bijection. So, to show that f^{-1} is an isomorphism, it suffices to show that f^{-1} is linear.

First, fix $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{F}^n$. WTS $f^{-1}(\mathbf{v}_1 + \mathbf{v}_2) = f^{-1}(\mathbf{v}_1) + f^{-1}(\mathbf{v}_2)$. Set $\mathbf{u}_1 := f^{-1}(\mathbf{v}_1)$ and $\mathbf{u}_2 := f^{-1}(\mathbf{v}_2)$, so that $f(\mathbf{u}_1) = \mathbf{v}_1$ and $f(\mathbf{u}_2) = \mathbf{v}_2$.

Let \mathbb{F} be a field, and let $f : \mathbb{F}^n \to \mathbb{F}^n$ be an isomorphism. Then $f^{-1} : \mathbb{F}^n \to \mathbb{F}^n$ is also an isomorphism.

Proof. Since $f : \mathbb{F}^n \to \mathbb{F}^n$ is an isomorphism, it is, in particular, a bijection; consequently, f has an inverse $f^{-1} : \mathbb{F}^n \to \mathbb{F}^n$, which is also a bijection. So, to show that f^{-1} is an isomorphism, it suffices to show that f^{-1} is linear.

First, fix $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{F}^n$. WTS $f^{-1}(\mathbf{v}_1 + \mathbf{v}_2) = f^{-1}(\mathbf{v}_1) + f^{-1}(\mathbf{v}_2)$. Set $\mathbf{u}_1 := f^{-1}(\mathbf{v}_1)$ and $\mathbf{u}_2 := f^{-1}(\mathbf{v}_2)$, so that $f(\mathbf{u}_1) = \mathbf{v}_1$ and $f(\mathbf{u}_2) = \mathbf{v}_2$. Then (next slide):

Let \mathbb{F} be a field, and let $f : \mathbb{F}^n \to \mathbb{F}^n$ be an isomorphism. Then $f^{-1} : \mathbb{F}^n \to \mathbb{F}^n$ is also an isomorphism.

Proof (continued). Reminder: $\mathbf{u}_1 := f^{-1}(\mathbf{v}_1)$ and $\mathbf{u}_2 := f^{-1}(\mathbf{v}_2)$, so that $f(\mathbf{u}_1) = \mathbf{v}_1$ and $f(\mathbf{u}_2) = \mathbf{v}_2$.

 $f^{-1}(\mathbf{v}_1 + \mathbf{v}_2) = f^{-1}(f(\mathbf{u}_1) + f(\mathbf{u}_2))$ = $f^{-1}(f(\mathbf{u}_1 + \mathbf{u}_2))$ because f is linear = $(f^{-1} \circ f)(\mathbf{u}_1 + \mathbf{u}_2)$ = $\mathrm{Id}_{\mathbb{F}^n}(\mathbf{u}_1 + \mathbf{u}_2)$ = $\mathbf{u}_1 + \mathbf{u}_2$ = $f^{-1}(\mathbf{v}_1) + f^{-1}(\mathbf{v}_2).$

Let \mathbb{F} be a field, and let $f : \mathbb{F}^n \to \mathbb{F}^n$ be an isomorphism. Then $f^{-1} : \mathbb{F}^n \to \mathbb{F}^n$ is also an isomorphism.

Proof (continued). Next, fix $\mathbf{v} \in \mathbb{F}^n$ and $\alpha \in \mathbb{F}$. WTS $f^{-1}(\alpha \mathbf{v}) = \alpha f^{-1}(\mathbf{v})$.

Let \mathbb{F} be a field, and let $f : \mathbb{F}^n \to \mathbb{F}^n$ be an isomorphism. Then $f^{-1} : \mathbb{F}^n \to \mathbb{F}^n$ is also an isomorphism.

Proof (continued). Next, fix $\mathbf{v} \in \mathbb{F}^n$ and $\alpha \in \mathbb{F}$. WTS $f^{-1}(\alpha \mathbf{v}) = \alpha f^{-1}(\mathbf{v})$. Set $\mathbf{u} := f^{-1}(\mathbf{v})$, so that $f(\mathbf{u}) = \mathbf{v}$.

Let \mathbb{F} be a field, and let $f : \mathbb{F}^n \to \mathbb{F}^n$ be an isomorphism. Then $f^{-1} : \mathbb{F}^n \to \mathbb{F}^n$ is also an isomorphism.

Proof (continued). Next, fix $\mathbf{v} \in \mathbb{F}^n$ and $\alpha \in \mathbb{F}$. WTS $f^{-1}(\alpha \mathbf{v}) = \alpha f^{-1}(\mathbf{v})$. Set $\mathbf{u} := f^{-1}(\mathbf{v})$, so that $f(\mathbf{u}) = \mathbf{v}$. Then $f^{-1}(\alpha \mathbf{v}) = f^{-1}(\alpha f(\mathbf{u}))$ $= f^{-1}(f(\alpha \mathbf{u}))$ because f is linear $= (f^{-1} \circ f)(\alpha \mathbf{u})$ $= \operatorname{Id}_{\mathbb{F}^n}(\alpha \mathbf{u})$ = α u $= \alpha f^{-1}(\mathbf{v}).$

Let \mathbb{F} be a field, and let $f : \mathbb{F}^n \to \mathbb{F}^n$ be an isomorphism. Then $f^{-1} : \mathbb{F}^n \to \mathbb{F}^n$ is also an isomorphism.

Proof (continued). Next, fix $\mathbf{v} \in \mathbb{F}^n$ and $\alpha \in \mathbb{F}$. WTS $f^{-1}(\alpha \mathbf{v}) = \alpha f^{-1}(\mathbf{v})$. Set $\mathbf{u} := f^{-1}(\mathbf{v})$, so that $f(\mathbf{u}) = \mathbf{v}$. Then $f^{-1}(\alpha \mathbf{v}) = f^{-1}(\alpha f(\mathbf{u}))$ $= f^{-1}(f(\alpha \mathbf{u}))$ because f is linear $= (f^{-1} \circ f)(\alpha \mathbf{u})$ $= \operatorname{Id}_{\mathbb{F}^n}(\alpha \mathbf{u})$ $= \alpha \mathbf{u}$ $= \alpha f^{-1}(\mathbf{v}).$

We have now proven that f^{-1} linear. This completes the argument. \Box