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Definition
For a field F, a function f : Fm → Fn is said to be a linear function
(or a linear transformation) if it satisfies the following two
conditions (axioms):

1 for all vectors u, v ∈ Fm, we have that f (u + v) = f (u) + f (v);
2 for all vectors u ∈ Fm and scalars α ∈ F, we have that

f (αu) = αf (u).

Proposition 1.10.1
Let F be a field, and let f : Fm → Fn be a linear function. Then
for all vectors v1, . . . , vk ∈ Fm and all scalars α1, . . . , αk ∈ F, we
have that

f
(
α1v1 + · · · + αkvk

)
= α1f (v1) + · · · + αk f (vk).

Proof. Easy induction (details: exercise).
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Example 1.10.2
Determine whether the following functions are linear (and prove
your answer):

(a) f : R3 → R2 given by f
(  x1

x2
x3

 )
=

[
x1 − x2 + x3

x1 + x2

]
for all

x1, x2, x3 ∈ R.

(b) g : Z2
2 → Z4

2 given by g
( [

x1
x2

] )
=


x1

x1 + x2
x2
1

 for all

x1, x2 ∈ Z2.

(c) h : Z3
3 → Z2

3 given by h
(  x1

x2
x3

 )
=

[
x1 + x2

x1x2

]
for all

x1, x2, x3 ∈ Z3.



Remark:
To show that a function is linear, we must show that it
satisfies both axioms from the definition of a linear function; in
particular, axiom 1 must hold for all vectors u and v, and
axiom 2 must hold for all vectors u and scalars α.

On the other hand, to show that a function is not linear, it is
enough to show that it fails to satisfy at least one of the
axioms 1 and 2 from the definition of a linear function.
To show that a function does not satisfy axiom 1, it is enough
to exhibit one particular pair of vectors u and v for which
that axiom does not hold.
Similarly, to show that a function does not satisfy axiom 2, it
is enough to exhibit one particular vector u and one
particular scalar α for which axiom 2 fails.
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Example 1.10.2

(a) f : R3 → R2 given by f
(  x1

x2
x3

 )
=

[
x1 − x2 + x3

x1 + x2

]
for all

x1, x2, x3 ∈ R.

Solution.

(a) The function f is linear. We prove this by verifying
the axioms of a linear function for the function f , as follows.

1. Fix vectors u =

 u1
u2
u3

 and v =

 v1
v2
v3

 in R3. WTS

f (u + v) = f (u) + f (v). For this, we compute (next slide):
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Solution (continued).

f (u + v) = f
(  u1

u2
u3

 +

 v1
v2
v3

 )
= f

(  u1 + v1
u2 + v2
u3 + v3

 )
(∗)=

[
(u1 + v1) − (u2 + v2) + (u3 + v3)

(u1 + v1) + (u2 + v2)

]

=
[

(u1 − u2 + u3) + (v1 − v2 + v3)
(u1 + u2) + (v1 + v2)

]

=
[

u1 − u2 + u3
u1 + u2

]
+

[
v1 − v2 + v3

v1 + v2

]

(∗∗)= f
(  u1

u2
u3

 )
+ f

(  v1
v2
v3

 )

= f (u) + f (v),

where both (*) and (**) follow from the definition of f .



Solution (continued). Fix a vector u =

 u1
u2
u3

 in R3 and a scalar

α ∈ R. WTS f (αu) = αf (u). For this, we compute:

f (αu) = f
(

α

 u1
u2
u3

 )
= f

(  αu1
αu2
αu3

 )
(∗)=

[
αu1 − αu2 + αu3

αu1 + αu2

]
=

[
α(u1 − u2 + u3)

α(u1 + u2)

]

= α

[
u1 − u2 + u3

u1 + u2

]
(∗∗)= αf

(  u1
u2
u3

 )
,

where both (*) and (**) follow from the definition of f .

We have now shown that f satisfies both axioms from the
definition of a linear function. So, f is linear, as we had claimed. □
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Example 1.10.2

(b) g : Z2
2 → Z4

2 given by g
( [

x1
x2

] )
=


x1

x1 + x2
x2
1

 for all

x1, x2 ∈ Z2.

Solution.

(b) The function g is not linear because it does not
satisfy axiom 1 of the definition of a linear function. To see this,

we consider, for example, the vectors u =
[

1
1

]
and v =

[
1
1

]
in

Z2
2, and we observe that (next slide):
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Solution (continued).

g(u + v) = g
( [

1
1

]
+

[
1
1

] )
= g

( [
0
0

] )
=


0
0
0
1

 ,

whereas

g(u) + g(v) = g
( [

1
1

] )
+ g

( [
1
1

] )
=


1
0
1
1

 +


1
0
1
1



=


0
0
0
0

 .

As we can see, g(u + v) ̸= g(u) + g(v), and we deduce that g is
not linear. □



Example 1.10.2

(c) h : Z3
3 → Z2

3 given by h
(  x1

x2
x3

 )
=

[
x1 + x2

x1x2

]
for all

x1, x2, x3 ∈ Z3.

Solution.

(c) The function h is not linear because it does not
satisfy axiom 2 of the definition of a linear function. To see this,

we consider, for example, the vector u =

 1
2
0

 in Z3
3 and the

scalar α = 2 in Z3, and we observe that

h(αu) = h
(

2

 1
2
0

 )
= h

(  2
1
0

 )
=

[
2 + 1
2 · 1

]
=

[
0
2

]
;

αh(u) = 2h
(  1

2
0

 )
= 2

[
1 + 2
1 · 2

]
= 2

[
0
2

]
=

[
0
1

]
.

Thus, h(αu) ̸= αh(u), and we deduce that h is not linear. □
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Proposition 1.10.3
Let F be a field, and let f : Fm → Fn be a linear function. Then
f (0) = 0.a

aNote that in f (0) = 0, we have that 0 ∈ Fm, whereas 0 ∈ Fn.

Proof.

We observe that

f (0) = f (0 · 0) (∗)= 0f (0) = 0,

where (*) follows from the fact that f is linear. □

Remark: Proposition 1.10.3 can sometimes be used to show
that a function is not linear.
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Proposition 1.10.3
Let F be a field, and let f : Fm → Fn be a linear function. Then
f (0) = 0.

Example 1.10.2

(b) g : Z2
2 → Z4

2 given by g
( [

x1
x2

] )
=


x1

x1 + x2
x2
1

 for all

x1, x2 ∈ Z2.

For example, for the function g from Example 1.10.2(b), we
have that g(0) ̸= 0, and so g is not linear.

However, note that the converse of Proposition 1.10.3: it is
possible that a function f : Fm → Fn (where F is some field)
satisfies f (0) = 0, but that the function f is still not linear.
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Proposition 1.10.3
Let F be a field, and let f : Fm → Fn be a linear function. Then
f (0) = 0.

Example 1.10.2

(c) h : Z3
3 → Z2

3 given by h
(  x1

x2
x3

 )
=

[
x1 + x2

x1x2

]
for all

x1, x2, x3 ∈ Z3.

For instance, the function h from Example 1.10.2(c) satisfies
h(0) = 0, but h is nevertheless not linear.



Let us consider some geometric properties of linear functions
from Rm to Rn.

Suppose that f : Rm → Rn is a linear function.
It turns out that the image of any line in Rm under f is either
a line in Rn or a point in Rn (technically, a set that contains
only one point/vector of Rn; we can think of such one-point
sets as “degenerate lines”).

This is one of the reasons why linear functions are called linear.
Let us give a formal proof.
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Span(a)

L = b+Span(a)

a

b

x2

x1

Lines through the origin in Rm are simply sets of the form
Span(a) = {αa | α ∈ R},

where a is a non-zero vector in Rm.

Any line in Rm is obtained by shifting a line through the origin
by some vector b ∈ Rm (if b = 0, then our line still passes
though the origin).
So, consider some line

L := b + Span(a) = {b + αa | α ∈ R},

where a ̸= 0 and b are fixed vectors in Rm.
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Span(a)

L = b+Span(a)

a

b

x2

x1

For any point b + αa (α ∈ R) on the line L, we have that

f (b + αa) (∗)= f (b) + f (αa) (∗∗)= f (b) + αf (a)
where both (*) and (**) follow from the linearity of f , but in
(*) we used axiom 1 from the definition of a linear function,
and in (**) we used axiom 2.

So, the image of our line L under f , denoted by f [L], is

f [L] = {f (b) + αf (a) | α ∈ R} = f (b) + Span
(
f (a)

)
.
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Reminder:

f [L] = {f (b) + αf (a) | α ∈ R} = f (b) + Span
(
f (a)

)
.

If f (a) ̸= 0, then f [L] is a line in Rn.
On the other hand, if f (a) = 0, then f [L] = {f (b)}, which is
a one-point subset (“degenerate line”) of Rn.
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Span(a)

L = b+Span(a)

a

b

x2

x1

Linear functions f : Rm → Rn map line segments onto line
segments (possibly degenerate ones, i.e. those that contain
only one point).

The proof is similar to the above and is left as an exercise.



We note, however, that not all functions f : Rm → Rn that
map lines to lines (or points) are linear.

An obvious example might be a function f : Rn → Rn given
by f (x) = x + b for all x ∈ Rn, where b is a fixed non-zero
vector in Rn.

This function is not linear because f (0) ̸= 0, and we know (by
Proposition 1.10.3) that all linear functions map 0 to 0.

However, even if a function f : Rm → Rn maps lines to lines
(or points) and maps 0 to 0, it might still fail to be linear.
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For example, consider the function g : R2 → R2 given by

g
( [

x1
x2

] )
=

[
x3

1
0

]
for all x1, x2 ∈ R.

This function is not linear, although it does map all lines onto
either lines or points, and it does map 0 to 0.
In particular, g maps any non-vertical line in R2 onto the
x1-axis, and it maps any vertical line onto a one-point set.

a

x2

x1

x2

x1

 x1
x2

 7→
 x31

0


 a3

0
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Proposition 1.10.4
Let F be a field, let A ∈ Fn×m be a matrix, and define f : Fm → Fn

by setting f (x) = Ax for all x ∈ Fm. Then f is a linear function.

Proof.

By Corollary 1.7.6, the following hold:
(i) for all vectors u, v ∈ Fm, we have A(u + v) = Au + Av;
(ii) for all vectors u ∈ Fm and scalars α ∈ F, we have that

A(αu) = α(Au).
But now we have the following:

1 for all vectors u, v ∈ Fm, we have that

f (u + v) = A(u + v) (i)= Au + Av = f (u) + f (v);

2 for all vectors u ∈ Fm and scalars α ∈ F, we have that

f (αu) = A(αu) (ii)= α(Au) = αf (u).

So, f is linear. □
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Proposition 1.10.4
Let F be a field, let A ∈ Fn×m be a matrix, and define f : Fm → Fn

by setting f (x) = Ax for all x ∈ Fm. Then f is a linear function.

Mappings of the form x 7→ Ax, where A is some matrix, are
sometimes called matrix transformations.

By Proposition 1.10.4, all matrix transformations are linear.
Let us try to describe matrix transformations in a bit more
detail.
Suppose we are given a matrix A =

[
ai ,j

]
n×m

in Fn×m

(where F is some field), and define the function f : Fm → Fn

by setting f (x) = Ax for all x ∈ Fm.

But now for all vectors x =
[

x1 . . . xm
]T

in Fm, we have
the following (next slide):
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f (x) = Ax =


a1,1 a1,2 . . . a1,m
a2,1 a2,2 . . . a2,m

...
... . . . ...

an,1 an,2 . . . an,m




x1
x2
...

xm



=


a1,1x1 + a1,2x2 + · · · + a1,mxm
a2,1x1 + a2,2x2 + · · · + a2,mxm

...
an,1x1 + an,2x2 + · · · + an,mxm

 .

So, our matrix transformation maps each vector x ∈ Fm to a
vector in Fn, each of whose entries is a linear combination of
the entries of x, and the scalars/weights are determined by
the corresponding row of the matrix A.
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Proposition 1.10.4
Let F be a field, let A ∈ Fn×m be a matrix, and define f : Fm → Fn

by setting f (x) = Ax for all x ∈ Fm. Then f is a linear function.

By Proposition 1.10.4, every matrix transformation is a linear
function.

Interestingly, a converse of sorts also holds.

Theorem 1.10.6
Let F be a field, and let f : Fm → Fn be a linear function. Then
there exists a unique matrix A (called the standard matrix of f )
such that for all x ∈ Fm, we have that f (x) = Ax. Moreover, the
standard matrix A of f is given by

A =
[

f (e1) . . . f (em)
]

,

where e1, . . . , em are the standard basis vectors of Fm.

We begin with another important theorem, which readily
implies Theorem 1.10.6.
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Theorem 1.10.5
Let F be a field, and let a1, . . . , am be any vectors in Fn. Then
there exists a unique linear function f : Fm → Fn that satisfies
f (e1) = a1, . . . , f (em) = am, where e1, . . . , em are the standard
basis vectors of Fm. Moreover, this linear function f is given by
f (x) = Ax for all x ∈ Fm, where A =

[
a1 . . . am

]
.

Remark: Theorem 1.10.5 essentially states that we can fully
determine a linear function f : Fm → Fn (where F is a field)
by simply specifying what the standard basis vectors of Fm get
mapped to.

Moreover, we can choose what the standard basis vectors get
mapped to arbitrarily (i.e. we can map them to any vectors of
Fn that we like).
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a1 . . . am

]
.

Proof.

Existence. Define f : Fm → Fn by setting f (x) = Ax for all
x ∈ Fm. Then f is a matrix transformation, and so by
Proposition 1.10.4, it is linear. Moreover, for all indices
i ∈ {1, . . . , m}, we have that

f (ei) = Aei =
[

a1 . . . am
]

ei
(∗)= ai ,

where (*) follows from Proposition 1.4.4.
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Proof (continued).

Uniqueness. Suppose that f : Fm → Fn is any
linear function that satisfies f (e1) = a1, . . . , f (em) = am. WTS
f (x) = Ax for all x ∈ Fm. Fix any vector x =

[
x1 . . . xm

]T
in

Fm. Then we have that

x = x1e1 + · · · + xmem,

and we compute (next slide):
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Proof (continued). Reminder: f (e1) = a1, . . . , f (em) = am.

f (x) = f
(
x1e1 + · · · + xmem

)
(∗)= x1f (e1) + · · · + xmf (em)

(∗∗)= x1a1 + · · · + xmam

(∗∗∗)=
[

a1 . . . am
]  x1

...
xm


= Ax,

where f follows from the linearity of f (and more precisely, from
Proposition 1.10.1), (**) follows from the fact that
f (e1) = a1, . . . , f (em) = am, and (***) follows from the definition
of matrix-vector multiplication. □
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Then by Theorem 1.10.5, we have that f (x) = Ax for all x ∈ Fm.
Indeed, f : Fm → Fn is a linear function that satisfies
f (e1) = a1, . . . , f (em) = am.
So, by Theorem 1.10.5, we have that f (x) = Ax for all
x ∈ Fm.

This proves existence.
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This proves existence.
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Example 1.10.7
Find the standard matrix of the linear function f : R3 → R2 given
by

f
(  x1

x2
x3

 )
=

[
x1 − x2 + x3

x1 + x2

]

for all x1, x2, x3 ∈ R. (The fact that f is linear was proven in the
solution of Example 1.10.2(a).)

Solution.

The standard matrix of f is

A :=
[

f (e1) f (e2) f (e3)
]

=
[

1 −1 1
1 1 0

]
.

□
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For any set X , the identity function on X is the function
IdX : X → X given by IdX (x) = x for all x ∈ X .

Proposition 1.10.8
Let F be a field. Then the identity function IdFn : Fn → Fn is
linear, and its standard matrix is the identity matrix In.

Proof. Obviously, the identity function IdFn satisfies the two
axioms from the definition of a linear function, and by
Theorem 1.10.6, its standard matrix is[

IdFn (e1) . . . IdFn (en)
]

=
[

e1 . . . en
]

= In.

Alternatively, we observe that for any vector x ∈ Fn, we have that

IdFn (x) (∗)= x (∗∗)= Inx,

where (*) follows from the definition of the identity function, and
(**) follows from Proposition 1.4.5. So, IdFn is a matrix
transformation and is therefore linear (by Proposition 1.10.4), and
its standard matrix is In. □
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Let us now consider some geometric examples (with pretty
pictures).

In particular, we consider a few special linear functions
f : R2 → R2.

We will not formally prove that these functions are all linear.
To convince yourself that they are linear, think about what
happens geometrically to sums and scalar multiples of vectors
under these functions.
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Rotation. The function rθ : R2 → R2 that rotates each
vector about the origin counterclockwise by the angle θ (see
the picture below) is linear, and its standard matrix is

[
rθ(e1) rθ(e2)

]
=

[
cos θ − sin θ
sin θ cos θ

]
.

θ
u

rθ(u)

x1

x2

Note that rotating by the angle θ clockwise is the same as
rotating by the angle −θ counterclockwise (which is why it is
enough to consider only counterclockwise rotation, as long as
we allow negative angles as well).
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Orthogonal projection. Given a line L in R2 that passes
through the origin, the orthogonal projection projL : R2 → R2

onto L (see the picture below) is linear.

x1

x2

projL(u)

u

L

We cannot yet compute the standard matrix of orthogonal
projection onto an arbitrary line through the origin; we will be
able to do so only after we have developed a lot more theory.
However, we can already compute this matrix in some special
cases.
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Orthogonal projection.
Consider the projection projx1 : R2 → R2 onto the x1-axis and
the projection projx2 : R2 → R2 onto the x2-axis.

x1

x2

u

projx1(u)

projx2(u)

Note that for a vector u =
[

u1
u2

]
in R2, we have

projx1(u) =
[

u1
0

]
and projx2(u) =

[
0
u2

]
.



Orthogonal projection.
Consider the projection projx1 : R2 → R2 onto the x1-axis and
the projection projx2 : R2 → R2 onto the x2-axis.

x1

x2

u

projx1(u)

projx2(u)

Note that for a vector u =
[

u1
u2

]
in R2, we have

projx1(u) =
[

u1
0

]
and projx2(u) =

[
0
u2

]
.



x1

x2

u

projx1(u)

projx2(u)

The standard matrix of projx1 is

[
projx1(e1) projx1(e2)

]
=

[
e1 0

]
=

[
1 0
0 0

]
,

and the standard matrix of projx2 is

[
projx2(e1) projx2(e2)

]
=

[
0 e2

]
=

[
0 0
0 1

]
.



Reflection. Given a line L in R2 that passes through the
origin, the reflection refL : R2 → R2 about the line L is linear.

x1

x2

refL(u)

u

L

As in the case of orthogonal projections, we cannot yet
compute the standard matrix of the reflection about an
arbitrary line through the origin; we will only be able to do so
once we have developed a lot more theory.
However, we can already compute this matrix in some special
cases.
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Reflection.
Consider the reflection refx1 : R2 → R2 about the x1-axis and
the reflection refx2 : R2 → R2 about the x2-axis.

x1

x2

u
refx2(u)

refx1(u)

Note that for a vector u =
[

u1
u2

]
in R2, we have

refx1(u) =
[

u1
−u2

]
and refx2(u) =

[
−u1

u2

]
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x1

x2

u
refx2(u)

refx1(u)

The standard matrix of refx1 is

[
refx1(e1) refx1(e2)

]
=

[
e1 −e2

]
=

[
1 0
0 −1

]
,

and the standard matrix of refx2 is

[
refx2(e1) refx2(e2)

]
=

[
−e1 e2

]
=

[
−1 0

0 1

]
.



Scaling. Given a scalar α ∈ R, the function that scales each
vector in R2 by α (see the picture below) is linear.

x1

x2

x1

u αu

u1 αu1

u2
αu2

scaling by α

x2

The standard matrix of this linear function is[
αe1 αe2

]
=

[
α 0
0 α

]
.

If α = 0, then scaling by α is the same as mapping each vector
to the origin.
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Horizontal Shear. A horizontal shear in R2 is a mapping
from R2 to R2 given by the formula

u 7→
[

1 k
0 1

]
u,

i.e. by the formula[
u1
u2

]
7→

[
u1 + ku2

u2

]
,

where k is a fixed real constant.

This mapping has the effect of horizontally tilting objects in
the coordinate plane (while keeping the vertical component
unchanged).
This is illustrated on the next slide for the cases when k = 1
and k = −1.
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Vertical Shear. A vertical shear in R2 is a mapping from R2

to R2 given by the formula

u 7→
[

1 0
k 1

]
u,

i.e. by the formula[
u1
u2

]
7→

[
u1

ku1 + u2

]
,

where k is a fixed real constant.

This mapping has the effect of vertically tilting objects in the
coordinate plane (while keeping the horizontal component
unchanged).
This is illustrated on the next slide for the cases when k = 1
and k = −1.
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Given functions f : A → B and g : B → C (where A, B, and
C are sets), we define the composition of functions g and f to
be the function g ◦ f : A → C given by

(g ◦ f )(a) = g
(
f (a)

)
for all a ∈ A.

A B C

f g

g ◦ f



Proposition 1.10.1
Let F be a field. Then all the following hold:

(a) for all linear functions f , g : Fm → Fn, the function f + g is
linear, and moreover, if A and B (both in Fn×m) are the
standard matrices of f and g , respectively, then A + B is the
standard matrix of f + g ;

(b) for all linear functions f : Fm → Fn and scalars α ∈ F, the
function αf is linear, and moreover, if A ∈ Fn×m is the
standard matrix of f , then αA is the standard matrix of αf ;

(c) for all linear functions f : Fp → Fm and g : Fm → Fn, the
function g ◦ f is liner, and moreover, if A ∈ Fm×p and
B ∈ Fn×m are the standard matrices of f and g , respectively,
then BA is the standard matrix of g ◦ f .

Fp Fm Fn
f , A g, B

g ◦ f , BA



Fp Fm Fn
f , A g, B

g ◦ f , BA

Proof of (c).

Fix linear functions f : Fp → Fm and g : Fm → Fn.
Let A ∈ Fm×p be the standard matrix of f , and let B ∈ Fn×m be
the standard matrix of g . Then for any u ∈ Fp, we have that

(g ◦ f )(u) = g(f (u)) (∗)= g(Au) (∗∗)= B(Au) (∗∗∗)= (BA)u,

where (*) follows from the fact that A is the standard matrix of f ,
(**) follows from the fact that B is the standard matrix of g , and
(***) follows from Corollary 1.7.6(g). We have now shown that
g ◦ f is a matrix transformation, and so (by Proposition 1.10.4) it
is linear. Moreover, since (by the calculation above) we have that

(g ◦ f )(u) = (BA)u

for all vectors u ∈ Fp, we see that BA is the standard matrix of
g ◦ f . □
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Example 1.10.14
(a) Find the standard matrix of the linear function f1 : R2 → R2

that first reflects about the x1-axis and then rotates about the
origin counterclockwise by 90◦.

(b) Find the standard matrix of the linear function f2 : R2 → R2

that first rotates about the origin counterclockwise by 90◦ and
then reflects about the x1-axis.

You may assume that f1 and f2 are indeed linear.

Solution.

First, we note that the standard matrix of
refx1 : R2 → R2, the reflection about the x1-axis, is

A =
[

refx1(e1) refx1(e2)
]

=
[

e1 −e2
]

=
[

1 0
0 −1

]
,

whereas the standard matrix of r90◦ : R2 → R2, the
counterclockwise rotation by 90◦ about the origin, is

B =
[

r90◦(e1) r90◦(e2)
]

=
[

e2 −e1
]

=
[

0 −1
1 0

]
.
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Example 1.10.14
(a) Find the standard matrix of the linear function f1 : R2 → R2

that first reflects about the x1-axis and then rotates about the
origin counterclockwise by 90◦.

(b) Find the standard matrix of the linear function f2 : R2 → R2

that first rotates about the origin counterclockwise by 90◦ and
then reflects about the x1-axis.

You may assume that f1 and f2 are indeed linear.

Solution (continued). Note that f1 = r90◦ ◦ refx1 and
f2 = refx1 ◦ r90◦ . So, by Proposition 1.10.13(c), the standard
matrix of f1 is

BA =
[

0 −1
1 0

][
1 0
0 −1

]
=

[
0 1
1 0

]
,

whereas by the standard matrix of f2 is

AB =
[

1 0
0 −1

][
0 −1
1 0

]
=

[
0 −1

−1 0

]
.

□



We now briefly review one-to-one (injective) functions, onto
(surjective) functions, and bijections.

This material properly belongs to Discrete Math.
Here, we state (without proof) the results that we need.

However, all the proofs are in the Lecture Notes.

Definition
A function f : A → B is said to be

one-to-one (or injective, or an injection) if for all a1, a2 ∈ A
such that a1 ̸= a2, we have f (a1) ̸= f (a2);a

onto (or surjective, or a surjection) if for all b ∈ B, there
exists some a ∈ A such that f (a) = b;
bijective or a bijection if it is both one-to-one and onto.

aEquivalently, f : A → B is one-to-one if for all a1, a2 ∈ A such that
f (a1) = f (a2), we have that a1 = a2.
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Proposition 1.10.15
Let f : A → B be a function. Then the following are equivalent:

(a) f is a bijection;
(b) there exists some function g : B → A such that g ◦ f = IdA

and f ◦ g = IdB.

A B

f

g A B

f

g

Proposition 1.10.16
Let f : A → B be a bijection. Then there exists a unique function
g : B → A such that g ◦ f = IdA and f ◦ g = IdB.
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Proposition 1.10.16
Let f : A → B be a bijection. Then there exists a unique function
g : B → A such that g ◦ f = IdA and f ◦ g = IdB.
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Terminology/Notation: If f : A → B is a bijection, then the
unique function g : B → A that satisfies g ◦ f = IdA and
f ◦ g = IdB (i.e. the function g from Proposition 1.10.16) is
called the inverse of f and is denoted by f −1.

Note that this means that:
f −1 ◦ f = IdA;
f ◦ f −1 = IdB ;
for all a ∈ A and b ∈ B, we have that b = f (a) iff a = f −1(b).

Note that the inverse of a bijection is also a bijection (by
Proposition 1.10.15), and moreover, (f −1)−1 = f .
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unique function g : B → A that satisfies g ◦ f = IdA and
f ◦ g = IdB (i.e. the function g from Proposition 1.10.16) is
called the inverse of f and is denoted by f −1.
Note that this means that:

f −1 ◦ f = IdA;
f ◦ f −1 = IdB ;
for all a ∈ A and b ∈ B, we have that b = f (a) iff a = f −1(b).
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Proposition 1.10.15), and moreover, (f −1)−1 = f .



Proposition 1.10.17
Let f : A → B and g : B → C be functions. Then all the following
hold:

(a) if f and g are one-to-one, then g ◦ f is also one-to-one;
(b) if f and g are onto, then g ◦ f is also onto;
(c) if f and g are bijections, then g ◦ f is also a bijection, and

moreover, (g ◦ f )−1 = f −1 ◦ g−1 (see the diagram below).

A B C

f

f−1

g

g−1

g ◦ f

(g ◦ f )−1 = f−1 ◦ g−1



Back to linear functions!

As the following theorem shows, we can easily check whether
a linear function is one-to-one or onto by computing the rank
of its standard matrix.

Theorem 1.10.18
Let F be a field, let f : Fm → Fn be a linear function, and let
A ∈ Fn×m be the standard matrix of f . Then both the following
hold:

(a) f is one-to-one iff rank(A) = m (i.e. A has full column rank);
(b) f is onto iff rank(A) = n (i.e. A has full row rank).
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(a) f is one-to-one iff rank(A) = m (i.e. A has full column rank)

Proof of (a).

We have the following sequence of equivalent
statements:

f is one-to-one (∗)⇐⇒ for all b ∈ Fn, f (x) = b
has at most one solution

(∗∗)⇐⇒ for all b ∈ Fn, Ax = b
has at most one solution,

(∗∗∗)⇐⇒ rank(A) = m,

where (*) follows from the definition of a one-to-one function, (**)
follows from the fact that A is the standard matrix of f , and (***)
follows from Corollary 1.6.5. □
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(b) f is onto iff rank(A) = n (i.e. A has full row rank).

Proof of (b).

(b) We have the following sequence of equivalent
statements:

f is onto (∗)⇐⇒ for all b ∈ Fn, f (x) = b
has at least one solution

(∗∗)⇐⇒
for all b ∈ Fn, Ax = b
has at least one solution
(i.e. Ax = b is consistent)

(∗∗∗)⇐⇒ rank(A) = n,

where (*) follows from the definition of an onto function, (**)
follows from the fact that A is the standard matrix of f , and (***)
follows from Corollary 1.6.6. □
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Theorem 1.10.18
Let F be a field, let f : Fm → Fn be a linear function, and let
A ∈ Fn×m be the standard matrix of f . Then both the following
hold:

(a) f is one-to-one iff rank(A) = m (i.e. A has full column rank);
(b) f is onto iff rank(A) = n (i.e. A has full row rank).



Definition
Let F be a field. A function f : Fm → Fn is an isomorphism if it is
both linear and a bijection.

Theorem 1.10.19
Let F be a field, let f : Fm → Fn be a linear function, and let
A ∈ Fn×m be the standard matrix of f . Then the following are
equivalent:

(a) f is an isomorphism;
(b) rank(A) = m = n (i.e. A is a square matrix of full rank).

By Theorem 1.10.19, if we know the standard matrix of a
linear function, then we can easily determine whether that
linear function is an isomorphism.
Moreover, Theorem 1.10.19 implies, in particular, that for a
field F, there can be no isomorphism from Fm to Fn for
m ̸= n.
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Theorem 1.10.19
Let F be a field, let f : Fm → Fn be a linear function, and let
A ∈ Fn×m be the standard matrix of f . Then the following are
equivalent:

(a) f is an isomorphism;
(b) rank(A) = m = n (i.e. A is a square matrix of full rank).

Proof.

Suppose first that (a) holds. Since f is a one-to-one linear
function, Theorem 1.10.18(a) guarantees that rank(A) = m. On
the other hand, since f is an onto linear function,
Theorem 1.10.18(b) guarantees that rank(A) = n. But now
m = rank(A) = n, and (b) follows.

Suppose now that (b) holds. Then by Theorem 1.10.18(a), f is
one-to-one, and by Theorem 1.10.18(b), f is onto. So, f is a
bijection. Since f is also linear (by hypothesis), we deduce that f
is an isomorphism, i.e. (a) holds. □
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Theorem 1.10.20
Let F be a field, and let f : Fn → Fn be an isomorphism. Then
f −1 : Fn → Fn is also an isomorphism.

Proof.

Since f : Fn → Fn is an isomorphism, it is, in particular, a
bijection; consequently, f has an inverse f −1 : Fn → Fn, which is
also a bijection. So, to show that f −1 is an isomorphism, it suffices
to show that f −1 is linear.

First, fix v1, v2 ∈ Fn. WTS f −1(v1 + v2) = f −1(v1) + f −1(v2).
Set u1 := f −1(v1) and u2 := f −1(v2), so that f (u1) = v1 and
f (u2) = v2. Then (next slide):
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