Linear Algebra 1

Lecture \#4

Linear functions

Irena Penev

October 30, 2023

Definition

For a field \mathbb{F}, a function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ is said to be a linear function (or a linear transformation) if it satisfies the following two conditions (axioms):
(1) for all vectors $\mathbf{u}, \mathbf{v} \in \mathbb{F}^{m}$, we have that $f(\mathbf{u}+\mathbf{v})=f(\mathbf{u})+f(\mathbf{v})$;
(2) for all vectors $\mathbf{u} \in \mathbb{F}^{m}$ and scalars $\alpha \in \mathbb{F}$, we have that $f(\alpha \mathbf{u})=\alpha f(\mathbf{u})$.

Definition

For a field \mathbb{F}, a function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ is said to be a linear function (or a linear transformation) if it satisfies the following two conditions (axioms):
(1) for all vectors $\mathbf{u}, \mathbf{v} \in \mathbb{F}^{m}$, we have that $f(\mathbf{u}+\mathbf{v})=f(\mathbf{u})+f(\mathbf{v})$;
(2) for all vectors $\mathbf{u} \in \mathbb{F}^{m}$ and scalars $\alpha \in \mathbb{F}$, we have that $f(\alpha \mathbf{u})=\alpha f(\mathbf{u})$.

Proposition 1.10.1

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then for all vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in \mathbb{F}^{m}$ and all scalars $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{F}$, we have that

$$
f\left(\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{k} \mathbf{v}_{k}\right)=\alpha_{1} f\left(\mathbf{v}_{1}\right)+\cdots+\alpha_{k} f\left(\mathbf{v}_{k}\right)
$$

Proof. Easy induction (details: exercise).

Example 1.10.2

Determine whether the following functions are linear (and prove your answer):
(2) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by $f\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}-x_{2}+x_{3} \\ x_{1}+x_{2}\end{array}\right]$ for all $x_{1}, x_{2}, x_{3} \in \mathbb{R}$.
(b) $g: \mathbb{Z}_{2}^{2} \rightarrow \mathbb{Z}_{2}^{4}$ given by $g\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} \\ x_{1}+x_{2} \\ x_{2} \\ 1\end{array}\right]$ for all $x_{1}, x_{2} \in \mathbb{Z}_{2}$.
(0) $h: \mathbb{Z}_{3}^{3} \rightarrow \mathbb{Z}_{3}^{2}$ given by $h\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}+x_{2} \\ x_{1} x_{2}\end{array}\right]$ for all $x_{1}, x_{2}, x_{3} \in \mathbb{Z}_{3}$.

- Remark:
- To show that a function is linear, we must show that it satisfies both axioms from the definition of a linear function; in particular, axiom 1 must hold for all vectors \mathbf{u} and \mathbf{v}, and axiom 2 must hold for all vectors \mathbf{u} and scalars α.
- Remark:
- To show that a function is linear, we must show that it satisfies both axioms from the definition of a linear function; in particular, axiom 1 must hold for all vectors \mathbf{u} and \mathbf{v}, and axiom 2 must hold for all vectors \mathbf{u} and scalars α.
- On the other hand, to show that a function is not linear, it is enough to show that it fails to satisfy at least one of the axioms 1 and 2 from the definition of a linear function.
- Remark:
- To show that a function is linear, we must show that it satisfies both axioms from the definition of a linear function; in particular, axiom 1 must hold for all vectors \mathbf{u} and \mathbf{v}, and axiom 2 must hold for all vectors \mathbf{u} and scalars α.
- On the other hand, to show that a function is not linear, it is enough to show that it fails to satisfy at least one of the axioms 1 and 2 from the definition of a linear function.
- To show that a function does not satisfy axiom 1 , it is enough to exhibit one particular pair of vectors \mathbf{u} and \mathbf{v} for which that axiom does not hold.
- Similarly, to show that a function does not satisfy axiom 2 , it is enough to exhibit one particular vector \mathbf{u} and one particular scalar α for which axiom 2 fails.

Example 1.10.2

(0) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by $f\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}-x_{2}+x_{3} \\ x_{1}+x_{2}\end{array}\right]$ for all $x_{1}, x_{2}, x_{3} \in \mathbb{R}$.

Solution.

Example 1.10.2

(๑) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by $f\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}-x_{2}+x_{3} \\ x_{1}+x_{2}\end{array}\right]$ for all $x_{1}, x_{2}, x_{3} \in \mathbb{R}$.

Solution. (a) The function f is linear. We prove this by verifying the axioms of a linear function for the function f, as follows.

Example 1.10.2

(3) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by $f\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}-x_{2}+x_{3} \\ x_{1}+x_{2}\end{array}\right]$ for all $x_{1}, x_{2}, x_{3} \in \mathbb{R}$.

Solution. (a) The function f is linear. We prove this by verifying the axioms of a linear function for the function f, as follows.

1. Fix vectors $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ in \mathbb{R}^{3}. WTS $f(\mathbf{u}+\mathbf{v})=f(\mathbf{u})+f(\mathbf{v})$.

Example 1.10.2

(3) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by $f\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}-x_{2}+x_{3} \\ x_{1}+x_{2}\end{array}\right]$ for all $x_{1}, x_{2}, x_{3} \in \mathbb{R}$.

Solution. (a) The function f is linear. We prove this by verifying the axioms of a linear function for the function f, as follows.

1. Fix vectors $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ in \mathbb{R}^{3}. WTS $f(\mathbf{u}+\mathbf{v})=f(\mathbf{u})+f(\mathbf{v})$. For this, we compute (next slide):

Solution (continued).

$$
\begin{aligned}
f(\mathbf{u}+\mathbf{v}) & =f\left(\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]\right)=f\left(\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2} \\
u_{3}+v_{3}
\end{array}\right]\right) \\
& \stackrel{(*)}{=}\left[\begin{array}{c}
\left(u_{1}+v_{1}\right)-\left(u_{2}+v_{2}\right)+\left(u_{3}+v_{3}\right) \\
\left(u_{1}+v_{1}\right)+\left(u_{2}+v_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(u_{1}-u_{2}+u_{3}\right)+\left(v_{1}-v_{2}+v_{3}\right) \\
\left(u_{1}+u_{2}\right)+\left(v_{1}+v_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
u_{1}-u_{2}+u_{3} \\
u_{1}+u_{2}
\end{array}\right]+\left[\begin{array}{c}
v_{1}-v_{2}+v_{3} \\
v_{1}+v_{2}
\end{array}\right] \\
& \stackrel{(* *)}{=} f\left(\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]\right)+f\left(\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]\right) \\
& =f(\mathbf{u})+f(\mathbf{v}),
\end{aligned}
$$

where both $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ follow from the definition of f.

Solution (continued). Fix a vector $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$ in \mathbb{R}^{3} and a scalar $\alpha \in \mathbb{R}$. WTS $f(\alpha \mathbf{u})=\alpha f(\mathbf{u})$. For this, we compute:

$$
\begin{aligned}
f(\alpha \mathbf{u}) & =f\left(\alpha\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]\right)=f\left(\left[\begin{array}{l}
\alpha u_{1} \\
\alpha u_{2} \\
\alpha u_{3}
\end{array}\right]\right) \\
& \stackrel{(*)}{=}\left[\begin{array}{c}
\alpha u_{1}-\alpha u_{2}+\alpha u_{3} \\
\alpha u_{1}+\alpha u_{2}
\end{array}\right]=\left[\begin{array}{c}
\alpha\left(u_{1}-u_{2}+u_{3}\right) \\
\alpha\left(u_{1}+u_{2}\right)
\end{array}\right] \\
& =\alpha\left[\begin{array}{c}
u_{1}-u_{2}+u_{3} \\
u_{1}+u_{2}
\end{array}\right] \stackrel{(* *)}{=} \alpha f\left(\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]\right)
\end{aligned}
$$

where both $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ follow from the definition of f.

Solution (continued). Fix a vector $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$ in \mathbb{R}^{3} and a scalar $\alpha \in \mathbb{R}$. WTS $f(\alpha \mathbf{u})=\alpha f(\mathbf{u})$. For this, we compute:

$$
\begin{aligned}
f(\alpha \mathbf{u}) & =f\left(\alpha\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]\right)=f\left(\left[\begin{array}{l}
\alpha u_{1} \\
\alpha u_{2} \\
\alpha u_{3}
\end{array}\right]\right) \\
& \stackrel{(*)}{=}\left[\begin{array}{c}
\alpha u_{1}-\alpha u_{2}+\alpha u_{3} \\
\alpha u_{1}+\alpha u_{2}
\end{array}\right]=\left[\begin{array}{c}
\alpha\left(u_{1}-u_{2}+u_{3}\right) \\
\alpha\left(u_{1}+u_{2}\right)
\end{array}\right] \\
& =\alpha\left[\begin{array}{c}
u_{1}-u_{2}+u_{3} \\
u_{1}+u_{2}
\end{array}\right] \stackrel{(* *)}{=} \alpha f\left(\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]\right)
\end{aligned}
$$

where both $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ follow from the definition of f.
We have now shown that f satisfies both axioms from the definition of a linear function. So, f is linear, as we had claimed. \square

Example 1.10.2

(b) $g: \mathbb{Z}_{2}^{2} \rightarrow \mathbb{Z}_{2}^{4}$ given by $g\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} \\ x_{1}+x_{2} \\ x_{2} \\ 1\end{array}\right]$ for all $x_{1}, x_{2} \in \mathbb{Z}_{2}$.

Solution.

Example 1.10.2

(b) $g: \mathbb{Z}_{2}^{2} \rightarrow \mathbb{Z}_{2}^{4}$ given by $g\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} \\ x_{1}+x_{2} \\ x_{2} \\ 1\end{array}\right]$ for all $x_{1}, x_{2} \in \mathbb{Z}_{2}$.

Solution. (b) The function g is not linear because it does not satisfy axiom 1 of the definition of a linear function.

Example 1.10.2

(b) $g: \mathbb{Z}_{2}^{2} \rightarrow \mathbb{Z}_{2}^{4}$ given by $g\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} \\ x_{1}+x_{2} \\ x_{2} \\ 1\end{array}\right]$ for all $x_{1}, x_{2} \in \mathbb{Z}_{2}$.

Solution. (b) The function g is not linear because it does not satisfy axiom 1 of the definition of a linear function. To see this, we consider, for example, the vectors $\mathbf{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ in \mathbb{Z}_{2}^{2}, and we observe that (next slide):

Solution (continued).

$$
g(\mathbf{u}+\mathbf{v})=g\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=g\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

whereas

$$
\begin{aligned}
g(\mathbf{u})+g(\mathbf{v}) & =g\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)+g\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
\end{aligned}
$$

As we can see, $g(\mathbf{u}+\mathbf{v}) \neq g(\mathbf{u})+g(\mathbf{v})$, and we deduce that g is not linear.

Example 1.10.2

(0) $h: \mathbb{Z}_{3}^{3} \rightarrow \mathbb{Z}_{3}^{2}$ given by $h\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}+x_{2} \\ x_{1} x_{2}\end{array}\right]$ for all $x_{1}, x_{2}, x_{3} \in \mathbb{Z}_{3}$.

Solution.

Example 1.10.2

(0) $h: \mathbb{Z}_{3}^{3} \rightarrow \mathbb{Z}_{3}^{2}$ given by $h\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}+x_{2} \\ x_{1} x_{2}\end{array}\right]$ for all $x_{1}, x_{2}, x_{3} \in \mathbb{Z}_{3}$.

Solution. (c) The function h is not linear because it does not satisfy axiom 2 of the definition of a linear function.

Example 1.10.2

(c) $h: \mathbb{Z}_{3}^{3} \rightarrow \mathbb{Z}_{3}^{2}$ given by $h\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}+x_{2} \\ x_{1} x_{2}\end{array}\right]$ for all

$$
x_{1}, x_{2}, x_{3} \in \mathbb{Z}_{3} .
$$

Solution. (c) The function h is not linear because it does not satisfy axiom 2 of the definition of a linear function. To see this, we consider, for example, the vector $\mathbf{u}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ in \mathbb{Z}_{3}^{3} and the scalar $\alpha=2$ in \mathbb{Z}_{3}, and we observe that

$$
\begin{aligned}
& h(\alpha \mathbf{u})=h\left(2\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]\right)=h\left(\left[\begin{array}{c}
2 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
2+1 \\
2 \cdot 1
\end{array}\right]=\left[\begin{array}{l}
0 \\
2
\end{array}\right] ; \\
& \text { - } \alpha h(\mathbf{u})=2 h\left(\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]\right)=2\left[\begin{array}{c}
1+2 \\
1 \cdot 2
\end{array}\right]=2\left[\begin{array}{l}
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
\end{aligned}
$$

Thus, $h(\alpha \mathbf{u}) \neq \alpha h(\mathbf{u})$, and we deduce that h is not linear. \square

Proposition 1.10.3

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then $f(0)=0 .{ }^{a}$
${ }^{a}$ Note that in $f(0)=0$, we have that $0 \in \mathbb{F}^{m}$, whereas $\mathbf{0} \in \mathbb{F}^{n}$.
Proof.

Proposition 1.10.3

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then $f(0)=0 .{ }^{a}$
${ }^{a}$ Note that in $f(0)=\mathbf{0}$, we have that $0 \in \mathbb{F}^{m}$, whereas $\mathbf{0} \in \mathbb{F}^{n}$.
Proof. We observe that

$$
f(\mathbf{0})=f(0 \cdot \mathbf{0}) \stackrel{(*)}{=} 0 f(\mathbf{0})=\mathbf{0}
$$

where $\left(^{*}\right)$ follows from the fact that f is linear. \square

Proposition 1.10.3

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then $f(0)=0$. ${ }^{\text {a }}$
${ }^{a}$ Note that in $f(0)=\mathbf{0}$, we have that $0 \in \mathbb{F}^{m}$, whereas $\mathbf{0} \in \mathbb{F}^{n}$.
Proof. We observe that

$$
f(\mathbf{0})=f(0 \cdot \mathbf{0}) \stackrel{(\stackrel{*}{=}}{=} 0 f(\mathbf{0})=\mathbf{0}
$$

where (*) follows from the fact that f is linear. \square

- Remark: Proposition 1.10 .3 can sometimes be used to show that a function is not linear.

Proposition 1.10.3

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then $f(0)=0$.

Example 1.10.2

(b) $g: \mathbb{Z}_{2}^{2} \rightarrow \mathbb{Z}_{2}^{4}$ given by $g\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} \\ x_{1}+x_{2} \\ x_{2} \\ 1\end{array}\right]$ for all

$$
x_{1}, x_{2} \in \mathbb{Z}_{2}
$$

- For example, for the function g from Example 1.10.2(b), we have that $g(\mathbf{0}) \neq \mathbf{0}$, and so g is not linear.

Proposition 1.10.3

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then $f(0)=0$.

Example 1.10.2

(b) $g: \mathbb{Z}_{2}^{2} \rightarrow \mathbb{Z}_{2}^{4}$ given by $g\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} \\ x_{1}+x_{2} \\ x_{2} \\ 1\end{array}\right]$ for all

$$
x_{1}, x_{2} \in \mathbb{Z}_{2}
$$

- For example, for the function g from Example 1.10.2(b), we have that $g(\mathbf{0}) \neq \mathbf{0}$, and so g is not linear.
- However, note that the converse of Proposition 1.10.3: it is possible that a function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ (where \mathbb{F} is some field) satisfies $f(\mathbf{0})=\mathbf{0}$, but that the function f is still not linear.

Proposition 1.10.3

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then $f(0)=0$.

Example 1.10.2

(0) $h: \mathbb{Z}_{3}^{3} \rightarrow \mathbb{Z}_{3}^{2}$ given by $h\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}+x_{2} \\ x_{1} x_{2}\end{array}\right]$ for all

$$
x_{1}, x_{2}, x_{3} \in \mathbb{Z}_{3} .
$$

- For instance, the function h from Example 1.10.2(c) satisfies $h(\mathbf{0})=\mathbf{0}$, but h is nevertheless not linear.
- Let us consider some geometric properties of linear functions from \mathbb{R}^{m} to \mathbb{R}^{n}.
- Let us consider some geometric properties of linear functions from \mathbb{R}^{m} to \mathbb{R}^{n}.
- Suppose that $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a linear function.
- Let us consider some geometric properties of linear functions from \mathbb{R}^{m} to \mathbb{R}^{n}.
- Suppose that $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a linear function.
- It turns out that the image of any line in \mathbb{R}^{m} under f is either a line in \mathbb{R}^{n} or a point in \mathbb{R}^{n} (technically, a set that contains only one point/vector of \mathbb{R}^{n}; we can think of such one-point sets as "degenerate lines").
- This is one of the reasons why linear functions are called linear.
- Let us consider some geometric properties of linear functions from \mathbb{R}^{m} to \mathbb{R}^{n}.
- Suppose that $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a linear function.
- It turns out that the image of any line in \mathbb{R}^{m} under f is either a line in \mathbb{R}^{n} or a point in \mathbb{R}^{n} (technically, a set that contains only one point/vector of \mathbb{R}^{n}; we can think of such one-point sets as "degenerate lines").
- This is one of the reasons why linear functions are called linear.
- Let us give a formal proof.

- Lines through the origin in \mathbb{R}^{m} are simply sets of the form

$$
\operatorname{Span}(\mathbf{a})=\{\alpha \mathbf{a} \mid \alpha \in \mathbb{R}\},
$$

where \mathbf{a} is a non-zero vector in \mathbb{R}^{m}.

- Lines through the origin in \mathbb{R}^{m} are simply sets of the form

$$
\operatorname{Span}(\mathbf{a})=\{\alpha \mathbf{a} \mid \alpha \in \mathbb{R}\},
$$

where \mathbf{a} is a non-zero vector in \mathbb{R}^{m}.

- Any line in \mathbb{R}^{m} is obtained by shifting a line through the origin by some vector $\mathbf{b} \in \mathbb{R}^{m}$ (if $\mathbf{b}=\mathbf{0}$, then our line still passes though the origin).

- Lines through the origin in \mathbb{R}^{m} are simply sets of the form

$$
\operatorname{Span}(\mathbf{a})=\{\alpha \mathbf{a} \mid \alpha \in \mathbb{R}\},
$$

where \mathbf{a} is a non-zero vector in \mathbb{R}^{m}.

- Any line in \mathbb{R}^{m} is obtained by shifting a line through the origin by some vector $\mathbf{b} \in \mathbb{R}^{m}$ (if $\mathbf{b}=\mathbf{0}$, then our line still passes though the origin).
- So, consider some line

$$
L:=\mathbf{b}+\operatorname{Span}(\mathbf{a})=\{\mathbf{b}+\alpha \mathbf{a} \mid \alpha \in \mathbb{R}\},
$$

where $\mathbf{a} \neq \mathbf{0}$ and \mathbf{b} are fixed vectors in \mathbb{R}^{m}.

- For any point $\mathbf{b}+\alpha \mathbf{a}(\alpha \in \mathbb{R})$ on the line L, we have that

$$
f(\mathbf{b}+\alpha \mathbf{a}) \stackrel{(*)}{=} f(\mathbf{b})+f(\alpha \mathbf{a}) \stackrel{(* *)}{=} f(\mathbf{b})+\alpha f(\mathbf{a})
$$

where both $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ follow from the linearity of f, but in $\left(^{*}\right)$ we used axiom 1 from the definition of a linear function, and in $\left({ }^{* *}\right)$ we used axiom 2.

- For any point $\mathbf{b}+\alpha \mathbf{a}(\alpha \in \mathbb{R})$ on the line L, we have that

$$
f(\mathbf{b}+\alpha \mathbf{a}) \stackrel{(*)}{=} f(\mathbf{b})+f(\alpha \mathbf{a}) \stackrel{(* *)}{=} f(\mathbf{b})+\alpha f(\mathbf{a})
$$

where both $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ follow from the linearity of f, but in $\left(^{*}\right)$ we used axiom 1 from the definition of a linear function, and in $\left({ }^{* *}\right)$ we used axiom 2.

- So, the image of our line L under f, denoted by $f[L]$, is

$$
f[L]=\{f(\mathbf{b})+\alpha f(\mathbf{a}) \mid \alpha \in \mathbb{R}\}=f(\mathbf{b})+\operatorname{Span}(f(\mathbf{a})) .
$$

- Reminder:

$$
f[L]=\{f(\mathbf{b})+\alpha f(\mathbf{a}) \mid \alpha \in \mathbb{R}\}=f(\mathbf{b})+\operatorname{Span}(f(\mathbf{a})) .
$$

- Reminder:

$$
f[L]=\{f(\mathbf{b})+\alpha f(\mathbf{a}) \mid \alpha \in \mathbb{R}\}=f(\mathbf{b})+\operatorname{Span}(f(\mathbf{a})) .
$$

- If $f(\mathbf{a}) \neq \mathbf{0}$, then $f[L]$ is a line in \mathbb{R}^{n}.

- Reminder:

$$
f[L]=\{f(\mathbf{b})+\alpha f(\mathbf{a}) \mid \alpha \in \mathbb{R}\}=f(\mathbf{b})+\operatorname{Span}(f(\mathbf{a})) .
$$

- If $f(\mathbf{a}) \neq \mathbf{0}$, then $f[L]$ is a line in \mathbb{R}^{n}.
- On the other hand, if $f(\mathbf{a})=\mathbf{0}$, then $f[L]=\{f(\mathbf{b})\}$, which is a one-point subset ("degenerate line") of \mathbb{R}^{n}.

- Linear functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ map line segments onto line segments (possibly degenerate ones, i.e. those that contain only one point).
- The proof is similar to the above and is left as an exercise.
- We note, however, that not all functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ that map lines to lines (or points) are linear.
- We note, however, that not all functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ that map lines to lines (or points) are linear.
- An obvious example might be a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $f(\mathbf{x})=\mathbf{x}+\mathbf{b}$ for all $\mathbf{x} \in \mathbb{R}^{n}$, where \mathbf{b} is a fixed non-zero vector in \mathbb{R}^{n}.
- This function is not linear because $f(\mathbf{0}) \neq \mathbf{0}$, and we know (by Proposition 1.10.3) that all linear functions map $\mathbf{0}$ to $\mathbf{0}$.
- We note, however, that not all functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ that map lines to lines (or points) are linear.
- An obvious example might be a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $f(\mathbf{x})=\mathbf{x}+\mathbf{b}$ for all $\mathbf{x} \in \mathbb{R}^{n}$, where \mathbf{b} is a fixed non-zero vector in \mathbb{R}^{n}.
- This function is not linear because $f(\mathbf{0}) \neq \mathbf{0}$, and we know (by Proposition 1.10.3) that all linear functions map $\mathbf{0}$ to $\mathbf{0}$.
- However, even if a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ maps lines to lines (or points) and maps $\mathbf{0}$ to $\mathbf{0}$, it might still fail to be linear.
- For example, consider the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
g\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}^{3} \\
0
\end{array}\right] \quad \text { for all } x_{1}, x_{2} \in \mathbb{R}
$$

- For example, consider the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
g\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}^{3} \\
0
\end{array}\right] \quad \text { for all } x_{1}, x_{2} \in \mathbb{R}
$$

- This function is not linear, although it does map all lines onto either lines or points, and it does map $\mathbf{0}$ to $\mathbf{0}$.
- For example, consider the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
g\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}^{3} \\
0
\end{array}\right] \quad \text { for all } x_{1}, x_{2} \in \mathbb{R}
$$

- This function is not linear, although it does map all lines onto either lines or points, and it does map $\mathbf{0}$ to $\mathbf{0}$.
- In particular, g maps any non-vertical line in \mathbb{R}^{2} onto the x_{1}-axis, and it maps any vertical line onto a one-point set.

Proposition 1.10.4

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ by setting $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$. Then f is a linear function.

Proof.

Proposition 1.10.4

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ by setting $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$. Then f is a linear function.

Proof. By Corollary 1.7.6, the following hold:
(1) for all vectors $\mathbf{u}, \mathbf{v} \in \mathbb{F}^{m}$, we have $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$;
(1) for all vectors $\mathbf{u} \in \mathbb{F}^{m}$ and scalars $\alpha \in \mathbb{F}$, we have that $A(\alpha \mathbf{u})=\alpha(A \mathbf{u})$.

Proposition 1.10.4

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ by setting $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$. Then f is a linear function.

Proof. By Corollary 1.7.6, the following hold:
(1) for all vectors $\mathbf{u}, \mathbf{v} \in \mathbb{F}^{m}$, we have $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$;
(1) for all vectors $\mathbf{u} \in \mathbb{F}^{m}$ and scalars $\alpha \in \mathbb{F}$, we have that

$$
A(\alpha \mathbf{u})=\alpha(A \mathbf{u})
$$

But now we have the following:
(1) for all vectors $\mathbf{u}, \mathbf{v} \in \mathbb{F}^{m}$, we have that

$$
f(\mathbf{u}+\mathbf{v})=A(\mathbf{u}+\mathbf{v}) \stackrel{(i)}{=} A \mathbf{u}+A \mathbf{v}=f(\mathbf{u})+f(\mathbf{v}) ;
$$

(2) for all vectors $\mathbf{u} \in \mathbb{F}^{m}$ and scalars $\alpha \in \mathbb{F}$, we have that

$$
f(\alpha \mathbf{u})=A(\alpha \mathbf{u}) \stackrel{(i i)}{=} \alpha(A \mathbf{u})=\alpha f(\mathbf{u})
$$

So, f is linear.

Proposition 1.10.4

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ by setting $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$. Then f is a linear function.

- Mappings of the form $\mathbf{x} \mapsto A \mathbf{x}$, where A is some matrix, are sometimes called matrix transformations.

Proposition 1.10.4

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ by setting $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$. Then f is a linear function.

- Mappings of the form $\mathbf{x} \mapsto A \mathbf{x}$, where A is some matrix, are sometimes called matrix transformations.
- By Proposition 1.10.4, all matrix transformations are linear. Let us try to describe matrix transformations in a bit more detail.

Proposition 1.10.4

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ by setting $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$. Then f is a linear function.

- Mappings of the form $\mathbf{x} \mapsto A \mathbf{x}$, where A is some matrix, are sometimes called matrix transformations.
- By Proposition 1.10.4, all matrix transformations are linear. Let us try to describe matrix transformations in a bit more detail.
- Suppose we are given a matrix $A=\left[a_{i, j}\right]_{n \times m}$ in $\mathbb{F}^{n \times m}$ (where \mathbb{F} is some field), and define the function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ by setting $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$.

Proposition 1.10.4

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ by setting $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$. Then f is a linear function.

- Mappings of the form $\mathbf{x} \mapsto A \mathbf{x}$, where A is some matrix, are sometimes called matrix transformations.
- By Proposition 1.10.4, all matrix transformations are linear. Let us try to describe matrix transformations in a bit more detail.
- Suppose we are given a matrix $A=\left[a_{i, j}\right]_{n \times m}$ in $\mathbb{F}^{n \times m}$ (where \mathbb{F} is some field), and define the function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ by setting $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$.
- But now for all vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{m}\end{array}\right]^{T}$ in \mathbb{F}^{m}, we have the following (next slide):

$$
\begin{aligned}
f(\mathbf{x})=A \mathbf{x} & =\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, m} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, m}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right] \\
& =\left[\begin{array}{c}
a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots+a_{1, m} x_{m} \\
a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots+a_{2, m} x_{m} \\
\vdots \\
a_{n, 1} x_{1}+a_{n, 2} x_{2}+\cdots+a_{n, m} x_{m}
\end{array}\right] .
\end{aligned}
$$

$$
\begin{aligned}
f(\mathbf{x})=A \mathbf{x} & =\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, m} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, m}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right] \\
& =\left[\begin{array}{c}
a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots+a_{1, m} x_{m} \\
a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots+a_{2, m} x_{m} \\
\vdots \\
a_{n, 1} x_{1}+a_{n, 2} x_{2}+\cdots+a_{n, m} x_{m}
\end{array}\right] .
\end{aligned}
$$

- So, our matrix transformation maps each vector $\mathbf{x} \in \mathbb{F}^{m}$ to a vector in \mathbb{F}^{n}, each of whose entries is a linear combination of the entries of \mathbf{x}, and the scalars/weights are determined by the corresponding row of the matrix A.

Proposition 1.10.4

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ by setting $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$. Then f is a linear function.

- By Proposition 1.10.4, every matrix transformation is a linear function.

Proposition 1.10.4

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ by setting $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$. Then f is a linear function.

- By Proposition 1.10.4, every matrix transformation is a linear function.
- Interestingly, a converse of sorts also holds.

Proposition 1.10.4

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ by setting $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$. Then f is a linear function.

- By Proposition 1.10.4, every matrix transformation is a linear function.
- Interestingly, a converse of sorts also holds.

Theorem 1.10.6

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then there exists a unique matrix A (called the standard matrix of f) such that for all $\mathbf{x} \in \mathbb{F}^{m}$, we have that $f(\mathbf{x})=A \mathbf{x}$. Moreover, the standard matrix A of f is given by

$$
A=\left[\begin{array}{lll}
f\left(\mathbf{e}_{1}\right) & \ldots & f\left(\mathbf{e}_{m}\right)
\end{array}\right],
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}.

Proposition 1.10.4

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times m}$ be a matrix, and define $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ by setting $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$. Then f is a linear function.

- By Proposition 1.10.4, every matrix transformation is a linear function.
- Interestingly, a converse of sorts also holds.

Theorem 1.10.6

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then there exists a unique matrix A (called the standard matrix of f) such that for all $\mathbf{x} \in \mathbb{F}^{m}$, we have that $f(\mathbf{x})=A \mathbf{x}$. Moreover, the standard matrix A of f is given by

$$
A=\left[\begin{array}{lll}
f\left(\mathbf{e}_{1}\right) & \ldots & f\left(\mathbf{e}_{m}\right)
\end{array}\right],
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}.

- We begin with another important theorem, which readily implies Theorem 1.10.6.

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be any vectors in \mathbb{F}^{n}. Then there exists a unique linear function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}. Moreover, this linear function f is given by $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$, where $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$.

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be any vectors in \mathbb{F}^{n}. Then there exists a unique linear function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}. Moreover, this linear function f is given by $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$, where $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$.

- Remark: Theorem 1.10 .5 essentially states that we can fully determine a linear function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ (where \mathbb{F} is a field) by simply specifying what the standard basis vectors of \mathbb{F}^{m} get mapped to.
- Moreover, we can choose what the standard basis vectors get mapped to arbitrarily (i.e. we can map them to any vectors of \mathbb{F}^{n} that we like).

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be any vectors in \mathbb{F}^{n}. Then there exists a unique linear function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}. Moreover, this linear function f is given by $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$, where $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$.

Proof.

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be any vectors in \mathbb{F}^{n}. Then there exists a unique linear function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}. Moreover, this linear function f is given by $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$, where $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$.

Proof. Existence. Define $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ by setting $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$.

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be any vectors in \mathbb{F}^{n}. Then there exists a unique linear function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}. Moreover, this linear function f is given by $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$, where $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$.

Proof. Existence. Define $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ by setting $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$. Then f is a matrix transformation, and so by Proposition 1.10.4, it is linear.

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be any vectors in \mathbb{F}^{n}. Then there exists a unique linear function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}. Moreover, this linear function f is given by $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$, where $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$.

Proof. Existence. Define $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ by setting $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$. Then f is a matrix transformation, and so by Proposition 1.10.4, it is linear. Moreover, for all indices $i \in\{1, \ldots, m\}$, we have that

$$
f\left(\mathbf{e}_{i}\right)=A \mathbf{e}_{i}=\left[\begin{array}{lll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}
\end{array}\right] \stackrel{\mathbf{e}_{i} \stackrel{(*)}{=} \mathbf{a}_{i},}{ }
$$

where $\left(^{*}\right)$ follows from Proposition 1.4.4.

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be any vectors in \mathbb{F}^{n}. Then there exists a unique linear function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}. Moreover, this linear function f is given by $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$, where $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$.

Proof (continued).

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be any vectors in \mathbb{F}^{n}. Then there exists a unique linear function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}. Moreover, this linear function f is given by $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$, where $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$.

Proof (continued). Uniqueness. Suppose that $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ is any linear function that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$.

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be any vectors in \mathbb{F}^{n}. Then there exists a unique linear function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}. Moreover, this linear function f is given by $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$, where $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$.

Proof (continued). Uniqueness. Suppose that $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ is any linear function that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$. WTS $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$.

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be any vectors in \mathbb{F}^{n}. Then there exists a unique linear function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}. Moreover, this linear function f is given by $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$, where $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$.

Proof (continued). Uniqueness. Suppose that $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ is any linear function that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$. WTS $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$. Fix any vector $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{m}\end{array}\right]^{T}$ in \mathbb{F}^{m}.

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be any vectors in \mathbb{F}^{n}. Then there exists a unique linear function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}. Moreover, this linear function f is given by $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$, where $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$.

Proof (continued). Uniqueness. Suppose that $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ is any linear function that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$. WTS $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$. Fix any vector $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{m}\end{array}\right]^{T}$ in \mathbb{F}^{m}. Then we have that

$$
\mathbf{x}=x_{1} \mathbf{e}_{1}+\cdots+x_{m} \mathbf{e}_{m}
$$

and we compute (next slide):

Proof (continued). Reminder: $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$.

$$
\begin{aligned}
f(\mathbf{x}) & =f\left(x_{1} \mathbf{e}_{1}+\cdots+x_{m} \mathbf{e}_{m}\right) \\
& \stackrel{(*)}{=} x_{1} f\left(\mathbf{e}_{1}\right)+\cdots+x_{m} f\left(\mathbf{e}_{m}\right) \\
& \stackrel{(* *)}{=} x_{1} \mathbf{a}_{1}+\cdots+x_{m} \mathbf{a}_{m} \\
& \stackrel{(* *)}{=}\left[\begin{array}{lll}
\mathbf{a}_{1} & \cdots & \mathbf{a}_{m}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right] \\
& =A \mathbf{x},
\end{aligned}
$$

where f follows from the linearity of f (and more precisely, from Proposition 1.10.1), $\left(^{* *}\right)$ follows from the fact that $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$, and $\left({ }^{* * *}\right)$ follows from the definition of matrix-vector multiplication. \square

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be any vectors in \mathbb{F}^{n}. Then there exists a unique linear function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}. Moreover, this linear function f is given by $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$, where $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$.

Theorem 1.10.5

Let \mathbb{F} be a field, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be any vectors in \mathbb{F}^{n}. Then there exists a unique linear function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ that satisfies $f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}. Moreover, this linear function f is given by $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$, where $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$.

Theorem 1.10.6

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then there exists a unique matrix A (called the standard matrix of f) such that for all $\mathbf{x} \in \mathbb{F}^{m}$, we have that $f(\mathbf{x})=A \mathbf{x}$. Moreover, the standard matrix A of f is given by

$$
A=\left[\begin{array}{lll}
f\left(\mathbf{e}_{1}\right) & \ldots & f\left(\mathbf{e}_{m}\right)
\end{array}\right],
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}.

Theorem 1.10.6

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then there exists a unique matrix A (called the standard matrix of f) such that for all $\mathbf{x} \in \mathbb{F}^{m}$, we have that $f(\mathbf{x})=A \mathbf{x}$. Moreover, the standard matrix A of f is given by

$$
A=\left[\begin{array}{lll}
f\left(\mathbf{e}_{1}\right) & \ldots & f\left(\mathbf{e}_{m}\right)
\end{array}\right],
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}.
Proof.

Theorem 1.10.6

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then there exists a unique matrix A (called the standard matrix of f) such that for all $\mathbf{x} \in \mathbb{F}^{m}$, we have that $f(\mathbf{x})=A \mathbf{x}$. Moreover, the standard matrix A of f is given by

$$
A=\left[\begin{array}{lll}
f\left(\mathbf{e}_{1}\right) & \ldots & f\left(\mathbf{e}_{m}\right)
\end{array}\right],
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}.
Proof. Existence. Set $\mathbf{a}_{1}:=f\left(\mathbf{e}_{1}\right), \ldots, \mathbf{a}_{m}:=f\left(\mathbf{e}_{m}\right)$ and

$$
A:=\left[\begin{array}{lll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}
\end{array}\right]=\left[\begin{array}{lll}
f\left(\mathbf{e}_{1}\right) & \ldots & f\left(\mathbf{e}_{m}\right)
\end{array}\right] .
$$

Then by Theorem 1.10.5, we have that $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$.

Theorem 1.10.6

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then there exists a unique matrix A (called the standard matrix of f) such that for all $\mathbf{x} \in \mathbb{F}^{m}$, we have that $f(\mathbf{x})=A \mathbf{x}$. Moreover, the standard matrix A of f is given by

$$
A=\left[\begin{array}{lll}
f\left(\mathbf{e}_{1}\right) & \ldots & f\left(\mathbf{e}_{m}\right)
\end{array}\right],
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}.
Proof. Existence. Set $\mathbf{a}_{1}:=f\left(\mathbf{e}_{1}\right), \ldots, \mathbf{a}_{m}:=f\left(\mathbf{e}_{m}\right)$ and

$$
A:=\left[\begin{array}{lll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}
\end{array}\right]=\left[\begin{array}{lll}
f\left(\mathbf{e}_{1}\right) & \ldots & f\left(\mathbf{e}_{m}\right)
\end{array}\right] .
$$

Then by Theorem 1.10.5, we have that $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$.

- Indeed, $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ is a linear function that satisfies

$$
f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}
$$

Theorem 1.10.6

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then there exists a unique matrix A (called the standard matrix of f) such that for all $\mathbf{x} \in \mathbb{F}^{m}$, we have that $f(\mathbf{x})=A \mathbf{x}$. Moreover, the standard matrix A of f is given by

$$
A=\left[\begin{array}{lll}
f\left(\mathbf{e}_{1}\right) & \ldots & f\left(\mathbf{e}_{m}\right)
\end{array}\right],
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}.
Proof. Existence. Set $\mathbf{a}_{1}:=f\left(\mathbf{e}_{1}\right), \ldots, \mathbf{a}_{m}:=f\left(\mathbf{e}_{m}\right)$ and

$$
A:=\left[\begin{array}{lll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}
\end{array}\right]=\left[\begin{array}{lll}
f\left(\mathbf{e}_{1}\right) & \ldots & f\left(\mathbf{e}_{m}\right)
\end{array}\right] .
$$

Then by Theorem 1.10.5, we have that $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$.

- Indeed, $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ is a linear function that satisfies

$$
f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}
$$

- So, by Theorem 1.10.5, we have that $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$.

Theorem 1.10.6

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then there exists a unique matrix A (called the standard matrix of f) such that for all $\mathbf{x} \in \mathbb{F}^{m}$, we have that $f(\mathbf{x})=A \mathbf{x}$. Moreover, the standard matrix A of f is given by

$$
A=\left[\begin{array}{lll}
f\left(\mathbf{e}_{1}\right) & \ldots & f\left(\mathbf{e}_{m}\right)
\end{array}\right],
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}.
Proof. Existence. Set $\mathbf{a}_{1}:=f\left(\mathbf{e}_{1}\right), \ldots, \mathbf{a}_{m}:=f\left(\mathbf{e}_{m}\right)$ and

$$
A:=\left[\begin{array}{lll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}
\end{array}\right]=\left[\begin{array}{lll}
f\left(\mathbf{e}_{1}\right) & \ldots & f\left(\mathbf{e}_{m}\right)
\end{array}\right] .
$$

Then by Theorem 1.10.5, we have that $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$.

- Indeed, $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ is a linear function that satisfies

$$
f\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, \ldots, f\left(\mathbf{e}_{m}\right)=\mathbf{a}_{m}
$$

- So, by Theorem 1.10 .5 , we have that $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$.
This proves existence.

Theorem 1.10.6

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then there exists a unique matrix A (called the standard matrix of f) such that for all $\mathbf{x} \in \mathbb{F}^{m}$, we have that $f(\mathbf{x})=A \mathbf{x}$. Moreover, the standard matrix A of f is given by

$$
A=\left[\begin{array}{lll}
f\left(\mathbf{e}_{1}\right) & \ldots & f\left(\mathbf{e}_{m}\right)
\end{array}\right],
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}.
Proof (continued). Uniqueness.

Theorem 1.10.6

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then there exists a unique matrix A (called the standard matrix of f) such that for all $\mathbf{x} \in \mathbb{F}^{m}$, we have that $f(\mathbf{x})=A \mathbf{x}$. Moreover, the standard matrix A of f is given by

$$
A=\left[\begin{array}{lll}
f\left(\mathbf{e}_{1}\right) & \ldots & f\left(\mathbf{e}_{m}\right)
\end{array}\right],
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}.
Proof (continued). Uniqueness. Let $B=\left[\begin{array}{lll}\mathbf{b}_{1} & \ldots & \mathbf{b}_{m}\end{array}\right]$ be any matrix in $\mathbb{F}^{n \times m}$ such that $f(\mathbf{x})=B \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$.

Theorem 1.10.6

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then there exists a unique matrix A (called the standard matrix of f) such that for all $\mathbf{x} \in \mathbb{F}^{m}$, we have that $f(\mathbf{x})=A \mathbf{x}$. Moreover, the standard matrix A of f is given by

$$
A=\left[\begin{array}{lll}
f\left(\mathbf{e}_{1}\right) & \ldots & f\left(\mathbf{e}_{m}\right)
\end{array}\right],
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}.
Proof (continued). Uniqueness. Let $B=\left[\begin{array}{lll}\mathbf{b}_{1} & \ldots & \mathbf{b}_{m}\end{array}\right]$ be any matrix in $\mathbb{F}^{n \times m}$ such that $f(\mathbf{x})=B \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$. Then for all $i \in\{1, \ldots, m\}$, we have that

$$
f\left(\mathbf{e}_{i}\right)=B \mathbf{e}_{i} \stackrel{(*)}{=} \mathbf{b}_{i}
$$

where $\left(^{*}\right)$ follows from Proposition 1.4.4.

Theorem 1.10.6

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then there exists a unique matrix A (called the standard matrix of f) such that for all $\mathbf{x} \in \mathbb{F}^{m}$, we have that $f(\mathbf{x})=A \mathbf{x}$. Moreover, the standard matrix A of f is given by

$$
A=\left[\begin{array}{lll}
f\left(\mathbf{e}_{1}\right) & \ldots & f\left(\mathbf{e}_{m}\right)
\end{array}\right],
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}.
Proof (continued). Uniqueness. Let $B=\left[\begin{array}{lll}\mathbf{b}_{1} & \ldots & \mathbf{b}_{m}\end{array}\right]$ be any matrix in $\mathbb{F}^{n \times m}$ such that $f(\mathbf{x})=B \mathbf{x}$ for all $\mathbf{x} \in \mathbb{F}^{m}$. Then for all $i \in\{1, \ldots, m\}$, we have that

$$
f\left(\mathbf{e}_{i}\right)=B \mathbf{e}_{i} \stackrel{(*)}{=} \mathbf{b}_{i}
$$

where $\left(^{*}\right)$ follows from Proposition 1.4.4. Consequently,

$$
B=\left[\begin{array}{lll}
\mathbf{b}_{1} & \ldots & \mathbf{b}_{m}
\end{array}\right]=\left[\begin{array}{lll}
f\left(\mathbf{e}_{1}\right) & \ldots & f\left(\mathbf{e}_{m}\right)
\end{array}\right] .
$$

This proves uniqueness.

Example 1.10.7

Find the standard matrix of the linear function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by

$$
f\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}-x_{2}+x_{3} \\
x_{1}+x_{2}
\end{array}\right]
$$

for all $x_{1}, x_{2}, x_{3} \in \mathbb{R}$. (The fact that f is linear was proven in the solution of Example 1.10.2(a).)

Solution.

Example 1.10.7

Find the standard matrix of the linear function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by

$$
f\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}-x_{2}+x_{3} \\
x_{1}+x_{2}
\end{array}\right]
$$

for all $x_{1}, x_{2}, x_{3} \in \mathbb{R}$. (The fact that f is linear was proven in the solution of Example 1.10.2(a).)

Solution. The standard matrix of f is

$$
A:=\left[\begin{array}{lll}
f\left(\mathbf{e}_{1}\right) & f\left(\mathbf{e}_{2}\right) & f\left(\mathbf{e}_{3}\right)
\end{array}\right]=\left[\begin{array}{rrr}
1 & -1 & 1 \\
1 & 1 & 0
\end{array}\right] .
$$

- For any set X, the identity function on X is the function $\operatorname{ld}_{X}: X \rightarrow X$ given by $\operatorname{ld}_{X}(x)=x$ for all $x \in X$.
- For any set X, the identity function on X is the function $\operatorname{ld}_{X}: X \rightarrow X$ given by $\operatorname{ld}_{X}(x)=x$ for all $x \in X$.

Proposition 1.10.8

Let \mathbb{F} be a field. Then the identity function $\operatorname{ld}_{\mathbb{F}^{n}}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is linear, and its standard matrix is the identity matrix I_{n}.

Proof.

- For any set X, the identity function on X is the function $\mathrm{Id}_{X}: X \rightarrow X$ given by $\operatorname{ld}_{X}(x)=x$ for all $x \in X$.

Proposition 1.10.8

Let \mathbb{F} be a field. Then the identity function $\mathrm{Id}_{\mathbb{F}^{n}}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is linear, and its standard matrix is the identity matrix I_{n}.

Proof. Obviously, the identity function $\mathrm{Id}_{\mathbb{F}^{n}}$ satisfies the two axioms from the definition of a linear function, and by Theorem 1.10.6, its standard matrix is

$$
\left[\begin{array}{lll}
\operatorname{ld}_{\mathbb{F}^{n}}\left(\mathbf{e}_{1}\right) & \ldots & \operatorname{ld}_{\mathbb{F}^{n}}\left(\mathbf{e}_{n}\right)
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{e}_{1} & \ldots & \mathbf{e}_{n}
\end{array}\right]=I_{n}
$$

- For any set X, the identity function on X is the function $\operatorname{ld}_{X}: X \rightarrow X$ given by $\operatorname{ld}_{X}(x)=x$ for all $x \in X$.

Proposition 1.10.8

Let \mathbb{F} be a field. Then the identity function $\operatorname{ld}_{\mathbb{F}^{n}}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is linear, and its standard matrix is the identity matrix I_{n}.

Proof. Obviously, the identity function $\mathrm{Id}_{\mathbb{F}^{n}}$ satisfies the two axioms from the definition of a linear function, and by
Theorem 1.10.6, its standard matrix is

$$
\left[\begin{array}{lll}
\operatorname{Id}_{\mathbb{F}^{n}}\left(\mathbf{e}_{1}\right) & \ldots & \operatorname{Id}_{\mathbb{P}^{n}}\left(\mathbf{e}_{n}\right)
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{e}_{1} & \ldots & \mathbf{e}_{n}
\end{array}\right]=I_{n} .
$$

Alternatively, we observe that for any vector $\mathbf{x} \in \mathbb{F}^{n}$, we have that

$$
\operatorname{ld}_{\mathbb{F}^{n}}(\mathbf{x}) \stackrel{(*)}{=} \mathbf{x} \stackrel{(* *)}{=} I_{n} \mathbf{x},
$$

where $\left(^{*}\right)$ follows from the definition of the identity function, and $\left({ }^{* *}\right)$ follows from Proposition 1.4.5.

- For any set X, the identity function on X is the function $\operatorname{ld}_{X}: X \rightarrow X$ given by $\operatorname{ld}_{X}(x)=x$ for all $x \in X$.

Proposition 1.10.8

Let \mathbb{F} be a field. Then the identity function $\operatorname{ld}_{\mathbb{F}^{n}}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is linear, and its standard matrix is the identity matrix I_{n}.

Proof. Obviously, the identity function $\operatorname{ld}_{\mathbb{F}^{n}}$ satisfies the two axioms from the definition of a linear function, and by
Theorem 1.10.6, its standard matrix is

$$
\left[\begin{array}{lll}
\operatorname{ld}_{\mathbb{F}^{n}}\left(\mathbf{e}_{1}\right) & \ldots & \operatorname{ld}_{\mathbb{F}^{n}}\left(\mathbf{e}_{n}\right)
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{e}_{1} & \ldots & \mathbf{e}_{n}
\end{array}\right]=I_{n}
$$

Alternatively, we observe that for any vector $\mathbf{x} \in \mathbb{F}^{n}$, we have that

$$
\operatorname{ld}_{\mathbb{F}^{n}}(\mathbf{x}) \stackrel{(*)}{=} \mathbf{x} \stackrel{(* *)}{=} I_{n} \mathbf{x},
$$

where $\left(^{*}\right)$ follows from the definition of the identity function, and $(* *)$ follows from Proposition 1.4.5. So, $\mathrm{Id}_{\mathbb{F}^{n}}$ is a matrix transformation and is therefore linear (by Proposition 1.10.4), and its standard matrix is I_{n}. \square

- Let us now consider some geometric examples (with pretty pictures).
- Let us now consider some geometric examples (with pretty pictures).
- In particular, we consider a few special linear functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
- Let us now consider some geometric examples (with pretty pictures).
- In particular, we consider a few special linear functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
- We will not formally prove that these functions are all linear.
- Let us now consider some geometric examples (with pretty pictures).
- In particular, we consider a few special linear functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
- We will not formally prove that these functions are all linear.
- To convince yourself that they are linear, think about what happens geometrically to sums and scalar multiples of vectors under these functions.
- Rotation. The function $r_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that rotates each vector about the origin counterclockwise by the angle θ (see the picture below) is linear, and its standard matrix is

$$
\left[\begin{array}{ll}
r_{\theta}\left(\mathbf{e}_{1}\right) & r_{\theta}\left(\mathbf{e}_{2}\right)
\end{array}\right]=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

- Rotation. The function $r_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that rotates each vector about the origin counterclockwise by the angle θ (see the picture below) is linear, and its standard matrix is

$$
\left[\begin{array}{ll}
r_{\theta}\left(\mathbf{e}_{1}\right) & r_{\theta}\left(\mathbf{e}_{2}\right)
\end{array}\right]=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Note that rotating by the angle θ clockwise is the same as rotating by the angle $-\theta$ counterclockwise (which is why it is enough to consider only counterclockwise rotation, as long as we allow negative angles as well).

- Orthogonal projection. Given a line L in \mathbb{R}^{2} that passes through the origin, the orthogonal projection $\operatorname{proj}_{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ onto L (see the picture below) is linear.

- Orthogonal projection. Given a line L in \mathbb{R}^{2} that passes through the origin, the orthogonal projection $\operatorname{proj}_{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ onto L (see the picture below) is linear.

- We cannot yet compute the standard matrix of orthogonal projection onto an arbitrary line through the origin; we will be able to do so only after we have developed a lot more theory.
- Orthogonal projection. Given a line L in \mathbb{R}^{2} that passes through the origin, the orthogonal projection $\operatorname{proj}_{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ onto L (see the picture below) is linear.

- We cannot yet compute the standard matrix of orthogonal projection onto an arbitrary line through the origin; we will be able to do so only after we have developed a lot more theory.
- However, we can already compute this matrix in some special cases.

- Orthogonal projection.

- Consider the projection $\operatorname{proj}_{x_{1}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ onto the x_{1}-axis and the projection $\operatorname{proj}_{x_{2}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ onto the x_{2}-axis.

- Orthogonal projection.

- Consider the projection $\operatorname{proj}_{x_{1}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ onto the x_{1}-axis and the projection $\operatorname{proj}_{x_{2}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ onto the x_{2}-axis.

- Note that for a vector $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$ in \mathbb{R}^{2}, we have

$$
\operatorname{proj}_{x_{1}}(\mathbf{u})=\left[\begin{array}{c}
u_{1} \\
0
\end{array}\right] \text { and } \operatorname{proj}_{x_{2}}(\mathbf{u})=\left[\begin{array}{c}
0 \\
u_{2}
\end{array}\right] .
$$

- The standard matrix of $\operatorname{proj}_{x_{1}}$ is

$$
\left[\operatorname{proj}_{x_{1}}\left(\mathbf{e}_{1}\right) \operatorname{proj}_{x_{1}}\left(\mathbf{e}_{2}\right)\right]=\left[\begin{array}{ll}
\mathbf{e}_{1} & \mathbf{0}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

and the standard matrix of $\operatorname{proj}_{x_{2}}$ is

$$
\left[\begin{array}{ll}
\operatorname{proj}_{x_{2}}\left(\mathbf{e}_{1}\right) & \left.\operatorname{proj}_{x_{2}}\left(\mathbf{e}_{2}\right)\right]=\left[\begin{array}{ll}
\mathbf{0} & \mathbf{e}_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] . . ~ . ~
\end{array}\right. \text {. }
$$

- Reflection. Given a line L in \mathbb{R}^{2} that passes through the origin, the reflection $\operatorname{ref}_{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ about the line L is linear.

- Reflection. Given a line L in \mathbb{R}^{2} that passes through the origin, the reflection $\operatorname{ref}_{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ about the line L is linear.

- As in the case of orthogonal projections, we cannot yet compute the standard matrix of the reflection about an arbitrary line through the origin; we will only be able to do so once we have developed a lot more theory.
- Reflection. Given a line L in \mathbb{R}^{2} that passes through the origin, the reflection $\operatorname{ref}_{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ about the line L is linear.

- As in the case of orthogonal projections, we cannot yet compute the standard matrix of the reflection about an arbitrary line through the origin; we will only be able to do so once we have developed a lot more theory.
- However, we can already compute this matrix in some special cases.

- Reflection.

- Consider the reflection ref $_{x_{1}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ about the x_{1}-axis and the reflection $\operatorname{ref}_{x_{2}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ about the x_{2}-axis.

- Reflection.

- Consider the reflection $\operatorname{ref}_{x_{1}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ about the x_{1}-axis and the reflection $\operatorname{ref}_{x_{2}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ about the x_{2}-axis.

- Note that for a vector $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$ in \mathbb{R}^{2}, we have

$$
\operatorname{ref}_{x_{1}}(\mathbf{u})=\left[\begin{array}{r}
u_{1} \\
-u_{2}
\end{array}\right] \text { and } \operatorname{ref}_{x_{2}}(\mathbf{u})=\left[\begin{array}{r}
-u_{1} \\
u_{2}
\end{array}\right] .
$$

- The standard matrix of $\operatorname{ref}_{x_{1}}$ is

$$
\left[\begin{array}{ll}
\operatorname{ref}_{x_{1}}\left(\mathbf{e}_{1}\right) & \operatorname{ref}_{x_{1}}\left(\mathbf{e}_{2}\right)
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{e}_{1} & -\mathbf{e}_{2}
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

and the standard matrix of $\operatorname{ref}_{x_{2}}$ is

$$
\left[\begin{array}{ll}
\operatorname{ref}_{x_{2}}\left(\mathbf{e}_{1}\right) & \left.\operatorname{ref}_{x_{2}}\left(\mathbf{e}_{2}\right)\right]=\left[\begin{array}{ll}
-\mathbf{e}_{1} & \mathbf{e}_{2}
\end{array}\right]=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right] ~
\end{array}\right.
$$

- Scaling. Given a scalar $\alpha \in \mathbb{R}$, the function that scales each vector in \mathbb{R}^{2} by α (see the picture below) is linear.

- Scaling. Given a scalar $\alpha \in \mathbb{R}$, the function that scales each vector in \mathbb{R}^{2} by α (see the picture below) is linear.

- The standard matrix of this linear function is

$$
\left[\begin{array}{ll}
\alpha \mathbf{e}_{1} & \alpha \mathbf{e}_{2}
\end{array}\right]=\left[\begin{array}{cc}
\alpha & 0 \\
0 & \alpha
\end{array}\right] .
$$

- Scaling. Given a scalar $\alpha \in \mathbb{R}$, the function that scales each vector in \mathbb{R}^{2} by α (see the picture below) is linear.

- The standard matrix of this linear function is

$$
\left[\begin{array}{ll}
\alpha \mathbf{e}_{1} & \alpha \mathbf{e}_{2}
\end{array}\right]=\left[\begin{array}{cc}
\alpha & 0 \\
0 & \alpha
\end{array}\right] .
$$

- If $\alpha=0$, then scaling by α is the same as mapping each vector to the origin.
- Horizontal Shear. A horizontal shear in \mathbb{R}^{2} is a mapping from \mathbb{R}^{2} to \mathbb{R}^{2} given by the formula

$$
\mathbf{u} \mapsto\left[\begin{array}{cc}
1 & k \\
0 & 1
\end{array}\right] \mathbf{u}
$$

i.e. by the formula

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \mapsto\left[\begin{array}{c}
u_{1}+k u_{2} \\
u_{2}
\end{array}\right],
$$

where k is a fixed real constant.

- Horizontal Shear. A horizontal shear in \mathbb{R}^{2} is a mapping from \mathbb{R}^{2} to \mathbb{R}^{2} given by the formula

$$
\mathbf{u} \mapsto\left[\begin{array}{cc}
1 & k \\
0 & 1
\end{array}\right] \mathbf{u}
$$

i.e. by the formula

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \mapsto\left[\begin{array}{c}
u_{1}+k u_{2} \\
u_{2}
\end{array}\right],
$$

where k is a fixed real constant.

- This mapping has the effect of horizontally tilting objects in the coordinate plane (while keeping the vertical component unchanged).
- Horizontal Shear. A horizontal shear in \mathbb{R}^{2} is a mapping from \mathbb{R}^{2} to \mathbb{R}^{2} given by the formula

$$
\mathbf{u} \mapsto\left[\begin{array}{cc}
1 & k \\
0 & 1
\end{array}\right] \mathbf{u}
$$

i.e. by the formula

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \mapsto\left[\begin{array}{c}
u_{1}+k u_{2} \\
u_{2}
\end{array}\right],
$$

where k is a fixed real constant.

- This mapping has the effect of horizontally tilting objects in the coordinate plane (while keeping the vertical component unchanged).
- This is illustrated on the next slide for the cases when $k=1$ and $k=-1$.
- Horizontal Shear. $\mathbf{u} \mapsto\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right] \mathbf{u}$

- Vertical Shear. A vertical shear in \mathbb{R}^{2} is a mapping from \mathbb{R}^{2} to \mathbb{R}^{2} given by the formula

$$
\mathbf{u} \mapsto\left[\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right] \mathbf{u}
$$

i.e. by the formula

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \mapsto\left[\begin{array}{c}
u_{1} \\
k u_{1}+u_{2}
\end{array}\right],
$$

where k is a fixed real constant.

- Vertical Shear. A vertical shear in \mathbb{R}^{2} is a mapping from \mathbb{R}^{2} to \mathbb{R}^{2} given by the formula

$$
\mathbf{u} \mapsto\left[\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right] \mathbf{u}
$$

i.e. by the formula

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \mapsto\left[\begin{array}{c}
u_{1} \\
k u_{1}+u_{2}
\end{array}\right],
$$

where k is a fixed real constant.

- This mapping has the effect of vertically tilting objects in the coordinate plane (while keeping the horizontal component unchanged).
- Vertical Shear. A vertical shear in \mathbb{R}^{2} is a mapping from \mathbb{R}^{2} to \mathbb{R}^{2} given by the formula

$$
\mathbf{u} \mapsto\left[\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right] \mathbf{u}
$$

i.e. by the formula

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \mapsto\left[\begin{array}{c}
u_{1} \\
k u_{1}+u_{2}
\end{array}\right],
$$

where k is a fixed real constant.

- This mapping has the effect of vertically tilting objects in the coordinate plane (while keeping the horizontal component unchanged).
- This is illustrated on the next slide for the cases when $k=1$ and $k=-1$.
- Vertical Shear. $\mathbf{u} \mapsto\left[\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right] \mathbf{u}$

- Given functions $f: A \rightarrow B$ and $g: B \rightarrow C$ (where A, B, and C are sets), we define the composition of functions g and f to be the function $g \circ f: A \rightarrow C$ given by

$$
(g \circ f)(a)=g(f(a))
$$

for all $a \in A$.

Proposition 1.10.1

Let \mathbb{F} be a field. Then all the following hold:
(0) for all linear functions $f, g: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$, the function $f+g$ is linear, and moreover, if A and B (both in $\mathbb{F}^{n \times m}$) are the standard matrices of f and g, respectively, then $A+B$ is the standard matrix of $f+g$;
(D) for all linear functions $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ and scalars $\alpha \in \mathbb{F}$, the function αf is linear, and moreover, if $A \in \mathbb{F}^{n \times m}$ is the standard matrix of f, then αA is the standard matrix of αf;
(c) for all linear functions $f: \mathbb{F}^{p} \rightarrow \mathbb{F}^{m}$ and $g: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$, the function $g \circ f$ is liner, and moreover, if $A \in \mathbb{F}^{m \times p}$ and $B \in \mathbb{F}^{n \times m}$ are the standard matrices of f and g, respectively, then $B A$ is the standard matrix of $g \circ f$.

Proof of (c).

Proof of (c). Fix linear functions $f: \mathbb{F}^{p} \rightarrow \mathbb{F}^{m}$ and $g: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$. Let $A \in \mathbb{F}^{m \times p}$ be the standard matrix of f, and let $B \in \mathbb{F}^{n \times m}$ be the standard matrix of g.

$$
\mathbb{F}^{p} \xrightarrow{f, A} \mathbb{F}^{m} \xrightarrow{g, B} \mathbb{F}^{n}
$$

Proof of (c). Fix linear functions $f: \mathbb{F}^{p} \rightarrow \mathbb{F}^{m}$ and $g: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$. Let $A \in \mathbb{F}^{m \times p}$ be the standard matrix of f, and let $B \in \mathbb{F}^{n \times m}$ be the standard matrix of g. Then for any $\mathbf{u} \in \mathbb{F}^{p}$, we have that

$$
(g \circ f)(\mathbf{u})=g(f(\mathbf{u})) \stackrel{(*)}{=} g(A \mathbf{u}) \stackrel{(* *)}{=} B(A \mathbf{u}) \stackrel{(* * *)}{=}(B A) \mathbf{u}
$$

where $\left(^{*}\right)$ follows from the fact that A is the standard matrix of f, ${ }^{(* *)}$ follows from the fact that B is the standard matrix of g, and $(* * *)$ follows from Corollary 1.7.6(g).

Proof of (c). Fix linear functions $f: \mathbb{F}^{p} \rightarrow \mathbb{F}^{m}$ and $g: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$. Let $A \in \mathbb{F}^{m \times p}$ be the standard matrix of f, and let $B \in \mathbb{F}^{n \times m}$ be the standard matrix of g. Then for any $\mathbf{u} \in \mathbb{F}^{p}$, we have that

$$
(g \circ f)(\mathbf{u})=g(f(\mathbf{u})) \stackrel{(*)}{=} g(A \mathbf{u}) \stackrel{(* *)}{=} B(A \mathbf{u}) \stackrel{(* * *)}{=}(B A) \mathbf{u}
$$

where $\left(^{*}\right)$ follows from the fact that A is the standard matrix of f, $\left.{ }^{* *}\right)$ follows from the fact that B is the standard matrix of g, and $(* * *)$ follows from Corollary 1.7.6(g). We have now shown that $g \circ f$ is a matrix transformation, and so (by Proposition 1.10.4) it is linear.

Proof of (c). Fix linear functions $f: \mathbb{F}^{p} \rightarrow \mathbb{F}^{m}$ and $g: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$. Let $A \in \mathbb{F}^{m \times p}$ be the standard matrix of f, and let $B \in \mathbb{F}^{n \times m}$ be the standard matrix of g. Then for any $\mathbf{u} \in \mathbb{F}^{p}$, we have that

$$
(g \circ f)(\mathbf{u})=g(f(\mathbf{u})) \stackrel{(*)}{=} g(A \mathbf{u}) \stackrel{(* *)}{=} B(A \mathbf{u}) \stackrel{(* * *)}{=}(B A) \mathbf{u}
$$

where $\left(^{*}\right)$ follows from the fact that A is the standard matrix of f, $\left.{ }^{* *}\right)$ follows from the fact that B is the standard matrix of g, and $(* * *)$ follows from Corollary 1.7.6(g). We have now shown that $g \circ f$ is a matrix transformation, and so (by Proposition 1.10.4) it is linear. Moreover, since (by the calculation above) we have that

$$
(g \circ f)(\mathbf{u})=(B A) \mathbf{u}
$$

for all vectors $\mathbf{u} \in \mathbb{F}^{p}$, we see that $B A$ is the standard matrix of $g \circ f . \square$

Example 1.10.14

(a) Find the standard matrix of the linear function $f_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that first reflects about the x_{1}-axis and then rotates about the origin counterclockwise by 90°.
(D) Find the standard matrix of the linear function $f_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that first rotates about the origin counterclockwise by 90° and then reflects about the x_{1}-axis.
You may assume that f_{1} and f_{2} are indeed linear.
Solution.

Example 1.10.14

(a) Find the standard matrix of the linear function $f_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that first reflects about the x_{1}-axis and then rotates about the origin counterclockwise by 90°.
(D) Find the standard matrix of the linear function $f_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that first rotates about the origin counterclockwise by 90° and then reflects about the x_{1}-axis.
You may assume that f_{1} and f_{2} are indeed linear.
Solution. First, we note that the standard matrix of $\operatorname{ref}_{x_{1}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, the reflection about the x_{1}-axis, is

$$
A=\left[\begin{array}{ll}
\operatorname{ref}_{x_{1}}\left(\mathbf{e}_{1}\right) & \operatorname{ref}_{x_{1}}\left(\mathbf{e}_{2}\right)
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{e}_{1} & -\mathbf{e}_{2}
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

whereas the standard matrix of $r_{90^{\circ}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, the counterclockwise rotation by 90° about the origin, is

$$
B=\left[\begin{array}{ll}
r_{90^{\circ}}\left(\mathbf{e}_{1}\right) & r_{90^{\circ}}\left(\mathbf{e}_{2}\right)
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{e}_{2} & -\mathbf{e}_{1}
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Example 1.10.14

(0) Find the standard matrix of the linear function $f_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that first reflects about the x_{1}-axis and then rotates about the origin counterclockwise by 90°.
(D) Find the standard matrix of the linear function $f_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that first rotates about the origin counterclockwise by 90° and then reflects about the x_{1}-axis.
You may assume that f_{1} and f_{2} are indeed linear.
Solution (continued). Note that $f_{1}=r_{90} \circ \circ \operatorname{ref}_{x_{1}}$ and $f_{2}=\operatorname{ref}_{x_{1}} \circ r_{90^{\circ}}$. So, by Proposition 1.10.13(c), the standard matrix of f_{1} is

$$
B A=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],
$$

whereas by the standard matrix of f_{2} is

$$
A B=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right] .
$$

- We now briefly review one-to-one (injective) functions, onto (surjective) functions, and bijections.
- We now briefly review one-to-one (injective) functions, onto (surjective) functions, and bijections.
- This material properly belongs to Discrete Math.
- We now briefly review one-to-one (injective) functions, onto (surjective) functions, and bijections.
- This material properly belongs to Discrete Math.
- Here, we state (without proof) the results that we need.
- However, all the proofs are in the Lecture Notes.
- We now briefly review one-to-one (injective) functions, onto (surjective) functions, and bijections.
- This material properly belongs to Discrete Math.
- Here, we state (without proof) the results that we need.
- However, all the proofs are in the Lecture Notes.

Definition

A function $f: A \rightarrow B$ is said to be

- one-to-one (or injective, or an injection) if for all $a_{1}, a_{2} \in A$ such that $a_{1} \neq a_{2}$, we have $f\left(a_{1}\right) \neq f\left(a_{2}\right)$; a
- onto (or surjective, or a surjection) if for all $b \in B$, there exists some $a \in A$ such that $f(a)=b$;
- bijective or a bijection if it is both one-to-one and onto.

[^0]
Proposition 1.10.15

Let $f: A \rightarrow B$ be a function. Then the following are equivalent:
(0) f is a bijection;
(b) there exists some function $g: B \rightarrow A$ such that $g \circ f=\mathrm{Id}_{A}$ and $f \circ g=\operatorname{ld}_{B}$.

Proposition 1.10.15

Let $f: A \rightarrow B$ be a function. Then the following are equivalent:
(0) f is a bijection;
(b) there exists some function $g: B \rightarrow A$ such that $g \circ f=\mathrm{Id}_{A}$ and $f \circ g=\operatorname{ld}_{B}$.

Proposition 1.10.16

Let $f: A \rightarrow B$ be a bijection. Then there exists a unique function $g: B \rightarrow A$ such that $g \circ f=\operatorname{ld}_{A}$ and $f \circ g=\operatorname{ld}_{B}$.

- Terminology/Notation: If $f: A \rightarrow B$ is a bijection, then the unique function $g: B \rightarrow A$ that satisfies $g \circ f=\operatorname{ld}_{A}$ and $f \circ g=\operatorname{ld}_{B}$ (i.e. the function g from Proposition 1.10.16) is called the inverse of f and is denoted by f^{-1}.

- Terminology/Notation: If $f: A \rightarrow B$ is a bijection, then the unique function $g: B \rightarrow A$ that satisfies $g \circ f=\mathrm{Id}_{A}$ and $f \circ g=\operatorname{ld}_{B}$ (i.e. the function g from Proposition 1.10.16) is called the inverse of f and is denoted by f^{-1}.
- Note that this means that:
- $f^{-1} \circ f=\mathrm{Id}_{A}$;
- $f \circ f^{-1}=\operatorname{ld}_{B}$;
- for all $a \in A$ and $b \in B$, we have that $b=f(a)$ iff $a=f^{-1}(b)$.

- Terminology/Notation: If $f: A \rightarrow B$ is a bijection, then the unique function $g: B \rightarrow A$ that satisfies $g \circ f=\operatorname{ld}_{A}$ and $f \circ g=\operatorname{ld}_{B}$ (i.e. the function g from Proposition 1.10.16) is called the inverse of f and is denoted by f^{-1}.
- Note that this means that:
- $f^{-1} \circ f=\mathrm{Id}_{A}$;
- $f \circ f^{-1}=\operatorname{ld}_{B}$;
- for all $a \in A$ and $b \in B$, we have that $b=f(a)$ iff $a=f^{-1}(b)$.
- Note that the inverse of a bijection is also a bijection (by Proposition 1.10.15), and moreover, $\left(f^{-1}\right)^{-1}=f$.

Proposition 1.10.17

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Then all the following hold:
(a) if f and g are one-to-one, then $g \circ f$ is also one-to-one;
(D) if f and g are onto, then $g \circ f$ is also onto;
(0) if f and g are bijections, then $g \circ f$ is also a bijection, and moreover, $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$ (see the diagram below).

$(g \circ f)^{-1}=f^{-1} \circ g^{-1}$

- Back to linear functions!
- Back to linear functions!
- As the following theorem shows, we can easily check whether a linear function is one-to-one or onto by computing the rank of its standard matrix.
- Back to linear functions!
- As the following theorem shows, we can easily check whether a linear function is one-to-one or onto by computing the rank of its standard matrix.

Theorem 1.10.18

Let \mathbb{F} be a field, let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function, and let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f. Then both the following hold:
(0) f is one-to-one iff $\operatorname{rank}(A)=m$ (i.e. A has full column rank);
(D) f is onto iff $\operatorname{rank}(A)=n$ (i.e. A has full row rank).
(a) f is one-to-one iff $\operatorname{rank}(A)=m$ (i.e. A has full column rank) Proof of (a).
(a) f is one-to-one iff $\operatorname{rank}(A)=m$ (i.e. A has full column rank)

Proof of (a). We have the following sequence of equivalent statements:
f is one-to-one $\stackrel{(*)}{\Longleftrightarrow} \quad \begin{aligned} & \text { for all } \mathbf{b} \in \mathbb{F}^{n}, f(\mathbf{x})=\mathbf{b} \\ & \text { has at most one solution }\end{aligned}$

$$
\begin{array}{ll}
\stackrel{(* *)}{\Longleftrightarrow} & \text { for all } \mathbf{b} \in \mathbb{F}^{n}, A \mathbf{x}=\mathbf{b} \\
& \text { has at most one solution },
\end{array}
$$

$$
\stackrel{(* * *)}{\Longleftrightarrow} \quad \operatorname{rank}(A)=m,
$$

where $\left(^{*}\right)$ follows from the definition of a one-to-one function, $\left({ }^{* *}\right)$ follows from the fact that A is the standard matrix of f, and (${ }^{* * *)}$ follows from Corollary 1.6.5. \square
(b) f is onto iff $\operatorname{rank}(A)=n$ (i.e. A has full row rank).

Proof of (b).
(b) f is onto iff $\operatorname{rank}(A)=n$ (i.e. A has full row rank).

Proof of (b). (b) We have the following sequence of equivalent statements:
f is onto $\quad \stackrel{(*)}{\Longleftrightarrow} \quad \begin{aligned} & \text { for all } \mathbf{b} \in \mathbb{F}^{n}, f(\mathbf{x})=\mathbf{b} \\ & \text { has at least one solution }\end{aligned}$

$$
\begin{array}{ll}
\stackrel{(* *)}{\Longleftrightarrow} & \begin{array}{l}
\text { for all } \mathbf{b} \in \mathbb{F}^{n}, A \mathbf{x}=\mathbf{b} \\
\text { has at least one solution } \\
\text { (i.e. } A \mathbf{x}=\mathbf{b} \text { is consistent) }
\end{array} \\
\stackrel{(* * *)}{\Longleftrightarrow} & \operatorname{rank}(A)=n,
\end{array}
$$

where $\left(^{*}\right)$ follows from the definition of an onto function, $\left({ }^{* *}\right)$ follows from the fact that A is the standard matrix of f, and (${ }^{* * *)}$ follows from Corollary 1.6.6. \square

Theorem 1.10.18

Let \mathbb{F} be a field, let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function, and let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f. Then both the following hold:
(2) f is one-to-one iff $\operatorname{rank}(A)=m$ (i.e. A has full column rank);
(D) f is onto iff $\operatorname{rank}(A)=n$ (i.e. A has full row rank).

Definition

Let \mathbb{F} be a field. A function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ is an isomorphism if it is both linear and a bijection.

Definition

Let \mathbb{F} be a field. A function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ is an isomorphism if it is both linear and a bijection.

Theorem 1.10.19

Let \mathbb{F} be a field, let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function, and let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f. Then the following are equivalent:
(a) f is an isomorphism;
(D) $\operatorname{rank}(A)=m=n$ (i.e. A is a square matrix of full rank).

Definition

Let \mathbb{F} be a field. A function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ is an isomorphism if it is both linear and a bijection.

Theorem 1.10.19

Let \mathbb{F} be a field, let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function, and let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f. Then the following are equivalent:
(a) f is an isomorphism;
(D) $\operatorname{rank}(A)=m=n$ (i.e. A is a square matrix of full rank).

- By Theorem 1.10.19, if we know the standard matrix of a linear function, then we can easily determine whether that linear function is an isomorphism.

Definition

Let \mathbb{F} be a field. A function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ is an isomorphism if it is both linear and a bijection.

Theorem 1.10.19

Let \mathbb{F} be a field, let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function, and let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f. Then the following are equivalent:
(a) f is an isomorphism;
(D) $\operatorname{rank}(A)=m=n$ (i.e. A is a square matrix of full rank).

- By Theorem 1.10.19, if we know the standard matrix of a linear function, then we can easily determine whether that linear function is an isomorphism.
- Moreover, Theorem 1.10.19 implies, in particular, that for a field \mathbb{F}, there can be no isomorphism from \mathbb{F}^{m} to \mathbb{F}^{n} for $m \neq n$.

Theorem 1.10.19

Let \mathbb{F} be a field, let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function, and let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f. Then the following are equivalent:
(a) f is an isomorphism;
(D) $\operatorname{rank}(A)=m=n$ (i.e. A is a square matrix of full rank).

Proof.

Theorem 1.10.19

Let \mathbb{F} be a field, let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function, and let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f. Then the following are equivalent:
(a) f is an isomorphism;
(D) $\operatorname{rank}(A)=m=n$ (i.e. A is a square matrix of full rank).

Proof. Suppose first that (a) holds. Since f is a one-to-one linear function, Theorem 1.10.18(a) guarantees that $\operatorname{rank}(A)=m$.

Theorem 1.10.19

Let \mathbb{F} be a field, let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function, and let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f. Then the following are equivalent:
(a) f is an isomorphism;
(D) $\operatorname{rank}(A)=m=n$ (i.e. A is a square matrix of full rank).

Proof. Suppose first that (a) holds. Since f is a one-to-one linear function, Theorem 1.10.18(a) guarantees that $\operatorname{rank}(A)=m$. On the other hand, since f is an onto linear function, Theorem 1.10.18(b) guarantees that $\operatorname{rank}(A)=n$.

Theorem 1.10.19

Let \mathbb{F} be a field, let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function, and let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f. Then the following are equivalent:
(a) f is an isomorphism;
(D) $\operatorname{rank}(A)=m=n$ (i.e. A is a square matrix of full rank).

Proof. Suppose first that (a) holds. Since f is a one-to-one linear function, Theorem 1.10.18(a) guarantees that $\operatorname{rank}(A)=m$. On the other hand, since f is an onto linear function, Theorem 1.10.18(b) guarantees that $\operatorname{rank}(A)=n$. But now $m=\operatorname{rank}(A)=n$, and (b) follows.

Theorem 1.10.19

Let \mathbb{F} be a field, let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function, and let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f. Then the following are equivalent:
(0) f is an isomorphism;
(D) $\operatorname{rank}(A)=m=n$ (i.e. A is a square matrix of full rank).

Proof. Suppose first that (a) holds. Since f is a one-to-one linear function, Theorem 1.10.18(a) guarantees that $\operatorname{rank}(A)=m$. On the other hand, since f is an onto linear function, Theorem 1.10.18(b) guarantees that $\operatorname{rank}(A)=n$. But now $m=\operatorname{rank}(A)=n$, and (b) follows.
Suppose now that (b) holds. Then by Theorem 1.10.18(a), f is one-to-one, and by Theorem 1.10.18(b), f is onto. So, f is a bijection. Since f is also linear (by hypothesis), we deduce that f is an isomorphism, i.e. (a) holds. \square

Theorem 1.10.18

Let \mathbb{F} be a field, let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function, and let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f. Then both the following hold:
(0) f is one-to-one iff $\operatorname{rank}(A)=m$ (i.e. A has full column rank);
(D) f is onto iff $\operatorname{rank}(A)=n$ (i.e. A has full row rank).

Theorem 1.10.19

Let \mathbb{F} be a field, let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function, and let $A \in \mathbb{F}^{n \times m}$ be the standard matrix of f. Then the following are equivalent:
(2) f is an isomorphism;
(D) $\operatorname{rank}(A)=m=n$ (i.e. A is a square matrix of full rank).

Theorem 1.10.20

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ be an isomorphism. Then $f^{-1}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is also an isomorphism.

Proof.

Theorem 1.10.20

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ be an isomorphism. Then $f^{-1}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is also an isomorphism.

Proof. Since $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is an isomorphism, it is, in particular, a bijection; consequently, f has an inverse $f^{-1}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$, which is also a bijection.

Theorem 1.10.20

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ be an isomorphism. Then $f^{-1}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is also an isomorphism.

Proof. Since $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is an isomorphism, it is, in particular, a bijection; consequently, f has an inverse $f^{-1}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$, which is also a bijection. So, to show that f^{-1} is an isomorphism, it suffices to show that f^{-1} is linear.

Theorem 1.10.20

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ be an isomorphism. Then $f^{-1}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is also an isomorphism.

Proof. Since $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is an isomorphism, it is, in particular, a bijection; consequently, f has an inverse $f^{-1}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$, which is also a bijection. So, to show that f^{-1} is an isomorphism, it suffices to show that f^{-1} is linear.

First, fix $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{F}^{n}$. WTS $f^{-1}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=f^{-1}\left(\mathbf{v}_{1}\right)+f^{-1}\left(\mathbf{v}_{2}\right)$.

Theorem 1.10.20

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ be an isomorphism. Then $f^{-1}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is also an isomorphism.

Proof. Since $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is an isomorphism, it is, in particular, a bijection; consequently, f has an inverse $f^{-1}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$, which is also a bijection. So, to show that f^{-1} is an isomorphism, it suffices to show that f^{-1} is linear.

First, fix $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{F}^{n}$. WTS $f^{-1}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=f^{-1}\left(\mathbf{v}_{1}\right)+f^{-1}\left(\mathbf{v}_{2}\right)$. Set $\mathbf{u}_{1}:=f^{-1}\left(\mathbf{v}_{1}\right)$ and $\mathbf{u}_{2}:=f^{-1}\left(\mathbf{v}_{2}\right)$, so that $f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}$ and $f\left(\mathbf{u}_{2}\right)=\mathbf{v}_{2}$.

Theorem 1.10.20

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ be an isomorphism. Then $f^{-1}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is also an isomorphism.

Proof. Since $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is an isomorphism, it is, in particular, a bijection; consequently, f has an inverse $f^{-1}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$, which is also a bijection. So, to show that f^{-1} is an isomorphism, it suffices to show that f^{-1} is linear.

First, fix $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{F}^{n}$. WTS $f^{-1}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=f^{-1}\left(\mathbf{v}_{1}\right)+f^{-1}\left(\mathbf{v}_{2}\right)$. Set $\mathbf{u}_{1}:=f^{-1}\left(\mathbf{v}_{1}\right)$ and $\mathbf{u}_{2}:=f^{-1}\left(\mathbf{v}_{2}\right)$, so that $f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}$ and $f\left(\mathbf{u}_{2}\right)=\mathbf{v}_{2}$. Then (next slide):

Theorem 1.10.20

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ be an isomorphism. Then $f^{-1}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is also an isomorphism.

Proof (continued). Reminder: $\mathbf{u}_{1}:=f^{-1}\left(\mathbf{v}_{1}\right)$ and $\mathbf{u}_{2}:=f^{-1}\left(\mathbf{v}_{2}\right)$, so that $f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}$ and $f\left(\mathbf{u}_{2}\right)=\mathbf{v}_{2}$.

$$
\begin{aligned}
f^{-1}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right) & =f^{-1}\left(f\left(\mathbf{u}_{1}\right)+f\left(\mathbf{u}_{2}\right)\right) \\
& =f^{-1}\left(f\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right)\right) \quad \text { because } f \text { is linear } \\
& =\left(f^{-1} \circ f\right)\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right) \\
& =\operatorname{ld}_{\mathbb{F}^{n}}\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right) \\
& =\mathbf{u}_{1}+\mathbf{u}_{2} \\
& =f^{-1}\left(\mathbf{v}_{1}\right)+f^{-1}\left(\mathbf{v}_{2}\right)
\end{aligned}
$$

Theorem 1.10.20

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ be an isomorphism. Then $f^{-1}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is also an isomorphism.

Proof (continued). Next, fix $\mathbf{v} \in \mathbb{F}^{n}$ and $\alpha \in \mathbb{F}$. WTS $f^{-1}(\alpha \mathbf{v})=\alpha f^{-1}(\mathbf{v})$.

Theorem 1.10.20

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ be an isomorphism. Then $f^{-1}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is also an isomorphism.

Proof (continued). Next, fix $\mathbf{v} \in \mathbb{F}^{n}$ and $\alpha \in \mathbb{F}$. WTS $f^{-1}(\alpha \mathbf{v})=\alpha f^{-1}(\mathbf{v})$. Set $\mathbf{u}:=f^{-1}(\mathbf{v})$, so that $f(\mathbf{u})=\mathbf{v}$.

Theorem 1.10.20

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ be an isomorphism. Then $f^{-1}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is also an isomorphism.

Proof (continued). Next, fix $\mathbf{v} \in \mathbb{F}^{n}$ and $\alpha \in \mathbb{F}$. WTS $f^{-1}(\alpha \mathbf{v})=\alpha f^{-1}(\mathbf{v})$. Set $\mathbf{u}:=f^{-1}(\mathbf{v})$, so that $f(\mathbf{u})=\mathbf{v}$. Then

$$
\begin{aligned}
f^{-1}(\alpha \mathbf{v}) & =f^{-1}(\alpha f(\mathbf{u})) \\
& =f^{-1}(f(\alpha \mathbf{u})) \quad \text { because } f \text { is linear } \\
& =\left(f^{-1} \circ f\right)(\alpha \mathbf{u}) \\
& =\operatorname{Id}_{\mathbb{F}^{n}}(\alpha \mathbf{u}) \\
& =\alpha \mathbf{u} \\
& =\alpha f^{-1}(\mathbf{v}) .
\end{aligned}
$$

Theorem 1.10.20

Let \mathbb{F} be a field, and let $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ be an isomorphism. Then $f^{-1}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is also an isomorphism.

Proof (continued). Next, fix $\mathbf{v} \in \mathbb{F}^{n}$ and $\alpha \in \mathbb{F}$. WTS $f^{-1}(\alpha \mathbf{v})=\alpha f^{-1}(\mathbf{v})$. Set $\mathbf{u}:=f^{-1}(\mathbf{v})$, so that $f(\mathbf{u})=\mathbf{v}$. Then

$$
f^{-1}(\alpha \mathbf{v})=f^{-1}(\alpha f(\mathbf{u}))
$$

$$
=f^{-1}(f(\alpha \mathbf{u})) \quad \text { because } f \text { is linear }
$$

$$
=\left(f^{-1} \circ f\right)(\alpha \mathbf{u})
$$

$$
=\quad \operatorname{ld}_{\mathbb{F}^{n}}(\alpha \mathbf{u})
$$

$$
=\alpha \mathbf{u}
$$

$$
=\alpha f^{-1}(\mathbf{v}) .
$$

We have now proven that f^{-1} linear. This completes the argument. \square

[^0]: ${ }^{a}$ Equivalently, $f: A \rightarrow B$ is one-to-one if for all $a_{1}, a_{2} \in A$ such that $f\left(a_{1}\right)=f\left(a_{2}\right)$, we have that $a_{1}=a_{2}$.

