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This lecture has three parts:

1 Matrix operations
2 The transpose of a matrix
3 Solving matrix equations of the form AX = B and XA = B
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1 Matrix operations

Suppose that F is a field.
Given matrices A =

[
ai ,j

]
n×m

and B =
[

bi ,j
]

n×m
in

Fn×m, and given a scalar c, we define
A + B :=

[
ai,j + bi,j

]
n×m;

A − B :=
[

ai,j − bi,j
]

n×m;
cA :=

[
cai,j

]
.

Thus, we add (resp. subtract) matrices by adding (resp.
subtracting) corresponding entries, i.e.[

ai,j
]

n×m +
[

bi,j
]

n×m =
[

ai,j + bi,j
]

n×m;[
ai,j

]
n×m −

[
bi,j

]
n×m =

[
ai,j − bi,j

]
n×m.

Similarly, we multiply a matrix by a scalar (on the left) by
multiplying each entry of the matrix by that scalar, i.e.

c
[

ai,j
]

n×m =
[

cai,j
]

n×m.
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We can also multiply matrices!

Let F be a field, and suppose that we are given two matrices,
A ∈ Fn×m and B ∈ Fm×p, where B =

[
b1 . . . bp

]
.

We define
AB :=

[
Ab1 . . . Abp

]
Note that AB ∈ Fn×p.
Note that, for the product AB to be defined, the number of
columns of A must be the same as the number of rows of B.
The matrix AB has the same number of rows as A, and the
same number of columns as B.
Schematically, we get:

(n × m) · (m × p) = (n × p).
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Example 1.7.1
Let

A =
[

1 2 −1
0 −3 1

]
and B =

 1 1
−2 1

0 −1

 ,

with entries understood to be in R. Compute AB.

Solution.

We set

b1 =

 1
−2

0

 and b2 =

 1
1

−1

,

so that B =
[

b1 b2
]
. Then AB =

[
Ab1 Ab2

]
. We

compute Ab1 =
[

−3
6

]
and Ab2 =

[
4

−4

]
, which yields

AB =
[

−3 4
6 −4

]
. □
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Proposition 1.7.2
Let F be a field, let m, n, p be positive integers, and let A ∈ Fn×m

be a matrix. Then all the following hold:
(a) InA = AIm = A;
(b) AOm×p = On×p;
(c) Op×nA = Op×m.

Proof.

Parts (b) and (c) readily follow from the appropriate
definitions (the details are left as an easy exercise). Let us
prove (a). Set A =

[
a1 . . . am

]
. To show that InA = A, we

compute (next slide):
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Proposition 1.7.2
Let F be a field, let m, n, p be positive integers, and let A ∈ Fn×m

be a matrix. Then all the following hold:
(a) InA = AIm = A;

Proof (continued). Reminder: A =
[

a1 . . . am
]
.

InA = In
[

a1 . . . am
]

=
[

Ina1 . . . Inam
] by the definition of

matrix multiplication

=
[

a1 . . . am
]

by Proposition 1.4.5

= A.
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There is another way to compute the product of two matrices.

First, suppose we are given a matrix A ∈ Fn×m and a vector
v ∈ Fm.

Set A =
[

ai ,j
]

n×m
and v =

 v1
...

vm

.

Then by the definition of a matrix-vector product, we have
that Av ∈ Fn, and moreover, the i-th entry of the vector Av is

m∑
k=1

ai ,kvk = ai ,1v1 + · · · + ai ,kvk + · · · + ai ,mvm.

Justification: next slide.
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Av =


a1,1 . . . a1,k . . . a1,m

...
. . .

...
. . .

...
ai,1 . . . ai,k . . . ai,m
...

. . .
...

. . .
...

an,1 . . . an,k . . . an,m




v1
...

vk
...

vm



= v1


a1,1

...
ai,1
...

an,1

 + · · · + vk


a1,k

...
ai,k

...
an,k

 + · · · + vm


a1,m

...
ai,m

...
an,m



=


a1,1v1 + · · · + a1,kvk + · · · + a1,mvm

...
ai,1v1 + · · · + ai,kvk + · · · + ai,mvm

...
an,1v1 + · · · + an,kvk + · · · + an,mvm

 .



Suppose now that we are given matrices A ∈ Fn×m and
B ∈ Fm×p, and set A =

[
ai ,j

]
n×m

and B =
[

bi ,j
]

m×p
.

The matrix AB belongs to Fn×p.
We would like to compute the i , j-th entry of the matrix AB
in terms of the entries of A and B.
The i , j-th entry of AB is precisely the i-th entry of the j-th
column of AB, and by the definition of matrix product, the

j-th column of AB is the vector Abj , where bj =

 b1,j
...

bm,j

 is

the j-th column of B.
Using the formula for the matrix-vector product that we
obtained above, we see that the i-th entry of the vector Abj is
m∑

k=1
ai ,kbk,j .

So, the i , j-th entry of the n × p matrix AB is
m∑

k=1
ai ,kbk,j .
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Another way to write this is as follows:[
ai ,j

]
n×m

[
bi ,j

]
m×p

=
[ m∑

k=1
ai ,kbk,j

]
n×p

,

where in each of the three matrices, the expression between
the square brackets is the general form of the i , j-th entry (i.e.
the entry in the i-th row and j-th column) of the matrix in
question.

To obtain the i , j-th entry of the matrix AB, we focus on the
i-th row of A and j-th column of B.
We then take the sum of the products of the corresponding
entries of this row and column, and we obtain the i , j-th entry
of AB.

Diagram: next slide.
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the square brackets is the general form of the i , j-th entry (i.e.
the entry in the i-th row and j-th column) of the matrix in
question.
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

b1,1 . . . b1,j . . . b1,p
... . . . ... . . . ...

bk,1 . . . bk,j . . . bk,p
... . . . ... . . . ...

bm,1 . . . bm,j . . . bm,p




a1,1 . . . a1,k . . . a1,m
... . . . ... . . . ...

ai ,1 . . . ai ,k . . . ai ,m
... . . . ... . . . ...

an,1 . . . an,k . . . an,m




m∑

k=1
ai ,kbk,j





Example 1.7.3
Let

A =
[

1 0
1 1

]
and B =

[
1 0 1
1 1 0

]
,

with entries understood to be in Z2. Compute the matrix AB.

Solution.

We compute as shown below (the rows of A are color
coded, as are the columns of B).[

1 0 1
1 1 0

]
[

1 0
1 1

] [
1 · 1 + 0 · 1 1 · 0 + 0 · 1 1 · 1 + 0 · 0
1 · 1 + 1 · 1 1 · 0 + 1 · 1 1 · 1 + 1 · 0

]
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1 0
1 1
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1 · 1 + 0 · 1 1 · 0 + 0 · 1 1 · 1 + 0 · 0
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Example 1.7.3
Let

A =
[

1 0
1 1

]
and B =

[
1 0 1
1 1 0

]
,

with entries understood to be in Z2. Compute the matrix AB.

Solution (continued).

AB =
[

1 · 1 + 0 · 1 1 · 0 + 0 · 1 1 · 1 + 0 · 0
1 · 1 + 1 · 1 1 · 0 + 1 · 1 1 · 1 + 1 · 0

]

=
[

1 0 1
0 1 1

]
.

□



Theorem 1.7.5
For any matrices A, B, and C , and any scalars α and β, the
following hold (provided the matrices are of compatible size for the
operation in question, and the entries of our matrices and our
scalars all belong to the same field F):

(a) (α + β)A = αA + βA;
(b) (αβ)A = α(βA)
(c) A + B = B + A;
(d) (A + B) + C = A + (B + C);
(e) (A + B)C = AC + BC ;
(f) A(B + C) = AB + AC ;
(g) (AB)C = A(BC);
(h) (αA)B = α(AB);
(i) A(αB) = α(AB).



The only difficult part of Theorem 1.7.5 is (g).
So, let us prove that.

(g) (AB)C = A(BC)
Proof of (g). Fix matrices A =

[
ai ,j

]
n1×n2

in Fn1×n2 ,

B =
[

bi ,j
]

n2×n3
in Fn2×n3 , and C =

[
ci ,j

]
n3×n4

in Fn3×n4 .

Clearly, both (AB)C and A(BC) are matrices in Fn1×n4 . To prove
that these two matrices are equal, it suffices to prove that their
corresponding entries are equal. So, fix indices i ∈ {1, . . . , n1} and
j ∈ {1, . . . , n4}. We must show that the i , j-th entry of (AB)C is
equal to the i , j-th entry of A(BC).
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(g) (AB)C = A(BC)
Proof of (g) (continued). We first compute the i , j-th entry of
(AB)C .

The i-th row of the n1 × n3 matrix AB is[ n2∑
k=1

ai ,kbk,1
n2∑

k=1
ai ,kbk,2 . . .

n2∑
k=1

ai ,kbk,n3

]
. The j-th column

of the n3 × n4 matrix C is


c1,j
c2,j
...

cn3,j

.

So, the i , j-th entry of the n1 × n4 matrix (AB)C is

n3∑
ℓ=1

(
(

n2∑
k=1

ai ,kbk,ℓ)cℓ,j
)
.



(g) (AB)C = A(BC)
Proof of (g) (continued). We first compute the i , j-th entry of
(AB)C . The i-th row of the n1 × n3 matrix AB is[ n2∑

k=1
ai ,kbk,1

n2∑
k=1

ai ,kbk,2 . . .
n2∑

k=1
ai ,kbk,n3

]
.

The j-th column

of the n3 × n4 matrix C is


c1,j
c2,j
...

cn3,j

.

So, the i , j-th entry of the n1 × n4 matrix (AB)C is

n3∑
ℓ=1

(
(

n2∑
k=1

ai ,kbk,ℓ)cℓ,j
)
.



(g) (AB)C = A(BC)
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(g) (AB)C = A(BC)
Proof of (g) (continued). We first compute the i , j-th entry of
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(g) (AB)C = A(BC)
Proof of (g) (continued). We now compute the i , j-th entry of
A(BC).

The i-th row of the n1 × n2 matrix A is[
ai ,1 ai ,2 . . . ai ,n2

]
. The j-th column of the n2 × n4 matrix

BC is



n3∑
k=1

b1,kck,j
n3∑

k=1
b2,kck,j

...
n3∑

k=1
bn2,kck,j


.

So, the i , j-th entry of the n1 × n4 matrix (AB)C is

n2∑
ℓ=1

(
ai ,ℓ(

n3∑
k=1

bℓ,kck,j)
)
.



(g) (AB)C = A(BC)
Proof of (g) (continued). We now compute the i , j-th entry of
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(g) (AB)C = A(BC)
Proof of (g) (continued). We now compute the i , j-th entry of
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(g) (AB)C = A(BC)
Proof of (g) (continued). We now compute the i , j-th entry of
A(BC). The i-th row of the n1 × n2 matrix A is[
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.



(g) (AB)C = A(BC)
Proof of (g) (continued). Reminder:

the i , j-th entry of (AB)C is
n3∑

ℓ=1

(
(

n2∑
k=1

ai ,kbk,ℓ)cℓ,j
)
;

the i , j-th entry of A(BC) is
n2∑

ℓ=1

(
ai ,ℓ(

n3∑
k=1

bℓ,kck,j)
)
.

It now remains to show that
n3∑

ℓ=1

(
(

n2∑
k=1

ai ,kbk,ℓ)cℓ,j
)

=
n2∑

ℓ=1

(
ai ,ℓ(

n3∑
k=1

bℓ,kck,j)
)
.

For this, we compute (next slide):



(g) (AB)C = A(BC)
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(g) (AB)C = A(BC)
Proof of (g) (continued). Reminder:

the i , j-th entry of (AB)C is
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(
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.
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(g) (AB)C = A(BC)
Proof of (g) (continued).

n3∑
ℓ=1

(
(

n2∑
k=1

ai ,kbk,ℓ)cℓ,j
)

=
n3∑

ℓ=1

( n2∑
k=1

ai ,kbk,ℓcℓ,j
)

=
n2∑

k=1

( n3∑
ℓ=1

ai ,kbk,ℓcℓ,j
)

=
n2∑

k=1

(
ai ,k(

n3∑
ℓ=1

bk,ℓcℓ,j)
)

=
n2∑

ℓ=1

(
ai ,ℓ(

n3∑
k=1

bℓ,kck,j)
)

and we obtain the equality that we needed. This proves (g). □



Theorem 1.7.5
For any matrices A, B, and C , and any scalars α and β, the
following hold (provided the matrices are of compatible size for the
operation in question, and the entries of our matrices and our
scalars all belong to the same field F):

(a) (α + β)A = αA + βA;
(b) (αβ)A = α(βA)
(c) A + B = B + A;
(d) (A + B) + C = A + (B + C);
(e) (A + B)C = AC + BC ;
(f) A(B + C) = AB + AC ;
(g) (AB)C = A(BC);
(h) (αA)B = α(AB);
(i) A(αB) = α(AB).



Warning: Matrix multiplication is not commutative, that is,
for matrices A and B,

AB��ZZ=BA.

In fact, it is possible that one of AB and BA is defined, while
the other one is not.

For instance, if A ∈ F2×3 and B ∈ F3×4, where F is some field,
then AB is defined, but BA is not.

Moreover, it is possible that both AB and BA are defined, but
are not of the same size.

For instance, if A ∈ F2×3 and B ∈ F3×2, where F is some field,
then AB ∈ F2×2 and BA ∈ F3×3.

Finally, it is possible that AB and BA are both defined, and
are of the same size, but AB ̸= BA.

For example, for A =
[

1 1
1 1

]
and B =

[
1 0
0 0

]
, we have

that AB =
[

1 0
1 0

]
and BA =

[
1 1
0 0

]
, and so AB ̸= BA.
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Corollary 1.7.6
For any matrices A, B, vectors u, v, and w, and scalars α and β,
the following hold (provided the matrices and vectors are of
compatible size for the operation in question, and the entries of
our matrices, the entries of our vectors, and our scalars all belong
to the same field F):

(a) (α + β)u = αu + βu;
(b) (αβ)u = α(βu)
(c) u + v = v + u;
(d) (u + v) + w = u + (v + w);
(e) (A + B)u = Au + Bu;
(f) A(u + v) = Au + Av;
(g) (AB)u = A(Bu);
(h) (αA)u = α(Au);
(i) A(αu) = α(Au).



We can define powers of square matrices in a natural way, as
follows.

For a field F and a square matrix A ∈ Fn×n, we define
A0 := In;
Am+1 := AmA for all non-negative integers m.

So, by convention, we set A0 := In, and for any positive
integer m, we have that

Am = A . . . A︸ ︷︷ ︸
m

,

where we did not have to indicate parentheses since, by
Theorem 1.7.5, matrix multiplication is associative.
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2 The transpose of a matrix

Given a matrix A ∈ Fn×m (where F is a field), the transpose
of A, denoted by AT , is the matrix in Fm×n s.t. the i , j-th
entry of AT is the j , i-th entry of A, for all indices
i ∈ {1, . . . , m} and j ∈ {1, . . . , n}.
In other words, to form AT from A, the columns of A (from
left to right) become the rows of AT (from top to bottom),
and likewise, the rows of A (from top to bottom) become the
columns of AT (from left to right).

A =


♦ ∗ ∗ ∗ ∗ ♢
♦ ∗ ∗ ∗ ∗ ♢
♦ ∗ ∗ ∗ ∗ ♢
♦ ∗ ∗ ∗ ∗ ♢

 −→ AT =


♦ ♦ ♦ ♦
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
♢ ♢ ♢ ♢


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A =


♦ ∗ ∗ ∗ ∗ ♢
♦ ∗ ∗ ∗ ∗ ♢
♦ ∗ ∗ ∗ ∗ ♢
♦ ∗ ∗ ∗ ∗ ♢
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For example, if A =
[

1 2 3
4 5 6

]
, then AT =

 1 4
2 5
3 6

.



In order to save space, we often specify column vectors in
terms of transposes of row vectors.
For instance, we often write something like

u =
[

u1 u2 . . . un
]T

instead of u =


u1
u2
...

un

.



Proposition 1.8.1
For any matrices A and B, and any scalar α, the following hold
(provided the matrices are of compatible size for the operation in
question, and the entries of our matrices and our scalar belong to
the same field F):

(a) (AT )T = A;
(b) (A + B)T = AT + BT ;

(c) (αA)T = αAT

(d) (AB)T = BT AT .

Proof.

Parts (a), (b), and (c) are obvious. Let us prove (d). Fix
matrices A ∈ Fn×m and B ∈ Fm×p, and set A =

[
ai ,j

]
n×m

and

B =
[

bi ,j
]

m×p
. Clearly, AB ∈ Fn×p, and so (AB)T ∈ Fp×n. On

the other hand, we have that BT ∈ Fp×m and AT ∈ Fm×n, and so
BT AT ∈ Fp×n. So, both (AB)T and BT AT are p × n matrices
with entries in F. It remains to show that the corresponding entries
of (AB)T and BT AT are the same.
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(d) (AB)T = BT AT

Proof of (d) (continued).

Fix indices i ∈ {1, . . . , p} and
j ∈ {1, . . . , n}; we will show that the i , j-th entry of (AB)T is
equal to the i , j-th entry of BT AT .

By the definition of matrix transpose, the i , j-th entry of (AB)T is
equal to the j , i-th entry of AB, which is equal to

m∑
k=1

aj,kbk,i .

We now compute the i , j-th entry of BT AT . We observe that i-th
row of the matrix BT is

[
b1,i b2,i . . . bm,i

]
, whereas the j-th

column of the matrix AT is
[

aj,1 aj,2 . . . aj,m
]T

. So, the
i , j-th entry of the matrix BT AT is
b1,iaj,1 + b2,iaj,2 + · · · + bm,iaj,m =

m∑
k=1

bk,iaj,k =
m∑

k=1
aj,kbk,i .

We have now shown that the corresponding entries of the p × n
matrices (AB)T and BT AT are the same, and we deduce that
(AB)T = BT AT . This proves (d). □
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Proposition 1.8.1
For any matrices A and B, and any scalar α, the following hold
(provided the matrices are of compatible size for the operation in
question, and the entries of our matrices and our scalar belong to
the same field F):

(a) (AT )T = A;
(b) (A + B)T = AT + BT ;

(c) (αA)T = αAT

(d) (AB)T = BT AT .



3 Solving matrix equations of the form AX = B and XA = B

We first consider matrix equations of the form AX = B.

Example 1.9.1
Consider the matrices

A =

 1 2 3 4
−1 3 1 −2

0 1 0 3

 and B =

 5 3
−3 1

3 0

 ,

with entries understood to be in R. Solve the matrix equation
AX = B.a How many solutions does the equation AX = B have?

aNote that solutions of the matrix equation AX = B are 4 × 2 real matrices.

We give two solutions.
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0 1 0 3

, B =

 5 3
−3 1

3 0

, solve AX = B.

Solution#1.

Set X =
[

x1 x2
]

and B =
[

b1 b2
]
. Then

AX =
[

Ax1 Ax2
]
, and so the equation AX = B is equivalent to

[
Ax1 Ax2

]
=

[
b1 b2

]
.

So, we need to solve two matrix-vector equations, namely
Ax1 = b1 and Ax2 = b2. We solve these two equations one by one.
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 1 2 3 4
−1 3 1 −2

0 1 0 3

, B =

 5 3
−3 1

3 0

, solve AX = B.

Solution#1 (continued). First, we solve the matrix-vector equation
Ax1 = b1.

We form the augmented matrix
[

A b1
]

and we row
reduce to obtain its reduced row echelon form:

[
A b1

]
=

 1 2 3 4 5
−1 3 1 −2 −3

0 1 0 3 3
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4

35
4

0 1 0 3 3
0 0 1 − 13

4 − 13
4

 .
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4

s
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, where s ∈ R.
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Solution#1 (continued). We now read off the general solution for
X =

[
x1 x2

]
:

X =



− 31
4 s + 35

4 − 31
4 t

−3s + 3 −3t

13
4 s − 13

4
13
4 t + 1

s t


, where s, t ∈ R.

There are two parameters (namely, s and t), and they can each
take infinitely many values (because R is infinite). So, the
equation AX = B has infinitely many solutions. □

Remark: Note that the parameters (namely, s and t) from the
solution above are different for different columns! This is because
the equations Ax1 = b1 and Ax2 = b2 are solved independently,
and so the parameter that appears in x1 is independent of the one
that appears in x2.
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Remark:
Solution #1 is correct, but rather inefficient.

We had to solve a separate matrix-vector equation for each
column of B, and each of these matrix-vector equations
involved forming an augmented matrix and finding its reduced
row echelon form.

Since B has two columns, this translated into two
matrix-vector equations. In general, if B has m columns, we
get m matrix-vector equations.

Luckily, we can do better by essentially solving these two
matrix-vector equations simultaneously.
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Example 1.9.1
Consider the matrices

A =

 1 2 3 4
−1 3 1 −2

0 1 0 3

 and B =

 5 3
−3 1

3 0

 ,

with entries understood to be in R. Solve the matrix equation
AX = B.a How many solutions does the equation AX = B have?

aNote that solutions of the matrix equation AX = B are 4 × 2 real matrices.

Solution#2.

We first form the matrix
[

A B
]

and row reduce to
find its reduced row echelon form.

[
A B

]
=

 1 2 3 4 5 3
−1 3 1 −2 −3 1

0 1 0 3 3 0


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Solution#2 (continued). After row reducing, we obtain the
following matrix:

RREF
( [

A B
] )

=

 1 0 0 31
4

35
4 0

0 1 0 3 3 0
0 0 1 −13

4 −13
4 1

 .

We now read off the columns of X one by one.
We read off the first column of X by reading off the solutions
of the matrix-vector equation encoded by the matrix obtained
by taking the submatrix to the left of the vertical dotted line,
plus the first column to the right of the vertical dotted line
(i.e. the red column) of RREF

( [
A B

] )
.

We read off the second column of X by reading off the
solutions of the matrix-vector equation encoded by the matrix
obtained by taking the submatrix to the left of the vertical
dotted line, plus the second column to the right of the vertical
dotted line (i.e. the blue column) of RREF

( [
A B

] )
.
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Solution#2 (continued). Reminder:

RREF
( [

A B
] )

=

 1 0 0 31
4

35
4 0

0 1 0 3 3 0
0 0 1 −13

4 −13
4 1

 .

The solutions are as follows:

X =



−31
4 s + 35

4 −31
4 t

−3s + 3 −3t

13
4 s − 13

4
13
4 t + 1

s t


, where s, t ∈ R.

There are two parameters (namely, s and t), and they can each
take infinitely many values (because R is infinite). So, the
equation AX = B has infinitely many solutions. □
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Recipe for solving matrix equations of the form AX = B.

Suppose that A is an n × m matrix and B is an n × p matrix (both
with entries in some field F), and we wish to solve the matrix
equation AX = B. We proceed as follows:

1 We form the n × (m + p) matrix
[

A B
]

and find its
reduced row echelon form.

2 We check if RREF
( [

A B
] )

has a row of the form[
0 . . . 0 ∗ . . . ∗

]
, where at least one of the ∗’s (to

the right of the vertical dotted line) is non-zero.

(a) If such a row exists, then the matrix equation AX = B is
inconsistent (i.e. has no solutions).

(b) If no such row exits, then the matrix equation AX = B is
consistent (i.e. has at least one solution).

For each k ∈ {1, . . . , p}, we read off the k-th column of X by
focusing on the part of RREF

( [
A B

] )
to the left of the

vertical dotted line, plus the k-th column of
RREF

( [
A B

] )
to the right of the vertical dotted line.

If there are any free variables, remember to use different
letters for the parameters in different columns, as in the
solution of Example 1.9.1.
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Example 1.9.2
Consider the matrices

A =


1 1 1
1 1 1
1 2 −1
1 2 −1

 and B =


4 3 1 3
4 3 1 3
2 1 1 3
2 1 2 3

 ,

with entries understood to be in R. Solve the matrix equation
AX = B.a How many solutions does the equation AX = B have?

aNote that solutions of the matrix equation AX = B are 3 × 4 real matrices.



Solution. We first form the matrix

[
A B

]
=


1 1 1 4 3 1 3
1 1 1 4 3 1 3
1 2 −1 2 1 1 3
1 2 −1 2 1 2 3

 .

After row reducing, we obtain

RREF
( [

A B
] )

=


1 0 3 6 5 0 3
0 1 −2 −2 −2 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

 .

By considering the third row of RREF
( [

A B
] )

, we see that the
matrix equation AX = B is inconsistent, i.e. it has no solutions. □
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What about matrix equations of the form XA = B?

Such an equation is equivalent to the equation (XA)T = BT ,
which is, in turn, equivalent to AT XT = BT

We are using Proposition 1.8.1(d).
We solve the equation AT XT = BT for XT , and then we take
the transpose of the solution(s) to obtain X .

Example 1.9.5
Consider the matrices

A =
[

1 2 0 −1
3 1 1 0

]
and B =

 5 5 1 −2
4 3 1 −1
2 4 0 −2

 ,

with entries understood to be in R. Solve the matrix equation
XA = B.a How many solutions does the equation XA = B have?

aNote that solutions of the matrix equation XA = B are 3 × 2 real matrices.
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Solution.

Note that XA = B iff AT XT = BT . We first find all the
matrices XT that satisfy AT XT = BT , and then we take the
transpose to obtain all the matrices X that satisfy XA = B. First,
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and by row reducing, we obtain (next slide):
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Solution (continued).

RREF
( [

AT BT ] )
=


1 0 2 1 2
0 1 1 1 0
0 0 0 0 0
0 0 0 0 0

 .

Using the matrix above, we can solve for XT . There is only one
solution, namely:

X T =
[

2 1 2
1 1 0

]
.

Thus, the equation XA = B has a unique solution, namely:

X =

 2 1
1 1
2 0

 .

(The number of solutions of the matrix equation XA = B is
one.) □
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