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1 An informal introduction to fields

A formal definition of a field will be given later in the course.
For now, we give a few examples of fields:

the field Q of rational numbers;
the field R of real numbers;
the field C of complex numbers;
the field Zp, where p is a prime number.

If n ∈ N is not prime, then Zn is not a field.



1 An informal introduction to fields

A formal definition of a field will be given later in the course.

For now, we give a few examples of fields:
the field Q of rational numbers;
the field R of real numbers;
the field C of complex numbers;
the field Zp, where p is a prime number.

If n ∈ N is not prime, then Zn is not a field.



1 An informal introduction to fields

A formal definition of a field will be given later in the course.
For now, we give a few examples of fields:

the field Q of rational numbers;
the field R of real numbers;
the field C of complex numbers;
the field Zp, where p is a prime number.

If n ∈ N is not prime, then Zn is not a field.



Each field is equipped with two operations: addition and
multiplication.

These two operations are commutative and associative, and
multiplication is distributive over addition:

a + b = b + a and ab = ba;
(a + b) + c = a + (b + c) and (ab)c = a(bc);
a(b + c) = ab + ac.

Every field has an “additive identity” 0 and a “multiplicative
identity” 1, which satisfy

a + 0 = 0 + a = a and a · 1 = 1 · a = a

for all elements a of the field.
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Every element a of a field has a corresponding “additive
inverse,” denoted by −a, which is a number that we can add
to a in order to obtain 0.

For example:
the additive inverse of

√
17 in R is −

√
17, since√

17 + (−
√

17) = 0 in R.
the additive inverse of 2 − i in C is −2 + i , since
(2 − i) + (−2 + i) = 0 in C;
the additive inverse of 3 in Z5 is 2 (and we write −3 = 2),
since 3 + 2 = 0 in Z5;
the additive inverse of 4 in Z5 is 1 (and we write −4 = 1),
since 4 + 1 = 0 in Z5;
the additive inverse of 2 in Z3 is 1 (and we write −2 = 1),
since 2 + 1 = 0 in Z3.
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Every non-zero element a of a field has a “multiplicative
inverse,” denoted by a−1, which is a number we can multiply
a by in order to obtain 1.

For example:
the multiplicative inverse of

√
17 in R is 1√

17 , because
√

17 · 1√
17 = 1 in R;

the multiplicative inverse of 2 − i is 2
5 + 1

5 i , because
(2 − i)( 2

5 + 1
5 i) = 1 in C;

the multiplicative inverse of 3 in Z5 is 2 (and we write
3−1 = 2), since 3 · 2 = 1 in Z5;
the multiplicative inverse of 4 in Z5 is 4 (and we write
4−1 = 4), since 4 · 4 = 1 in Z5;
the multiplicative inverse of 2 in Z3 is 2 (and we write
2−1 = 2), since 2 · 2 = 1 in Z3.
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Remark: When working over Zp (for a prime number p), it is
a good idea to first write out the addition and multiplication
tables for Zp, because this allows us to easily identify additive
and multiplicative inverses: for a given a ∈ Zp, we simply read
off from the tables what number we need to add to a to get
zero, and (assuming a ̸= 0) what number we need to multiply
it by to get 1.

Warning: The following are not fields: N, Z, Zn (where n is
a positive integer that is not prime).
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For the remainder of chapter 1, you may assume that the field
F in question is one of the following: Q, R, C, or Zp (where p
is a prime number). However, everything that we prove in this
chapter does in fact hold for general fields F, not just the ones
listed above.



2 An introduction to matrices and vectors

A =
[

1 0 2
1 3 4

]
, B =

 3 1
2 5
1 0

 , C =

 3 3 2
1 −1 −5

−2 2 3


↑ ↑ ↑

2 × 3 3 × 2 3 × 3

A matrix is a rectangular array of numbers (typically, elements
of some field).
An n × m matrix (read “n by m matrix”) is a matrix with n
rows and m columns.
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A square matrix is one that has the same number of rows and
columns.

So, C is a square matrix, but A and B are not square matrices.

The main diagonal of a square matrix is the diagonal between
the upper left corner and the bottom right corner. 3 3 2

1 −1 −5
−2 2 3
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The rows of a matrix are enumerated from top to bottom,
whereas the columns are enumerated from left to right.

The i , j-th entry of a matrix is the entry that appears in the
i-th row (from the top) and j-th column (from the left) in the
matrix.
A matrix A can be specified as follows:

A =
[

ai ,j
]

n×m
.

This notation indicates that the matrix A is of size n × m (i.e.
has n rows and m columns), and the i , j-th entry (i.e. the
entry in the i-th row and j-th column) is ai ,j .
So, if A =

[
ai ,j

]
n×m

, then we have that

A =


a1,1 a1,2 . . . a1,m
a2,1 a2,2 . . . a2,m

...
... . . . ...

an,1 an,2 . . . an,m

 .
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A zero matrix is a matrix all of whose entries are 0 (where the
0 comes from the field that we are working with).

The zero matrix of size n × m is denoted by On×m.
For example,

O2×4 =
[

0 0 0 0
0 0 0 0

]
.

A non-zero matrix is a matrix that has at least one non-zero
entry.

Notation: If F is a field, then the set of all n × m matrices
with entries in F is denoted by Fn×m.
Terminology: A real matrix is a matrix whose entries are real
numbers, whereas a complex matrix is a matrix whose entries
are complex numbers.
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a =
[

1
−3

]
, b =


−13

0
0
π

 , c =


1
2
0

−1
1

 .

A column vector, or simply vector, is a matrix with just one
column.
Vectors are typically denoted by bold letters (e.g. a, u, x) or
by letters with an arrow on top (e.g. a⃗, u⃗, x⃗).



The zero vector (i.e. vector

 0
...
0

) is denoted by 0 or 0⃗.

The number of entries in a zero vector should either be made
explicit or be clear from context.

A non-zero vector is a vector that has at least one non-zero
entry.

Notation: If F is a field, then the set of all (column) vectors
with n entries, all of them in F, is denoted by Fn.

Thus, Fn = Fn×1.
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Vectors in R2 and R3 have a geometric interpretation.

A vector a =
[

a1
a2

]
in R2 can be represented in the

two-dimensional Euclidean space either as a point or as a line
segment with an arrow starting at the origin.

x1

x2

a2
a

a1 x1

x2

a2
a

a1

The zero vector 0 =
[

0
0

]
is simply the origin.
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A vector a =

 a1
a2
a3

 in R3 has a similar geometric

interpretation in the three-dimensional Euclidean space.
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Once again, the zero vector 0 =
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0
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 is simply the origin.

Vectors in Rn for n ≥ 4 are higher-dimensional analogs of
vectors in R2 and R3.
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A row vector is a matrix with only one row.

For example, the following are row vectors:
a =

[
1 −3

]
;

b =
[

−13 0 0 π
]
;

c =
[

1 2 0 −1 1
]
.

The set of all row vectors with n entries, all of them in some
field F, is denoted by F1×n (i.e. exactly the same way as the
set of all 1 × n matrices with entries in F).
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The columns of a matrix can be seen as (column) vectors, and
matrices can be specified in terms of their columns.

When we specify a matrix A ∈ Fn×m (where F is some field)
in the form

A =
[

a1 . . . am
]

,

we mean that a1, . . . , am are the columns of A (appearing in
that order from left to right in the matrix A), and moreover,
a1, . . . , am are vectors in Fn.
For example, if A =

[
a1 a2 a3

]
, where

a1 =
[

1
2

]
, a2 =

[
1
0

]
, a3 =

[
3
4

]
,

then A =
[

1 1 3
2 0 4

]
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matrices can be specified in terms of their rows.

When we specify a matrix A ∈ Fn×m (where F is some field)
in the form

A =

 r1
...
rn

 ,

we mean that r1, . . . , rn are the rows of A (appearing in that
order from top to bottom in the matrix A), and moreover,
r1, . . . , rn are row vectors in F1×m.

For example, if A =
[

r1
r2

]
, where

r1 =
[

1 2 1 3
]

and r2 =
[

3 4 4 3
]
,

then A =
[

1 2 1 3
3 4 4 3

]
.



Similarly, the rows of a matrix can be seen as row vectors, and
matrices can be specified in terms of their rows.
When we specify a matrix A ∈ Fn×m (where F is some field)
in the form

A =

 r1
...
rn

 ,

we mean that r1, . . . , rn are the rows of A (appearing in that
order from top to bottom in the matrix A), and moreover,
r1, . . . , rn are row vectors in F1×m.

For example, if A =
[

r1
r2

]
, where

r1 =
[

1 2 1 3
]

and r2 =
[

3 4 4 3
]
,

then A =
[

1 2 1 3
3 4 4 3

]
.



Similarly, the rows of a matrix can be seen as row vectors, and
matrices can be specified in terms of their rows.
When we specify a matrix A ∈ Fn×m (where F is some field)
in the form

A =

 r1
...
rn

 ,

we mean that r1, . . . , rn are the rows of A (appearing in that
order from top to bottom in the matrix A), and moreover,
r1, . . . , rn are row vectors in F1×m.

For example, if A =
[

r1
r2

]
, where

r1 =
[

1 2 1 3
]

and r2 =
[

3 4 4 3
]
,

then A =
[

1 2 1 3
3 4 4 3

]
.



3 Systems of linear equations and row reduction

A linear equation in the variables x1, . . . , xm is an equation
that can be written in the form

a1x1 + · · · + amxm = b,

where b and the coefficients a1, . . . , an are elements of some
field F.
For example, x1 − 3(x2 − x1) = 7x3 − 4, with coefficients
understood to be in R, is a linear equation because it can be
algebraically rearranged to have the form
4x1 − 3x2 − 7x3 = −4, which is obviously a linear equation.
On the other hand, equations x3

1 + x2 = 17 and x1 − √x2 = 5
are not linear because of x3

1 and √x2.
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a1x1 + · · · + amxm = b,

where b and the coefficients a1, . . . , an are elements of some
field F.
For example, x1 − 3(x2 − x1) = 7x3 − 4, with coefficients
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4x1 − 3x2 − 7x3 = −4, which is obviously a linear equation.
On the other hand, equations x3
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are not linear because of x3
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A system of linear equations, or a linear system, is a collection
of one or more linear equations involving the same variables,
say x1, . . . , xm (and with coefficients from the same field).

For example, the following is a linear system (here, the
coefficients are assumed to be in R):

2x1 + 7x2 − πx4 = −
√

3
−3x2 + 17x3 − 3x4 = 2

x1 + x2 − 2x3 + 7x4 = 11
2

Remark: Typographically, we normally arrange equations in
our system so that the terms involving the same variable are
below each other (i.e. visually in the same column).
A solution of a linear system in variables x1, . . . , xm is a list
s1, . . . , sm of numbers (from the same field as the coefficients
of the system) such that each equation becomes a true
statement when s1, . . . , sm are substituted for x1, . . . , xm,
respectively.
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Example 1.3.1
Consider the linear system

x1 + 2x2 − x3 = 9
2x2 + 3x3 = 16

x1 + x2 − x3 = 4

with coefficients in R. Then

x1 = 1
x2 = 5
x3 = 2

is a solution of the system above.



Example 1.3.2
Consider the linear system

x1 + x2 = 0
2x1 + x2 = 1

with coefficients in Z3. Then

x1 = 1
x2 = 2

is a solution of the system above.



The set of solutions or solution set of a linear system is the
set of all solutions of that system.

Our goal is to describe a procedure for finding the solution set
of any linear system.

A linear system may have no solutions, may have a unique
solution (i.e. exactly one solution), or may have more than
one solution.
A system that has at least one solution is called consistent; a
system that has no solutions is said to be inconsistent.



The set of solutions or solution set of a linear system is the
set of all solutions of that system.
Our goal is to describe a procedure for finding the solution set
of any linear system.

A linear system may have no solutions, may have a unique
solution (i.e. exactly one solution), or may have more than
one solution.
A system that has at least one solution is called consistent; a
system that has no solutions is said to be inconsistent.



The set of solutions or solution set of a linear system is the
set of all solutions of that system.
Our goal is to describe a procedure for finding the solution set
of any linear system.

A linear system may have no solutions, may have a unique
solution (i.e. exactly one solution), or may have more than
one solution.

A system that has at least one solution is called consistent; a
system that has no solutions is said to be inconsistent.



The set of solutions or solution set of a linear system is the
set of all solutions of that system.
Our goal is to describe a procedure for finding the solution set
of any linear system.

A linear system may have no solutions, may have a unique
solution (i.e. exactly one solution), or may have more than
one solution.
A system that has at least one solution is called consistent; a
system that has no solutions is said to be inconsistent.



Let us consider the geometry of linear systems with real
coefficients.

Consider the following system of two linear equations in two
variables, with coefficients in R.

a1,1x1 + a1,2x2 = b1
a2,1x1 + a2,2x2 = b2

Let us assume that at least one of the coefficients a1,1, a1,2 is
non-zero, and similarly, that at least one of the coefficients
a2,1, a2,2 is non-zero.
Then each of the two equations above defines a line in the
plane.
There are three possibilities for these two lines (next three
slides):
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The two lines may intersect in one point (in this case, the
system has a unique solution, and in particular, it is
consistent).

a1,1x1 + a1,2x2 = b1

a2,1x1 + a2,2x2 = b2

x1

x2



The two lines may be distinct, parallel lines (in this case, the
system has no solutions, i.e. it is inconsistent).

a1,1x1 + a1,2x2 = b1

a2,1x1 + a2,2x2 = b2

x1

x2



The two lines may be identical (in this case, the system has
infinitely many solutions, and in particular, the system is
consistent).

Note that the two lines may be identical even if the two
equations are different. For instance, x1 + x2 = 1 and
2x1 + 2x2 = 2 define the same line.

a1,1x1 + a1,2x2 = b1
a2,1x1 + a2,2x2 = b2

x1

x2



Suppose now that we have a system of two linear equations in
three variables (with coefficients in R).

a1,1x1 + a1,2x2 + a1,3x3 = b1
a2,1x1 + a2,2x2 + a2,3x3 = b2

Let us assume that at least one of the coefficients
a1,1, a1,2, a1,3 is non-zero, and that at least one of the
coefficients a2,1, a2,2, a2,3 is non-zero.
Then each of the two equations above defines a plane in the
three-dimensional Euclidean space.
Those two planes may intersect in a line (in which case the
system has infinitely many solutions, and in particular, the
system is consistent);

or the two planes may be distinct and
parallel (in which case, the system has no solutions, i.e. it is
inconsistent); or the two planes may be identical (in which
case the system has infinitely many solutions, and in
particular, the system is consistent).
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Suppose we are given a system of n linear equations in m
variables, as follows.

a1,1x1 + a1,2x2 + . . . + a1,mxm = b1
a2,1x1 + a2,2x2 + . . . + a2,mxm = b2

...
an,1x1 + an,2x2 + . . . + an,mxm = bn

There are two matrices associated with this linear system: the
“coefficient matrix” and the “augmented matrix.”
The coefficient matrix of this system is the n × m matrix

A =


a1,1 a1,2 . . . a1,m
a2,1 a2,2 . . . a2,m

...
... . . . ...

an,1 an,2 . . . an,m

 .
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a1,1x1 + a1,2x2 + . . . + a1,mxm = b1
a2,1x1 + a2,2x2 + . . . + a2,mxm = b2

...
an,1x1 + an,2x2 + . . . + an,mxm = bn

The augmented matrix of our linear system is the n × (m + 1)
matrix

[
A b

]
=


a1,1 a1,2 . . . a1,m b1
a2,1 a2,2 . . . a2,m b2

...
... . . . ...

...
an,1 an,2 . . . an,m bn

 ,

where A is the coefficient matrix of the linear system, and

b =


b1
b2
...

bn

 .



linear system:

a1,1x1 + a1,2x2 + . . . + a1,mxm = b1
a2,1x1 + a2,2x2 + . . . + a2,mxm = b2

...
an,1x1 + an,2x2 + . . . + an,mxm = bn

augmented matrix:
a1,1 a1,2 . . . a1,m b1
a2,1 a2,2 . . . a2,m b2

...
... . . . ...

...
an,1 an,2 . . . an,m bn



Obviously, a linear system is fully “encoded” by its augmented
matrix.
The vertical dotted line is optional, but serves as a helpful
visual aid.
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Example 1.3.3
Find the coefficient matrix and the augmented matrix of the linear
system below (with coefficients understood to be in R).

3x1 + 2x2 + 5x3 = 7
3x2 − x3 = 0

Solution.

The coefficient matrix of the linear system is[
3 2 5
0 3 −1

]
,

whereas the augmented matrix is[
3 2 5 7
0 3 −1 0

]
.

□
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Two linear systems (with the same variables) are equivalent if
they have exactly the same solution set.

Now, suppose we are given a system of linear equations such
as the one below (with coefficients understood to be in some
field F).

a1,1x1 + a1,2x2 + . . . + a1,mxm = b1
a2,1x1 + a2,2x2 + . . . + a2,mxm = b2

...
an,1x1 + an,2x2 + . . . + an,mxm = bn

We would like to manipulate this system in a way that allows
us to “read off” the solution set of the system.
There are three basic ways that we can manipulate the system
in a way that does not change the solution set (i.e. in a way
that produces an equivalent linear system).
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1 Swap (interchange) two equations.

For example, by swapping the first and third equation of the
linear system on the left, we obtain the linear system on the
right.

x1 + 3x2 − 2x3 = −1 x1 + x2 + 2x3 = 2
1
2 x1 + 2x3 = 0 −→ 1

2 x1 + 2x3 = 0
x1 + x2 + 2x3 = 2 x1 + 3x2 − 2x3 = −1

It is obvious that this operation does not alter the solution set.
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2 Multiply one equation by a non-zero scalar.

For example, by multiplying the second equation of the linear
system on the left by 2, we obtain the linear system on the
right.

x1 + x2 + 2x3 = 2 x1 + x2 + 2x3 = 2
1
2 x1 + 2x3 = 0 −→ x1 + 4x3 = 0

x1 + 3x2 − 2x3 = −1 x1 + 3x2 − 2x3 = −1

Let us explain why this does not alter the solution set.
Suppose we have multiplied the i-th equation of our linear
system by some scalar α ̸= 0. Obviously, all solutions of the
old system are still solutions of the new system. On the other
hand, by multiplying the i-th equation of the new system by
α−1 (the multiplicative inverse of α), we get the old system
back. So, any solution of the new system is a solution of the
old system as well.

Warning: Do not multiply an equation by 0, since that “kills”
the equation!
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hand, by multiplying the i-th equation of the new system by
α−1 (the multiplicative inverse of α), we get the old system
back. So, any solution of the new system is a solution of the
old system as well.

Warning: Do not multiply an equation by 0, since that “kills”
the equation!
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Instead of manipulating systems linear systems in this way, we
can manipulate their augmented matrices.

There are three types of “elementary row operations” on
matrices (with entries understood to be in some field F):

1 Swap (interchange) two rows.

We denote the operation of swapping rows i and j (i ̸= j) by
“Ri ↔ Rj .”
For example, we can swap the first and third row of the matrix
on the left to obtain the matrix on the right.[ 1 3 −2 −1

1
2 0 2 0
1 1 2 2

]
R1↔R3∼

[ 1 1 2 2
1
2 0 2 0
1 3 −2 −1

]



Instead of manipulating systems linear systems in this way, we
can manipulate their augmented matrices.
There are three types of “elementary row operations” on
matrices (with entries understood to be in some field F):

1 Swap (interchange) two rows.

We denote the operation of swapping rows i and j (i ̸= j) by
“Ri ↔ Rj .”
For example, we can swap the first and third row of the matrix
on the left to obtain the matrix on the right.[ 1 3 −2 −1

1
2 0 2 0
1 1 2 2

]
R1↔R3∼

[ 1 1 2 2
1
2 0 2 0
1 3 −2 −1

]



Instead of manipulating systems linear systems in this way, we
can manipulate their augmented matrices.
There are three types of “elementary row operations” on
matrices (with entries understood to be in some field F):

1 Swap (interchange) two rows.

We denote the operation of swapping rows i and j (i ̸= j) by
“Ri ↔ Rj .”
For example, we can swap the first and third row of the matrix
on the left to obtain the matrix on the right.[ 1 3 −2 −1

1
2 0 2 0
1 1 2 2

]
R1↔R3∼

[ 1 1 2 2
1
2 0 2 0
1 3 −2 −1

]



Instead of manipulating systems linear systems in this way, we
can manipulate their augmented matrices.
There are three types of “elementary row operations” on
matrices (with entries understood to be in some field F):

1 Swap (interchange) two rows.
We denote the operation of swapping rows i and j (i ̸= j) by
“Ri ↔ Rj .”

For example, we can swap the first and third row of the matrix
on the left to obtain the matrix on the right.[ 1 3 −2 −1

1
2 0 2 0
1 1 2 2

]
R1↔R3∼

[ 1 1 2 2
1
2 0 2 0
1 3 −2 −1

]



Instead of manipulating systems linear systems in this way, we
can manipulate their augmented matrices.
There are three types of “elementary row operations” on
matrices (with entries understood to be in some field F):

1 Swap (interchange) two rows.
We denote the operation of swapping rows i and j (i ̸= j) by
“Ri ↔ Rj .”
For example, we can swap the first and third row of the matrix
on the left to obtain the matrix on the right.[ 1 3 −2 −1

1
2 0 2 0
1 1 2 2

]
R1↔R3∼

[ 1 1 2 2
1
2 0 2 0
1 3 −2 −1

]



2 Multiply one row by a non-zero scalar.

We denote the operation of multiplying row i by a scalar
α ̸= 0 by “Ri → αRi .”
For instance, we can multiply the second row of the matrix on
the left by 2 to obtain the matrix on the right. 1 1 2 2
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 1 1 2 2
1 0 4 0
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3 Add a scalar multiple of one row to another row.

We denote the operation of adding scalar α times row i to row
j (i ̸= j) by “Rj → Rj + αRi .”
For example, we can add (−1) times the second row to the
third row of the matrix on the left to obtain the matrix on the
right. 1 1 2 2

1 0 4 0
1 3 −2 −1

 R3→R3+(−1)R2∼

 1 1 2 2
1 0 4 0
0 3 −6 −1



Note: Instead of “R3 → R3 + (−1)R2,” we could also have
written (and we typically do write) just “R3 → R3 − R2.”
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Elementary row operations:
1 Swap (interchange) two rows.

We denote the operation of swapping rows i and j (i ̸= j) by
“Ri ↔ Rj .”

2 Multiply one row by a non-zero scalar.
We denote the operation of multiplying row i by a scalar
α ̸= 0 by “Ri → αRi .”

3 Add a scalar multiple of one row to another row.
We denote the operation of adding scalar α times row i to
row j (i ̸= j) by “Rj → Rj + αRi .”

Importantly, all elementary row operations are reversible:

1 we can undo (reverse) the operation of swapping two rows
(“Ri ↔ Rj”) by applying the same operation again;

2 we can undo (reverse) the operation of multiplying row i by a
scalar α ̸= 0 (“Ri → αRi”) by multiplying row i by α−1

(“Ri → α−1Ri”);
3 we can undo (reverse) the operation of adding scalar α times

row i to another row j (“Rj → Rj + αRi”) by adding −α times
row i to row j (“Rj → Rj − αRi”).



Elementary row operations:
1 Swap (interchange) two rows.

We denote the operation of swapping rows i and j (i ̸= j) by
“Ri ↔ Rj .”

2 Multiply one row by a non-zero scalar.
We denote the operation of multiplying row i by a scalar
α ̸= 0 by “Ri → αRi .”

3 Add a scalar multiple of one row to another row.
We denote the operation of adding scalar α times row i to
row j (i ̸= j) by “Rj → Rj + αRi .”

Importantly, all elementary row operations are reversible:

1 we can undo (reverse) the operation of swapping two rows
(“Ri ↔ Rj”) by applying the same operation again;

2 we can undo (reverse) the operation of multiplying row i by a
scalar α ̸= 0 (“Ri → αRi”) by multiplying row i by α−1

(“Ri → α−1Ri”);
3 we can undo (reverse) the operation of adding scalar α times

row i to another row j (“Rj → Rj + αRi”) by adding −α times
row i to row j (“Rj → Rj − αRi”).



Elementary row operations:
1 Swap (interchange) two rows.

We denote the operation of swapping rows i and j (i ̸= j) by
“Ri ↔ Rj .”

2 Multiply one row by a non-zero scalar.
We denote the operation of multiplying row i by a scalar
α ̸= 0 by “Ri → αRi .”

3 Add a scalar multiple of one row to another row.
We denote the operation of adding scalar α times row i to
row j (i ̸= j) by “Rj → Rj + αRi .”

Importantly, all elementary row operations are reversible:
1 we can undo (reverse) the operation of swapping two rows

(“Ri ↔ Rj”) by applying the same operation again;

2 we can undo (reverse) the operation of multiplying row i by a
scalar α ̸= 0 (“Ri → αRi”) by multiplying row i by α−1

(“Ri → α−1Ri”);
3 we can undo (reverse) the operation of adding scalar α times

row i to another row j (“Rj → Rj + αRi”) by adding −α times
row i to row j (“Rj → Rj − αRi”).



Elementary row operations:
1 Swap (interchange) two rows.

We denote the operation of swapping rows i and j (i ̸= j) by
“Ri ↔ Rj .”

2 Multiply one row by a non-zero scalar.
We denote the operation of multiplying row i by a scalar
α ̸= 0 by “Ri → αRi .”

3 Add a scalar multiple of one row to another row.
We denote the operation of adding scalar α times row i to
row j (i ̸= j) by “Rj → Rj + αRi .”

Importantly, all elementary row operations are reversible:
1 we can undo (reverse) the operation of swapping two rows

(“Ri ↔ Rj”) by applying the same operation again;
2 we can undo (reverse) the operation of multiplying row i by a

scalar α ̸= 0 (“Ri → αRi”) by multiplying row i by α−1

(“Ri → α−1Ri”);

3 we can undo (reverse) the operation of adding scalar α times
row i to another row j (“Rj → Rj + αRi”) by adding −α times
row i to row j (“Rj → Rj − αRi”).



Elementary row operations:
1 Swap (interchange) two rows.

We denote the operation of swapping rows i and j (i ̸= j) by
“Ri ↔ Rj .”

2 Multiply one row by a non-zero scalar.
We denote the operation of multiplying row i by a scalar
α ̸= 0 by “Ri → αRi .”

3 Add a scalar multiple of one row to another row.
We denote the operation of adding scalar α times row i to
row j (i ̸= j) by “Rj → Rj + αRi .”

Importantly, all elementary row operations are reversible:
1 we can undo (reverse) the operation of swapping two rows

(“Ri ↔ Rj”) by applying the same operation again;
2 we can undo (reverse) the operation of multiplying row i by a

scalar α ̸= 0 (“Ri → αRi”) by multiplying row i by α−1

(“Ri → α−1Ri”);
3 we can undo (reverse) the operation of adding scalar α times

row i to another row j (“Rj → Rj + αRi”) by adding −α times
row i to row j (“Rj → Rj − αRi”).



Remark:
Solving systems of linear equations is our primary motivation
for introducing elementary row operations.

However, we can, in principle, perform elementary row
operations on any matrix (with entries in some field), even one
that was not obtained as an augmented matrix of a linear
system.

We will, indeed, do this at various points in this course.
However, for now, it is useful to think of elementary row
operations on matrices as a more compact way of performing
the corresponding operations on linear systems.
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Terminology/Notation: If one matrix can be obtained from
another via some sequence of elementary row operations, then
the two matrices are said to be row equivalent. If matrices A
and B are row equivalent, then we write A ∼ B.

Note that any two row equivalent matrices are of the same size
(i.e. have the same number of rows and the same number of
columns), and their entries belong to the same field.

Remark: Clearly, if two matrices with at least two columns
(and with entries in some field F) are row equivalent, then
they encode equivalent linear systems (as augmented
matrices).

A matrix that only has one column is not the augmented
matrix of any linear system.
That said, according to our definition, two one-column
matrices (i.e. two column vectors) can be row equivalent.
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Proposition 1.3.5
Let F be a field. Then all the following hold:

(a) for all A ∈ Fn×m, A ∼ A;
(b) for all A, B ∈ Fn×m, if A ∼ B, then B ∼ A;
(c) for all A, B, C ∈ Fn×m, if A ∼ B and B ∼ C , then A ∼ C .

Remark: Proposition 1.3.5 states that, for a field F, row
equivalence is an equivalence relation on the set Fn×m.
Proof.

(a) Fix A ∈ Fn×m. By, for example, multiplying the first
row of A by 1 (i.e. by applying the elementary row operation
“R1 → 1R1”), we obtain the original matrix A; so, A ∼ A.
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Proof (continued). (b) Fix A, B ∈ Fn×m, and assume that A ∼ B.

Then by applying some sequence R1, . . . , Rk of elementary row
operations to A, we obtain the matrix B. But we know that
elementary row operations are reversible! For each i ∈ {1, . . . , k},
let R ′

i be the elementary row operation that reverses (undoes) the
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A zero row of a matrix is a row in which all entries are zero,
and a non-zero row is a row that has at least one non-zero
entry.

Zero and non-zero columns are defined analogously.
The leading entry of a non-zero row is the leftmost non-zero
entry of that row.
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A matrix is in row echelon form (or simply echelon form),
abbreviated REF, if it satisfies the following two conditions:

1 all non-zero rows are above any zero rows;
2 each leading entry of a non-zero row (other than the top row)

is in a column strictly to the right of the column containing
the leading entry of the row right above.1



0 ■ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ■ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ■ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 ■ ∗ ∗
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


Here, ■’s represent non-zero numbers, and ∗’s represent
arbitrary numbers.

1So, all entries in a column below a leading entry of a row are zeros.



If, in addition, the matrix satisfies the following two
conditions, then it is in reduced row echelon form (or simply
reduced echelon form), abbreviated RREF:

3 the leading entry in each non-zero row is 1;
4 each leading 1 is the only non-zero entry in its column.
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0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


Here, ∗’s represent arbitrary numbers.

If a matrix is in row echelon form (resp. reduced row echelon
form), then we also say that the matrix is a row echelon
matrix (resp. reduced row echelon matrix).
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REF RREF

A pivot position of a matrix in row echelon form is the
position of a leading entry of a non-zero row, and a pivot
column of a matrix in row echelon form is a column that
contains a pivot position.
In our diagram representing a matrix in row echelon form, the
pivot positions are the positions of the black squares, and the
pivot columns are the columns containing those black squares.
In the special case of matrices in reduced row echelon form,
the pivot positions are the positions of the leading 1’s of the
non-zero rows, and the pivot columns are the columns
containing those leading 1’s.
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Theorem 1.3.6
Every matrix (with entries in some field) is row equivalent to a
unique matrix in reduced row echelon form.

Proof: Lecture Notes (optional).
The proof is an example of a slightly more involved proof by
induction.
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Theorem 1.3.6
Every matrix (with entries in some field) is row equivalent to a
unique matrix in reduced row echelon form.

Corollary 1.3.7
If two row equivalent matrices (with entries in some field) are both
in row echelon form, then they have exactly the same pivot
positions and exactly the same pivot columns.

Proof of Corollary 1.3.7: Lecture Notes (optional).
The proof of Corollary .1.3.7 is not very hard, if we assume
that Theorem 1.3.6 is true.
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By Theorem 1.3.6, every matrix A (with entries in some field)
is row equivalent to a unique matrix in reduced row echelon
form, which we call the reduced row echelon form of A,
denoted by RREF(A).

Corollary 1.3.8
Two matrices (with entries in some field) are row equivalent if and
only if they have the same reduced row echelon form.

Proof: Lecture Notes (optional).
The proof of Corollary 1.3.8 is not very hard, is we assume
that Theorem 1.3.6 is true.
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By Theorem 1.3.6, every matrix A (with entries in some field)
is row equivalent to a unique matrix in reduced row echelon
form, which we call the reduced row echelon form of A,
denoted by RREF(A).

A row echelon form of a matrix A is any matrix that is in row
echelon form and is row equivalent to A.
A matrix may have more than one row echelon form (i.e. it
may be row equivalent to more than one matrix in row
echelon form), but by Corollary 1.3.7, all row echelon matrices
of a given matrix have the same “shape,” i.e. their “black
squares” are in the same place.
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The pivot positions and the pivot columns of an arbitrary
matrix A (with entries from some field) are the pivot positions
and the pivot columns, respectively, of any matrix in row
echelon form that is row equivalent to A.

By Corollary 1.3.7, this is well-defined.

In particular, if we have computed the reduced row echelon
form of a matrix A, then we can immediately identify the
pivot positions and the pivot columns of A.
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We now describe an algorithm, called the row reduction
algorithm, that transforms any matrix (with entries in some
field) into a row equivalent matrix that is in reduced row
echelon form.

This algorithm proves the existence part of Theorem 1.3.6, but
not the uniqueness part.

The algorithm has two parts: the “forward phase” and the
“backward phase.”
The forward phase transforms the matrix into one in row
echelon form.
The backward phase transforms a matrix in row echelon form
into one in reduced row echelon form.
In the description of the algorithm, we will use the word
“pivot” to mean the actual number that is in the pivot
position in question (or that we intend to move into the pivot
position).
Let’s describe the algorithm!
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The row reduction algorithm:
Forward phase:

1 Begin with the leftmost non-zero column. This is a pivot
column. The pivot position is at the top of the column.

2 Select a non-zero entry in the pivot column as a pivot. If
necessary, interchange rows to move this entry into the pivot
position.

3 Use elementary row operations of the form “Rj → Rj + αRi”
(where row i contains the pivot position in question, row j is
below row i , and α is a suitable scalar) to create zeros in all
positions below the pivot position.

4 Cover (or ignore) the row containing the pivot position, as well
as all the rows (if any) above it. Apply steps 1-4 to the
submatrix that remains. Repeat the process until there are no
more non-zero rows to modify.

Backward phase:
5 Beginning with the rightmost pivot column and working

upward and to the left, create zeros above each pivot position.
If a pivot is not 1, make it 1 by a scaling operation
(“Ri → αRi ,” for a suitable scalar α ̸= 0).



Example 1.3.9
Apply the row reduction algorithm to the matrix A below (with
entries understood to be in R) in order to compute its reduced row
echelon form.

A :=

 0 −3 −6 3 4 −1
2 1 −4 13 −4 3
2 3 0 11 −6 5


Solution.

We first implement the forward phase of the algorithm in
order to transform the matrix into one in row echelon form, as
follows (next slide).
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Solution (continued). Forward phase:

A =

 0 −3 −6 3 4 −1
2 1 −4 13 −4 3
2 3 0 11 −6 5



R1↔R3∼

 2 3 0 11 −6 5
2 1 −4 13 −4 3
0 −3 −6 3 4 −1
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Example 1.3.9
Apply the row reduction algorithm to the matrix A below (with
entries understood to be in R) in order to compute its reduced row
echelon form.

A :=

 0 −3 −6 3 4 −1
2 1 −4 13 −4 3
2 3 0 11 −6 5


Solution (continued). The backward phase of row reduction is now
complete: our matrix is in reduced row echelon form. Thus,

RREF(A) =

 1 0 −3 7 0 4
0 1 2 −1 0 3
0 0 0 0 1 2

 .

□

There are several other examples in the lecture notes (with
matrix entries in Z2, Z3, and Z5).
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How do we solve linear systems?

First, we form the augmented matrix of our linear system, and
using row reduction, we find the reduced row echelon form of
that matrix.
Then, we “translate” this matrix (in reduced row echelon
form) into the linear system that it encodes.
The linear system that we obtain is equivalent to the one that
we started with, that is, the two systems have exactly the
same solution set.
We now read off the solution set as follows.
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1 If the rightmost column of the augmented matrix (the one to
the right of the vertical dotted line) is a pivot column, then
the system is inconsistent, i.e. it has no solutions.

For example, suppose that by row reduction, we obtained the
following matrix (say, with coefficients in R).

1 0 −1 0
0 1 5 0
0 0 0 1
0 0 0 0


This matrix encodes the following linear system:

x1 − x3 = 0
x2 + 5x3 = 0

0 = 1
0 = 0

Because of the equation “0 = 1,” the system is inconsistent
(i.e. it has no solutions).



2 If the rightmost column of the augmented matrix (the one to
the right of the vertical dotted line) is not a pivot column,
but all the other columns are pivot columns, then the system
has a unique solution.

Example: next slide!



For example, suppose that by row reduction, we obtained the
following matrix (say, with coefficients in R).

1 0 0 −5
0 1 0 0
0 0 1 3
0 0 0 0


This matrix encodes the following linear system:

x1 = −5
x2 = 0

x3 = 3
0 = 0

This system is consistent and has a unique solution, which we
can immediately read off, as follows.

x1 = −5
x2 = 0
x3 = 3



3 If the rightmost column of the augmented matrix (the one to
the right of the vertical dotted line) is not a pivot column,
and at least one of the other columns is also not a pivot
column, then the system has more than one solution, which
we read off as follows.

The variables that correspond to the non-pivot columns (we
call these variables free variables) may take any value; these
values (called parameters) are denoted by letters such as r , s, t.
The variables that correspond to the pivot columns are called
basic, and we solve for them in terms of our parameters.
This form of solution is called the parametric form of the
solution; we will also refer to it as the general solution.

4 Example: next slide!
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For example, suppose that by row reduction, we obtained the
following matrix (say, with coefficients in R). 1 2 0 5 6 0

0 0 1 −1 7 −3
0 0 0 0 0 0



This matrix encodes the linear system below.
x1 + 2x2 + 5x4 + 6x5 = 0

x3 − x4 + 7x5 = −3
0 = 0

The system is consistent and has more than one solution.
The variables variables x2, x4, x5 are free, and the remaining
variables are basic. We now read off the solutions as follows:

x1 = −2r − 5s − 6t
x2 = r
x3 = s − 7t − 3
x4 = s
x5 = t where r , s, t ∈ R.
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From the previous slide:

x1 = −2r − 5s − 6t
x2 = r
x3 = s − 7t − 3
x4 = s
x5 = t where r , s, t ∈ R.

Remark: Do not forget to specify which field your parameters
come from! Here, we have “r , s, t ∈ R” because the
coefficients of our system are in R.



From the previous slide:

x1 = −2r − 5s − 6t
x2 = r
x3 = s − 7t − 3
x4 = s
x5 = t where r , s, t ∈ R.

Remark: Do not forget to specify which field your parameters
come from! Here, we have “r , s, t ∈ R” because the
coefficients of our system are in R.



Specifying the number of solutions of a linear system:

An inconsistent linear system has zero solutions.
A consistent system may have a unique solution (i.e. exactly
one solution), or it may have more than one solution.
A consistent system with no free variables has a unique
solution.
A consistent system that has at least one free variable has
more than one solution, since each free variable can take an
arbitrary value from the field F in question.

If our field is infinite (for example, if it is Q, R, or C), then a
consistent system with at least one free variable has infinitely
many solutions.
On the other hand, if our field F is finite, and our linear
system is consistent with exactly k free variables, then the
number of solutions of our system is precisely |F|k (where |F|
is the cardinality of F, i.e. the number of elements in F).
In particular, if F = Zp for some prime number p, then a
consistent system with exactly k free variables has exactly pk

solutions.
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A homogeneous linear system is a linear system of the form

a1,1x1 + a1,2x2 + . . . + a1,mxm = 0
a2,1x1 + a2,2x2 + . . . + a2,mxm = 0

...
an,1x1 + an,2x2 + . . . + an,mxm = 0

where the coefficients ai ,j are all from some field F (and 0 is
also understood to be from that same field F).

Such a system is always consistent: x1 = x2 = · · · = xm = 0 is
a solution, called the trivial solution.
A non-trivial solution of a homogeneous linear system is a
solution that is not trivial.
Some homogeneous linear systems have only the trivial
solution, whereas others also have non-trivial solutions.

This depends on whether there are any free variables.
When working with homogeneous linear systems, we typically
row reduce only the coefficient matrix, and not the
augmented matrix.
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Such a system is always consistent: x1 = x2 = · · · = xm = 0 is
a solution, called the trivial solution.
A non-trivial solution of a homogeneous linear system is a
solution that is not trivial.
Some homogeneous linear systems have only the trivial
solution, whereas others also have non-trivial solutions.

This depends on whether there are any free variables.
When working with homogeneous linear systems, we typically
row reduce only the coefficient matrix, and not the
augmented matrix.



Example 1.3.17
Solve the homogeneous linear system below, with coefficients
understood to be in R.

2x1 − 4x2 + 6x4 = 0
2x1 − 4x2 + 2x3 − 2x4 = 0

How many solutions does this homogeneous linear system have?
Does it have any non-trivial solutions?

Solution.

The coefficient matrix of our homogeneous linear
system is

A :=
[

2 −4 0 6
2 −4 2 −2

]
We row reduce this matrix as follows (next slide):
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Solution (continued).

A =
[

2 −4 0 6
2 −4 2 −2

]

R2→R2−R1∼
[

2 −4 0 6
0 0 2 −8

]

R1→ 1
2 R1

R2→ 1
2 R2∼

[
1 −2 0 3
0 0 1 −4

]
.

The last matrix from the calculation above is in reduced row
echelon form, and so

RREF(A) =
[

1 −2 0 3
0 0 1 −4

]
.
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Solution (continued). Reminder:

A =
[

2 −4 0 6
2 −4 2 −2

]
,

RREF(A) =
[

1 −2 0 3
0 0 1 −4

]
.

Remark:
We must keep in mind that A is the coefficient matrix of our
linear system.
The augmented matrix of our linear system would be[

A 0
]
.

Since zero columns remain unchanged when we perform
elementary row operations, the matrix RREF

( [
A 0

] )
is

obtained by adding a zero column to the right of RREF(A).
However, we do not normally write all this! We simply keep
track of it mentally.
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Solution (continued). Reminder: RREF(A) =
[

1 −2 0 3
0 0 1 −4

]
.

We now continue our computation. We see from the matrix
RREF(A) that the pivot columns of the coefficient matrix A are its
first and third column. So, x1, x3 are the basic variables, and x2, x4
are the free variables. Further, we see from RREF(A) that our
original linear system is equivalent to the linear system below.

x1 − 2x2 + 3x4 = 0
x3 − 4x4 = 0

We now read off the solutions as follows:

x1 = 2s − 3t
x2 = s
x3 = 4t
x4 = t where s, t ∈ R.



Solution (continued). Reminder: RREF(A) =
[

1 −2 0 3
0 0 1 −4

]
.

We now continue our computation.

We see from the matrix
RREF(A) that the pivot columns of the coefficient matrix A are its
first and third column. So, x1, x3 are the basic variables, and x2, x4
are the free variables. Further, we see from RREF(A) that our
original linear system is equivalent to the linear system below.

x1 − 2x2 + 3x4 = 0
x3 − 4x4 = 0

We now read off the solutions as follows:

x1 = 2s − 3t
x2 = s
x3 = 4t
x4 = t where s, t ∈ R.



Solution (continued). Reminder: RREF(A) =
[

1 −2 0 3
0 0 1 −4

]
.

We now continue our computation. We see from the matrix
RREF(A) that the pivot columns of the coefficient matrix A are its
first and third column.

So, x1, x3 are the basic variables, and x2, x4
are the free variables. Further, we see from RREF(A) that our
original linear system is equivalent to the linear system below.

x1 − 2x2 + 3x4 = 0
x3 − 4x4 = 0

We now read off the solutions as follows:

x1 = 2s − 3t
x2 = s
x3 = 4t
x4 = t where s, t ∈ R.



Solution (continued). Reminder: RREF(A) =
[

1 −2 0 3
0 0 1 −4

]
.

We now continue our computation. We see from the matrix
RREF(A) that the pivot columns of the coefficient matrix A are its
first and third column. So, x1, x3 are the basic variables, and x2, x4
are the free variables.

Further, we see from RREF(A) that our
original linear system is equivalent to the linear system below.

x1 − 2x2 + 3x4 = 0
x3 − 4x4 = 0

We now read off the solutions as follows:

x1 = 2s − 3t
x2 = s
x3 = 4t
x4 = t where s, t ∈ R.



Solution (continued). Reminder: RREF(A) =
[

1 −2 0 3
0 0 1 −4

]
.

We now continue our computation. We see from the matrix
RREF(A) that the pivot columns of the coefficient matrix A are its
first and third column. So, x1, x3 are the basic variables, and x2, x4
are the free variables. Further, we see from RREF(A) that our
original linear system is equivalent to the linear system below.

x1 − 2x2 + 3x4 = 0
x3 − 4x4 = 0

We now read off the solutions as follows:

x1 = 2s − 3t
x2 = s
x3 = 4t
x4 = t where s, t ∈ R.



Solution (continued). Reminder: RREF(A) =
[

1 −2 0 3
0 0 1 −4

]
.

We now continue our computation. We see from the matrix
RREF(A) that the pivot columns of the coefficient matrix A are its
first and third column. So, x1, x3 are the basic variables, and x2, x4
are the free variables. Further, we see from RREF(A) that our
original linear system is equivalent to the linear system below.

x1 − 2x2 + 3x4 = 0
x3 − 4x4 = 0

We now read off the solutions as follows:

x1 = 2s − 3t
x2 = s
x3 = 4t
x4 = t where s, t ∈ R.



Solution (continued). Reminder: Our general solution was

x1 = 2s − 3t
x2 = s
x3 = 4t
x4 = t where s, t ∈ R.

Since our system has free variables (in fact, two of them), and
since we are working over the infinite field R, we see that our
system has infinitely many solutions. In particular, our system has
a non-trivial solution (in fact, it has infinitely many of them). □
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Subsections for self-study:

Subsection 1.3.5: Solving systems of linear equations via back
substitution

This is a slightly different method for solving linear systems.
It is not so convenient for solving linear systems by hand, but
it is a method that computers use to solve linear systems, and
you might be asked to program it.

Subsection 1.3.6: A few more remarks about the (reduced)
row echelon form

Easy! Everything follows from the appropriate definitions and
from the description of the row reduction algorithm.
Read it to check your understanding.

Subsection 1.3.7: Proof of Theorem 1.3.6 and Corollaries 1.3.7
and 1.3.8

Optional (for the ambitious).
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