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Notation: Throughout this course, we will use the following
notation:

N is the set of all natural numbers (positive integers);
N0 is the set of all non-negative integers;
Z is the set of all integers;
Q is the set of all rational numbers;
R is the set of all real numbers;
C is the set of all complex numbers.



This lecture has three parts:

1 Mathematical induction;
2 Modular arithmetic;
3 Arithmetic in Zn and Fermat’s Little Theorem
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1 Mathematical induction

Mathematical induction is a proof technique that can be used
to prove that a certain statement holds for all positive
integers n.
Let P(n) be a statement about the number n.

In order to
prove that P(n) holds for every positive integer n, it suffices
to prove the following two statements:

Base case: P(1) is true;
Induction step: for every positive integer n,
if P(n) is true︸ ︷︷ ︸

“induction hypothesis”

, then P(n + 1) is true.

P (1)
ind. step
=⇒ P (2)

ind. step
=⇒ P (3)

ind. step
=⇒ P (4)

ind. step
=⇒ . . .

base
case
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Example 0.1.1

Prove that 1 + 2 + · · · + n = n(n+1)
2 for all positive integers n.

Solution.

Let P(n) be the statement that 1 + 2 + · · · + n = n(n+1)
2 .

Thus:
P(1) is the statement that 1 = 1·(1+1)

2 ;

P(2) is the statement that 1 + 2 = 2·(2+1)
2 ;

P(3) is the statement that 1 + 2 + 3 = 3·(3+1)
2 ;

etc.
We need to prove that the statement P(n) is true for all positive
integers n.
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Example 0.1.1

Prove that 1 + 2 + · · · + n = n(n+1)
2 for all positive integers n.

Solution (continued). Reminder: P(n) is the statement that
1 + 2 + · · · + n = n(n+1)

2 .

Base case: n = 1. Obviously, 1 = 1·(1+1)
2 . Thus, P(1) is true.

Induction step: Fix a positive integer n, and assume inductively
that P(n) is true. We must show that P(n + 1) is true.
The induction hypothesis states that 1 + 2 + · · · + n = n(n+1)

2 .
Using this, we must prove that

1 + 2 + · · · + n + (n + 1) = (n+1)
(

(n+1)+1
)

2 . We compute (next
slide):
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Example 0.1.1

Prove that 1 + 2 + · · · + n = n(n+1)
2 for all positive integers n.

Solution (continued). Reminder: P(n) is the statement that
1 + 2 + · · · + n = n(n+1)

2 .

1 + 2 + · · · + n + (n + 1) = (1 + 2 + · · · + n) + (n + 1)

ind.
hyp.= n(n+1)

2 + (n + 1)

= (n + 1)(n
2 + 1)

= (n+1)
(

(n+1)+1
)

2 .

Thus, P(n + 1) is true. This completes the induction. □



Sometimes, the base case may be different from n = 1.

This may happen if we need to prove that a statement P(n) is
true for all n ≥ k, where k is an integer other than 1.

Typically, we will have k = 0 or k > 1. However, in principle, k
may even be a negative integer.

In this case, the base case will be n = k, i.e. we will need to
prove the following two statements:

Base case: P(k) is true;
Induction step: for every integer n ≥ k,
if P(n) is true︸ ︷︷ ︸

“induction hypothesis”

, then P(n + 1) is true.

P (k)
ind. step
=⇒ P (k + 1)

ind. step
=⇒ P (k + 2)

ind. step
=⇒ P (k + 3)

ind. step
=⇒ . . .
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Example 0.1.2
Prove that 3n < 2n for all integers n ≥ 4.

Solution.

Since we are proving the statement for integers n ≥ 4,
our base case is n = 4.

Base case: n = 4. Clearly, 3 · 4 = 12 < 16 = 24.

Induction step: Fix an integer n ≥ 4, and assume inductively that
3n < 2n. We must show that 3(n + 1) < 2n+1. We observe the
following:

3(n + 1) = 3n + 3
< 2n + 3 by the induction hypothesis
< 2n + 22

< 2n + 2n because n > 2
= 2n+1

Thus, the statement is true for n + 1. This completes the
induction. □
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Sometimes, induction can have more than one case.

Suppose that k is an integer, and that we wish to prove
inductively that P(n) holds for all integers n ≥ k.
Ordinarily, we would expect n = k to be the base case.
However, suppose that we do not know how to prove the
implication “P(n) =⇒ P(n + 1),” but we do know how to
prove that “P(n) =⇒ P(n + ℓ),” where ℓ is some positive
integer (other than 1).
In this case, we will have a slightly modified induction step
(“P(n) =⇒ P(n + ℓ)” instead of “P(n) =⇒ P(n + 1)”), and
we will have ℓ base cases, namely,
P(k), P(k + 1), . . . , P(k + ℓ − 1).
More precisely, we will need to prove the following (next slide):
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Base case: P(k), P(k + 1), . . . , P(k + ℓ − 1) are true;
Induction step: for every integer n ≥ k,
if P(n) is true︸ ︷︷ ︸

“induction hypothesis”

, then P(n + ℓ) is true.

P (k)

P (k + 1)

...

P (k + ℓ− 1)

ind. step
=⇒

ind. step
=⇒

ind. step
=⇒

P (k + ℓ)

P (k + ℓ+ 1)

P (k + 2ℓ− 1)

ind. step
=⇒

ind. step
=⇒

ind. step
=⇒

P (k + 2ℓ)

P (k + 2ℓ+ 1)

P (k + 3ℓ− 1)

ind. step
=⇒

ind. step
=⇒

ind. step
=⇒

. . .

. . .

. . .

...
...

base
case



Example 0.1.3
Suppose you have an unlimited number of 3 Kč stamps and 5 Kč
stamps (and no other stamps). Show that you can pay any amount
of postage greater or equal to 8 Kč (as long as it is in whole Kč).

Solution.

We need to show that any integer n ≥ 8 (our postage in
Kč) can be expressed in the form

n = 3a + 5b,

where a and b are non-negative integers (the number of 3 Kč and
5 Kč stamps, respectively, that we can use to pay our n Kč
postage). We will prove this by induction on n.

Obviously, if we can pay n Kč using our stamps, then we can also
pay (n + 3) Kč: we simply use one 3 Kč stamp more. In other
words, if the statement is true for n, then it is also true for n + 3.
This means that we will need three base cases: n = 8, n = 9, and
n = 10. Let us give the details.
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Solution. We need to show that any integer n ≥ 8 (our postage in
Kč) can be expressed in the form

n = 3a + 5b,

where a and b are non-negative integers (the number of 3 Kč and
5 Kč stamps, respectively, that we can use to pay our n Kč
postage). We will prove this by induction on n.
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Solution (continued).

Base case: We must show that for each
n ∈ {8, 9, 10}, there exist non-negative integers a and b s.t.
n = 3a + 5b. But this is clearly true:

8 = 3 · 1 + 5 · 1;
9 = 3 · 3 + 5 · 0;
10 = 3 · 0 + 5 · 2.

Induction step: Fix an integer n ≥ 8, and assume inductively that
the statement is true for n. WTS it is true for n + 3. By the
induction hypothesis, these exist non-negative integers a and b s.t.
n = 3a + 5b. But then n + 3 = 3(a + 1) + 5b, and so the
statement holds for n + 3. This completes the induction. □
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Solution (continued). Base case: We must show that for each
n ∈ {8, 9, 10}, there exist non-negative integers a and b s.t.
n = 3a + 5b. But this is clearly true:

8 = 3 · 1 + 5 · 1;
9 = 3 · 3 + 5 · 0;
10 = 3 · 0 + 5 · 2.

Induction step: Fix an integer n ≥ 8, and assume inductively that
the statement is true for n. WTS it is true for n + 3. By the
induction hypothesis, these exist non-negative integers a and b s.t.
n = 3a + 5b. But then n + 3 = 3(a + 1) + 5b, and so the
statement holds for n + 3. This completes the induction. □



Suppose, again, that k is an integer, and that we wish to
prove inductively that P(n) holds for all integers n ≥ k.

However, suppose that we are not able to prove the
implication “P(n) =⇒ P(n + 1),” but that we are able to
prove that P(n), P(n + 1), . . . , P(n + ℓ − 1) together imply
P(n + ℓ), where ℓ is some positive integer (other than 1).
In this case, we will again have ℓ base cases, namely,
P(k), P(k + 1), . . . , P(k + ℓ − 1).
More precisely, we will need to prove the following:

Base case: P(k), P(k + 1), . . . , P(k + ℓ − 1) are true;
Induction step: for every integer n ≥ k,
if P(n), P(n + 1), . . . , P(n + ℓ − 1) are all true︸ ︷︷ ︸

“induction hypothesis”

, then P(n + ℓ)

is true.
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Base case: P(k), P(k + 1), . . . , P(k + ℓ − 1) are true;
Induction step: for every integer n ≥ k,
if P(n), P(n + 1), . . . , P(n + ℓ − 1) are all true︸ ︷︷ ︸

“induction hypothesis”

, then P(n + ℓ)

is true.

Illustration for ℓ = 2:

base
case

P (k + 1)

P (k)

P (k + 2)
ind. step
=⇒ ind. step

=⇒ P (k + 3)
ind. step
=⇒ P (k + 4)

ind. step
=⇒ . . .



Example 0.1.4
The Fibonacci numbers are defined as follows:

F (1) = F (2) = 1;
F (n + 2) = F (n) + F (n + 1) for all positive intgers n.

Prove that F (n) = (1+
√

5)n−(1−
√

5)n

2n
√

5 for all positive integers n.

Solution.

The general term is defined in terms of the previous two
terms. Thus, instead of one base case, we have two: n = 1 and
n = 2.

Remark: If the general term were defined in terms of, say, the
previous fifteen terms, then we would have fifteen base cases!
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The Fibonacci numbers are defined as follows:

F (1) = F (2) = 1;
F (n + 2) = F (n) + F (n + 1) for all positive intgers n.

Prove that F (n) = (1+
√

5)n−(1−
√

5)n

2n
√

5 for all positive integers n.

Solution (continued). Base case: For n = 1, we have:

(1+
√

5)1−(1−
√

5)1

21
√

5 = 2
√

5
2
√

5 = 1 = F (1).

For n = 2, we have:
(1+

√
5)2−(1−

√
5)2

22
√

5 = (1+2
√

5+5)−(1−2
√

5+5)
4
√

5 = 4
√

5
4
√

5 = 1 = F (2).

Thus, the statement is true for n = 1 and n = 2.



Example 0.1.4
The Fibonacci numbers are defined as follows:

F (1) = F (2) = 1;
F (n + 2) = F (n) + F (n + 1) for all positive intgers n.

Prove that F (n) = (1+
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5)n−(1−
√

5)n

2n
√

5 for all positive integers n.

Solution (continued). Induction step: Fix a positive integer n,
and assume inductively that the statement is true for n and n + 1.
WTS it is true for n + 2.

By the induction hypothesis, we have that
F (n) = (1+

√
5)n−(1−

√
5)n

2n
√

5 ;

F (n + 1) = (1+
√

5)n+1−(1−
√

5)n+1

2n+1
√

5 .

WTS F (n + 2) = (1+
√

5)n+2−(1−
√

5)n+2

2n+2
√

5 .
We compute (next slide):
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Solution (continued):

F (n + 2) (∗)= F (n) + F (n + 1)

(∗∗)= (1+
√

5)n−(1−
√

5)n

2n
√

5 + (1+
√

5)n+1−(1−
√

5)n+1

2n+1
√

5

= 4(1+
√

5)n−4(1−
√

5)n

2n+2
√

5 + 2(1+
√

5)(1+
√

5)n−2(1−
√

5)(1−
√

5)n

2n+2
√

5

= (6+2
√

5)(1+
√

5)n−(6−2
√

5)(1−
√

5)n

2n+2
√

5

= (1+
√

5)2(1+
√

5)n−(1−
√

5)2(1−
√

5)n

2n+2
√

5

= (1+
√

5)n+2−(1−
√

5)n+2

2n+2
√

5 ,

where (*) follows from the definition of Fibonacci numbers, and
(**) follows from the induction hypothesis. This completes the
induction.



We now consider a type of induction (sometimes called
“strong induction”) that lacks a base case.

Again, let P(n) be a statement about the number n.
In order to prove that P(n) holds for every positive integer n,
it suffices to prove the following:

Induction step: for every positive integer n,
if P(1), . . . , P(n − 1) are all true︸ ︷︷ ︸

“induction hypothesis”

, then P(n) is true.

Here is a slightly different way of writing the same thing:
Induction step: for every positive integer n,
if P(i) is true for all positive integers i < n︸ ︷︷ ︸

“induction hypothesis”

, then P(n) is true.



We now consider a type of induction (sometimes called
“strong induction”) that lacks a base case.
Again, let P(n) be a statement about the number n.

In order to prove that P(n) holds for every positive integer n,
it suffices to prove the following:

Induction step: for every positive integer n,
if P(1), . . . , P(n − 1) are all true︸ ︷︷ ︸

“induction hypothesis”

, then P(n) is true.

Here is a slightly different way of writing the same thing:
Induction step: for every positive integer n,
if P(i) is true for all positive integers i < n︸ ︷︷ ︸

“induction hypothesis”

, then P(n) is true.



We now consider a type of induction (sometimes called
“strong induction”) that lacks a base case.
Again, let P(n) be a statement about the number n.
In order to prove that P(n) holds for every positive integer n,
it suffices to prove the following:

Induction step: for every positive integer n,
if P(1), . . . , P(n − 1) are all true︸ ︷︷ ︸

“induction hypothesis”

, then P(n) is true.

Here is a slightly different way of writing the same thing:
Induction step: for every positive integer n,
if P(i) is true for all positive integers i < n︸ ︷︷ ︸

“induction hypothesis”

, then P(n) is true.



We now consider a type of induction (sometimes called
“strong induction”) that lacks a base case.
Again, let P(n) be a statement about the number n.
In order to prove that P(n) holds for every positive integer n,
it suffices to prove the following:

Induction step: for every positive integer n,
if P(1), . . . , P(n − 1) are all true︸ ︷︷ ︸

“induction hypothesis”

, then P(n) is true.

Here is a slightly different way of writing the same thing:
Induction step: for every positive integer n,
if P(i) is true for all positive integers i < n︸ ︷︷ ︸

“induction hypothesis”

, then P(n) is true.



Induction step: for every positive integer n,
if P(1), . . . , P(n − 1) are all true︸ ︷︷ ︸

“induction hypothesis”

, then P(n) is true.

Induction step: for every positive integer n,
if P(i) is true for all positive integers i < n︸ ︷︷ ︸

“induction hypothesis”

, then P(n) is true.

P (1)
ind. step
=⇒ P (2)

ind. step
=⇒ P (3)

ind. step
=⇒ P (4)

ind. step
=⇒ . . .

follows from “nothing”
via the induction step



As before, slight variations on the theme are possible.

In particular, for a fixed integer k, we may wish to prove by
strong induction that P(n) holds for all integers n ≥ k.
In this case, it is enough to prove the following:

Induction step: for every integer n ≥ k,
if P(k), . . . , P(n − 1) are all true︸ ︷︷ ︸

“induction hypothesis”

, then P(n) is true.

Another way of writing the same thing is as follows:
Induction step: for every integer n ≥ k,
if P(i) is true for all integers i s.t. k ≤ i < n︸ ︷︷ ︸

“induction hypothesis”

, then P(n) is

true.
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Example 0.1.5
Prove that every integer n ≥ 2 can be written as a product of one
or more prime numbers.

Solution.

Fix an integer n ≥ 2, and assume inductively that each
of 2, . . . , n − 1 can be written as a product of primes. WTS n can
be written as a product of primes.

Clearly, n is either prime or composite.

Suppose first that n is prime. Then, obviously, n can be written as
a product of primes, namely

n = n︸︷︷︸
prime

.
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a product of primes, namely
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.
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Then
there exist integers n1, n2 s.t. 2 ≤ n1, n2 < n and n = n1n2.
By the induction hypothesis, n1 and n2 can be written as products
of primes. Set n1 = p1 · · · · · pk and n2 = q1 · · · · · qℓ, where
p1, . . . , pk , q1, . . . , qℓ are prime numbers.
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2 Modular arithmetic

Given n ∈ N and m ∈ Z, we write n | m if m is divisible by n,
that is, if there exists some k ∈ Z s.t. m = kn.
Given n ∈ N and a, b ∈ Z, we say that a and b are congruent
modulo n, and we write a ≡ b (mod n) or a ≡n b, provided
that n|(a − b), i.e. a − b = kn for some k ∈ Z.
Equivalently, we have that a ≡ b (mod n) provided that a and
b leave the same remainder when divided by n (where the
remainder is required to be one of the integers 0, 1, . . . , n − 1).
Note that for a positive integer n and an integer a, we have
that a is divisible by n (equivalently: a is a multiple of n) iff
a ≡ 0 (mod n).

Example 0.2.1

2 ≡ 17 (mod 3);
−13 ≡ 8 (mod 7);
−1 ≡ 7 (mod 4);

2 ̸≡ 17 (mod 2);
−13 ̸≡ 8 (mod 5);
−1 ̸≡ 7 (mod 6).
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Reminder: a ≡ b (mod n) means that n | (a − b).

For fixed n ∈ N, every integer is congruent modulo n to
exactly one of the following n integers: 0, . . . , n − 1.

As we shall see, doing arithmetic modulo n essentially boils
down to doing arithmetic with only n values (namely
0, . . . , n − 1), as opposed to infinitely many. This is quite
useful for certain applications.
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Reminder: a ≡ b (mod n) means that n | (a − b).

Congruence modulo n can be visualized in terms of an
“n-hour clock” (see the picture below for the case n = 5).

0

1

23

4

Suppose we are given an integer a, and we wish to determine
which of 0, 1, . . . , n − 1 it is congruent to modulo n.
Obviously, if a = 0, then a ≡ 0 (mod n).
If a is positive, then we start at 0 and make n clockwise steps;
the number we finish at is the number we need.

For example, 14 ≡ 4 (mod 5).
On the other hand, if a is negative, then we make |a| = −a
many counterclockwise steps.

For example, −7 ≡ 3 (mod 5).
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Proposition 0.2.2
Let n ∈ N and a, b, c ∈ Z. Then the following hold:

(a) a ≡ a (mod n);
(b) if a ≡ b (mod n), then b ≡ a (mod n);
(c) if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

Remark: Proposition 0.2.2 states that congruence modulo n is an
“equivalence relation” on Z. (If you are not yet familiar with
equivalence relations, you will soon learn about them in Discrete
Math.)

Proof. (a) and (b) are obvious. For (c), assume that a ≡ b (mod
n) and b ≡ c (mod n). Then n | (a − b) and n | (b − c), i.e. there
exist k, ℓ ∈ Z s.t. a − b = kn and b − c = ℓn. But then

a − c = (a − b) + (b − c) = kn + ℓn = (k + ℓ)n,

i.e. n | (a − c). Thus, a ≡ c (mod n). □
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Proposition 0.2.3
Let n ∈ N and a, b, c, d ∈ Z, and assume that a ≡ b (mod n) and
c ≡ d (mod n). Then:

(a) a + c ≡ b + d (mod n);
(b) a − c ≡ b − d (mod n);
(c) ac ≡ bd (mod n).

Proof.

Since a ≡ b (mod n), we have that n|(a − b), and so there
exists some k ∈ Z s.t. a − b = kn. Similarly, since c ≡ d (mod n),
there exists some ℓ ∈ Z s.t. c − d = ℓn.
To prove (a), we observe that

(a + c) − (b + d) = (a − b) + (c − d) = kn + ℓn = (k + ℓ)n,

and so n |
(
(a + c) − (b + d)

)
. Thus, a + c ≡ b + d (mod n).

This proves (a).

The proof of (b) is similar (details: Lecture Notes).
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Proposition 0.2.3
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Proof (continued). Reminder: a − b = kn and c − d = ℓn.

For (c), we have that

ac − bd = ac − ad + ad − bd
= a(c − d) + (a − b)d
= aℓn + knd
= (aℓ + dk)n,

and so n | (ac − bd). Thus, ac ≡ bd (mod n). This proves (c). □
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Proposition 0.2.4
Let n ∈ N and a, b ∈ Z. Assume that a ≡ b (mod n). Then
at ≡ bt (mod n) for all integers t ≥ 0.

Proof.

We proceed by induction on t.

Base case: t = 0. By definition, r0 = 1 for all integers r . So,
a0 = 1 = b0, and so a0 ≡ b0(mod n).

Induction case: Fix a non-negative integer t, and assume
inductively that at ≡ bt (mod n). Since we also have that a ≡ b
(mod n), Proposition 0.2.3(c) implies that ata ≡ btb (mod n), i.e.
that at+1 ≡ bt+1 (mod n). This completes the induction. □
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Proposition 0.2.2
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Proposition 0.2.4
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at ≡ bt (mod n) for all integers t ≥ 0.



Notation: For an, an−1, . . . , a0 ∈ {0, 1, . . . , 9}, we define:

anan−1 . . . a0 :=
n∑

k=0
ak10k .

Thus, anan−1 . . . a0 is the number whose first digit is an,
whose second digit is an−1, and so on.

It is possible that this first digit is zero.
We could eliminate this possibility, but that would result in a
messier definition.
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Reminder: anan−1 . . . a0 :=
∑n

k=0 ak10k .

Proposition 0.2.6
Let a = anan−1 . . . a0. Then a ≡ an + an−1 + · · · + a0 (mod 9).
Therefore, a positive integer is divisible by 9 iff the sum of its
digits is divisible by 9.

Proof. By definition, an integer is divisible by 9 iff it is congruent
to 0 modulo 9. So, the second statement of the proposition follows
immediately from the first.
It remains to prove the first statement. Note that 10 ≡ 1 (mod 9).
So, by Proposition 0.2.4, we have that 10k ≡ 1 (mod 9) for all
non-negative integers k. It follows that for all k ∈ {0, . . . , n}, we
have that ak · 10k ≡ ak (mod 9). Consequently,

a = anan−1 . . . a0 =
n∑

k=0
ak10k ≡9

n∑
k=0

ak = an + an−1 + · · · + a0,

which is what we needed to show. □
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Let a = anan−1 . . . a0. Then a ≡ an + an−1 + · · · + a0 (mod 9).
Therefore, a positive integer is divisible by 9 iff the sum of its
digits is divisible by 9.

Proposition 0.2.7
Let a = anan−1 . . . a0. Then a ≡ an + an−1 + · · · + a0 (mod 3).
Therefore, a positive integer is divisible by 3 iff the sum of its
digits is divisible by 3.

Proof. The proof is completely analogous to that of
Proposition 0.2.6: just replace 9 with 3 throughout.
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3 Arithmetic in Zn and Fermat’s Little Theorem

Given n ∈ N and a ∈ Z, we set

[a]n :=
{
x ∈ Z | x ≡ a (mod n)

}
;

note that [a]n =
{
a + kn | k ∈ Z

}
.

For example:
[0]2 = {. . . , −4, −2, 0, 2, 4, . . . };
[1]2 = {. . . , −3, −1, 1, 3, 5, . . . };
[0]3 = {. . . , −6, −3, 0, 3, 6, . . . };
[1]3 = {. . . , −5, −2, 1, 4, 7, . . . };
[2]3 = {. . . , −4, −1, 2, 5, 8, . . . }.

Note also that a ∈ [a]n, since a ≡ a (mod n).
We define

Zn :=
{
[a]n | a ∈ Z

}
.
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Reminder: [a]n :=
{
x ∈ Z | x ≡ a (mod n)

}
.

Proposition 0.2.9
Let n ∈ N and a, b ∈ Z. Then:

(a) if a ≡ b (mod n), then [a]n = [b]n;
(b) if a ̸≡ b (mod n), then [a]n ∩ [b]n = ∅.

Proof.

This follows from the fact that, by Proposition 0.2.2,
congruence modulo n is an equivalence relation on Z. If you are
not familiar with the theory of equivalence relations, here is a
detailed proof.
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(a) if a ≡ b (mod n), then [a]n = [b]n;
(b) if a ̸≡ b (mod n), then [a]n ∩ [b]n = ∅.

Proof (continued). We first prove (a).

Suppose that a ≡ b
(mod n). WTS [a]n = [b]n. It suffices to show that [a]n ⊆ [b]n
(the proof of the reverse inclusion is analogous).
Fix x ∈ [a]n. Then x ≡ a (mod n). Since a ≡ b (mod n),
Proposition 0.2.2 guarantees that x ≡ b (mod n). Consequently,
x ∈ [b]n, and we deduce that [a]n ⊆ [b]n. This proves (a).
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Proof (continued). It remains to prove (b).

We prove the
contrapositive: if [a]n ∩ [b]n ̸= ∅, then a ≡ b (mod n). So, assume
that [a]n ∩ [b]n ̸= ∅, and fix some x ∈ [a]n ∩ [b]n.
Since x ∈ [a]n, we have that x ≡ a (mod n), and since x ∈ [b]n,
we have that x ≡ b (mod n).
But now by Proposition 0.2.2, we have that a ≡ b (mod n). This
proves (b). □
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Note that for n ∈ N, every integer is congruent to exactly one
of 0, . . . , n − 1 modulo n.

By Proposition 0.2.9, it follows that for all x ∈ Z, the set [x ]n
is equal to exactly one of the following: [0]n, . . . , [n − 1]n.

This implies that, in fact:

Zn =
{
[0]n, . . . , [n − 1]n

}
.

Moreover, by Proposition 0.2.9, no two of 0, . . . , n − 1 are
congruent to each other modulo n, and consequently,
[0]n, . . . , [n − 1]n are pairwise disjoint.
We now deduce that the sets [0]n, . . . , [n − 1]n form a
“partition” of Z, that is:

Z = [0]n ∪ · · · ∪ [n − 1]n, and
the sets [0]n, . . . , [n − 1]n are pairwise disjoint.

If you are familiar with “equivalence relations,” then note that
congruence modulo n is an equivalence relation on Z (by
Proposition 0.2.2), and the sets [0]n, . . . , [n − 1]n are the
associated equivalence classes.
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If you are familiar with “equivalence relations,” then note that
congruence modulo n is an equivalence relation on Z (by
Proposition 0.2.2), and the sets [0]n, . . . , [n − 1]n are the
associated equivalence classes.
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Reminder: For a positive integer n:
[a]n :=

{
x ∈ Z | x ≡ a (mod n)

}
for all a ∈ Z;

Zn :=
{

[a]n | a ∈ Z
}

=
{

[0]n, . . . , [n − 1]n
}

.

Notation: When working in Zn, we often write simply
0, . . . , n − 1 instead of [0]n, . . . , [n − 1]n, respectively.

We may do this only if we have previously made it clear that
our numbers (which are technically sets of integers) are in Zn.

Example 0.2.10
For n = 2, [0]2 = {2t | t ∈ Z} and [1]2 = {1 + 2t | t ∈ Z}a, and we
have that Z2 = {[0]2, [1]2}. Typically, we write simply Z2 = {0, 1},
but technically, 0 stands for the set [0]2, and 1 stands for [1]2.

aIn other words, [0]2 is the set of all even numbers, and [1]2 is the set of all
odd numbers.
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Proposition 0.2.3
Let n ∈ N and a, b, c, d ∈ Z, and assume that a ≡ b (mod n) and
c ≡ d (mod n). Then:

(a) a + c ≡ b + d (mod n);
(b) a − c ≡ b − d (mod n);
(c) ac ≡ bd (mod n).

By Proposition 0.2.3, for all n ∈ N and a, a′, b, b′ ∈ Z, if
[a]n = [a′]n and [b]n = [b′]n, then

[a + b]n = [a′ + b′]n,
[a − b]n = [a′ − b′]n, and
[ab]n = [a′b′]n.

Thus, we may define addition, subtraction, and multiplication
in Zn as follows.
For n ∈ N and a, b ∈ Z, we define

[a]n + [b]n = [a + b]n;
[a]n − [b]n = [a − b]n;
[a]n[b]n = [ab]n.
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Proposition 0.2.11
Let n ∈ N. Then all the following hold:

(a) addition and multiplication are commutative in Zn, that is, for
all a, b ∈ Zn, we have that a + b = b + a and ab = ba;

(b) addition and multiplication are associative in Zn, that is, for
all a, b, c ∈ Zn, we have that (a + b) + c = a + (b + c) and
(ab)c = a(bc);

(c) multiplication is distributive over addition in Zn, that is, for all
a, b, c ∈ Zn, we have that a(b + c) = ab + ac.

Proof.

This essentially follows from the definition of Zn, from the
fact that addition and multiplication are commutative and
associative in Z, and from the fact that multiplication is
distributive over addition in Z.

The proof of the commutativity of addition is in the Lecture Notes.
The rest is an exercise. □
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Let us now take a look at the addition and multiplication
tables for Zn, for a few small values of n.

Example 0.2.12
Below are the addition and multiplication tables for Z2.

+ [0]2 [1]2
[0]2 [0]2 [1]2
[1]2 [1]2 [0]2

· [0]2 [1]2
[0]2 [0]2 [0]2
[1]2 [0]2 [1]2

If we omit square brackets and subscripts (as we usually do), we
obtain the addition and multiplication tables for Z2 shown below.

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1
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Example 0.2.13
Below are the addition and multiplication tables for Z3.a

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

aRemember, in this context, 0 stands for [0]3, 1 stands for [1]3, and 2 stands
for [2]3.



Example 0.2.14
Below are the addition and multiplication tables for Z4.a

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

aRemember, in this context, 0 stands for [0]4, 1 stands for [1]4, 2 stands for
[2]4, and 3 stands for [3]4.



Example 0.2.15
Below are the addition and multiplication tables for Z5.a

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

aRemember, in this context, 0 stands for [0]5, 1 stands for [1]5, 2 stands for
[2]5, 3 stands for [3]5, and 4 stands for [4]5.



Z2 :
+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Z3 :

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Z4 :

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Z5 :

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1



Remark/Notation: Note that for all positive integers n, each
number a in Zn has a unique “additive inverse,” denoted by
−a, i.e. the number (element of Zn) that we need to add to a
in order to obtain 0 (here, 0 = [0]n).

When using square brackets and subscripts, we do, of course,
get −[a]n = [−a]n = [n − a]n for all positive integers n and all
integers a.
However, we will usually work in Zn without such brackets.
For small values of n, we get the following:

in Z2: −0 = 0, −1 = 1;
in Z3: −0 = 0, −1 = 2, −2 = 1;
in Z4: −0 = 0, −1 = 3, −2 = 2, −3 = 1;
in Z5: −0 = 0, −1 = 4, −2 = 3, −3 = 2, −4 = 1.
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Remark: Note that for n = 2, 3, 5, every non-zero member of
Zn has a “multiplicative inverse,” i.e. a number that we can
multiply it by to get 1.
However, for n = 4, this is not the case.
As Theorem 0.2.16 and Corollary 0.2.17 (see below) show,
this is not an accident!



Theorem 0.2.16
Let n ∈ N and a ∈ Z be relatively prime.a Then there exists some
b ∈ Z s.t. ab ≡ 1 (mod n), and therefore, [a]n[b]n = [1]n.

aThis means that the greatest common divisor of n and a, denoted by
gcd(n, a), is 1. In other words, the only positive integer that divides both n and
a is 1.

Proof.

WTS no two of 0, a, 2a, . . . , (n − 1)a are congruent
modulo n. (Note that this implies that [a]n, [2a]n, . . . , [(n − 1)a]n
are pairwise distinct.)
Suppose otherwise, and fix distinct i , j ∈ {0, . . . , n − 1} s.t. ia ≡ ja
(mod n). Then (i − j)a ≡ 0 (mod n), that is, n|(i − j)a.
Since n and a are relatively prime, it follows that n|(i − j).
But this is impossible because i , j ∈ {0, . . . , n − 1} and i ̸= j , and
so 0 < |i − j | < n.
Thus, no two of 0, a, 2a, . . . , (n − 1)a are congruent modulo n.
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Let p ∈ N be a prime number. Then:

(a) for all a ∈ Z s.t. a is not a multiple of p, there exists some
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aHere, 0 = [0]p and 1 = [1]p .
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that is not a multiple of p is relatively prime to p; (a) now follows
from Theorem 0.2.17.
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number in Zp \ {0} has a multiplicative inverse.
Fermat’s Little Theorem (below) is a strengthening of
Corollary 0.2.17 in that it gives an actual formula for this
multiplicative inverse.
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Fermat’s Little Theorem
If p ∈ N is a prime number, and a ∈ Z is not a multiple of p, then
ap−1 ≡ 1 (mod p).

We will prove Fermat’s Little Theorem in a bit, but first: how
does this give a formula for multiplicative inverses?
For a positive integer n and for a ∈ Zn, we define powers of a
recursively, as follows:

a0 = 1 (where 1 := [1]n);
am+1 = ama for all non-negative integers m.

So, for a positive integer m, we have the familiar formula

am = a · · · · · a︸ ︷︷ ︸
m

,

where it is understood that the multiplication on the
right-hand-side is in Zn.
With this set-up, we can restate Fermat’s Little Theorem in
two ways, as follows.
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Old version (to be proven later):

Fermat’s Little Theorem
If p ∈ N is a prime number, and a ∈ Z is not a multiple of p, then
ap−1 ≡ 1 (mod p).

Restatements:

Fermat’s Little Theorem
If p ∈ N is a prime number, and a ∈ Z is not a multiple of p, then(
[a]p

)p−1 = [1]p.

Fermat’s Little Theorem
If p ∈ N is a prime number and a ∈ Zp \ {0}, then ap−1 = 1.
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Fermat’s Little Theorem
If p ∈ N is a prime number and a ∈ Zp \ {0}, then ap−1 = 1.

Suppose that p is a prime number and that a ∈ Zp \ {0}.
By Fermat’s Little Theorem, ap−2 is a “multiplicative inverse”
of a, i.e. if we multiply a by ap−2 (on either side), we
obtain 1.

That is: a · ap−2 = ap−2 · a = 1.
Moreover, it is easy to see that ap−2 is the only multiplicative
inverse of a in Zp.
Indeed, if b ∈ Zp satisfies ab = 1, then by multiplying both
sides by ap−2, we obtain

ap−2 · a︸ ︷︷ ︸
=ap−1=1

b = ap−2 · 1,

and consequently, b = ap−2.



Fermat’s Little Theorem
If p ∈ N is a prime number and a ∈ Zp \ {0}, then ap−1 = 1.

Suppose that p is a prime number and that a ∈ Zp \ {0}.

By Fermat’s Little Theorem, ap−2 is a “multiplicative inverse”
of a, i.e. if we multiply a by ap−2 (on either side), we
obtain 1.

That is: a · ap−2 = ap−2 · a = 1.
Moreover, it is easy to see that ap−2 is the only multiplicative
inverse of a in Zp.
Indeed, if b ∈ Zp satisfies ab = 1, then by multiplying both
sides by ap−2, we obtain

ap−2 · a︸ ︷︷ ︸
=ap−1=1

b = ap−2 · 1,

and consequently, b = ap−2.



Fermat’s Little Theorem
If p ∈ N is a prime number and a ∈ Zp \ {0}, then ap−1 = 1.

Suppose that p is a prime number and that a ∈ Zp \ {0}.
By Fermat’s Little Theorem, ap−2 is a “multiplicative inverse”
of a, i.e. if we multiply a by ap−2 (on either side), we
obtain 1.

That is: a · ap−2 = ap−2 · a = 1.

Moreover, it is easy to see that ap−2 is the only multiplicative
inverse of a in Zp.
Indeed, if b ∈ Zp satisfies ab = 1, then by multiplying both
sides by ap−2, we obtain

ap−2 · a︸ ︷︷ ︸
=ap−1=1

b = ap−2 · 1,

and consequently, b = ap−2.



Fermat’s Little Theorem
If p ∈ N is a prime number and a ∈ Zp \ {0}, then ap−1 = 1.

Suppose that p is a prime number and that a ∈ Zp \ {0}.
By Fermat’s Little Theorem, ap−2 is a “multiplicative inverse”
of a, i.e. if we multiply a by ap−2 (on either side), we
obtain 1.

That is: a · ap−2 = ap−2 · a = 1.
Moreover, it is easy to see that ap−2 is the only multiplicative
inverse of a in Zp.

Indeed, if b ∈ Zp satisfies ab = 1, then by multiplying both
sides by ap−2, we obtain

ap−2 · a︸ ︷︷ ︸
=ap−1=1

b = ap−2 · 1,

and consequently, b = ap−2.



Fermat’s Little Theorem
If p ∈ N is a prime number and a ∈ Zp \ {0}, then ap−1 = 1.

Suppose that p is a prime number and that a ∈ Zp \ {0}.
By Fermat’s Little Theorem, ap−2 is a “multiplicative inverse”
of a, i.e. if we multiply a by ap−2 (on either side), we
obtain 1.

That is: a · ap−2 = ap−2 · a = 1.
Moreover, it is easy to see that ap−2 is the only multiplicative
inverse of a in Zp.
Indeed, if b ∈ Zp satisfies ab = 1, then by multiplying both
sides by ap−2, we obtain

ap−2 · a︸ ︷︷ ︸
=ap−1=1

b = ap−2 · 1,

and consequently, b = ap−2.



Fermat’s Little Theorem
If p ∈ N is a prime number and a ∈ Zp \ {0}, then ap−1 = 1.

So, we can say that ap−2 is the multiplicative inverse of a
(denoted by a−1), and we write

a−1︸︷︷︸
multiplicative
inverse of a

= ap−2

Note, however, that for small values of the prime number p, it
is easier to read off the multiplicative inverses of non-zero
numbers in Zp from the multiplication table for Zp than it is
to compute the (p − 2)-th powers of those numbers.
By taking a quick look at the multiplication tables for Z2, Z3,
and Z5, we get the following (next slide):
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Z2 :
+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Z3 :

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Z5 :

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

in Z2: 1−1 = 1;
in Z3: 1−1 = 1, 2−1 = 2;
in Z5: 1−1 = 1, 2−1 = 3, 3−1 = 2, 4−1 = 4.



Proof of Fermat’s Little Theorem?

Fermat’s Little Theorem
If p ∈ N is a prime number, and a ∈ Z is not a multiple of p, then
ap−1 ≡ 1 (mod p).

First, we need some notation.
For non-negative integers n, we define n! (read “n factorial”)
recursively, as follows:

0! := 1;
(n + 1)! := n! · (n + 1) for all non-negative integers n.

So, for a positive integer n, we have n! = 1 · 2 · · · · · n.
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Fermat’s Little Theorem
If p ∈ N is a prime number, and a ∈ Z is not a multiple of p, then
ap−1 ≡ 1 (mod p).

Proof.

Fix a prime number p ∈ N. Let a ∈ Z, and assume that a is
not a multiple of p.

As in the proof of Theorem 0.2.16, no two of 0, a, 2a, . . . , (p − 1)a
are congruent modulo p. For the sake of completeness, here is a
full proof.

Suppose that some two of 0, a, . . . , (p − 1)a are congruent
modulo p. Fix distinct i , j ∈ {0, 1, . . . , p − 1} s.t. ia ≡ ja (mod p).
Then (i − j)a ≡ 0 (mod p), that is, p|(i − j)a. Since p is prime
and does not divide a, we see that p|(i − j). But this is impossible
because i , j ∈ {0, . . . , p − 1} and i ̸= j , and so 0 < |i − j | < p.
Thus, no two of 0, a, 2a, . . . , (p − 1)a are congruent modulo p.



Fermat’s Little Theorem
If p ∈ N is a prime number, and a ∈ Z is not a multiple of p, then
ap−1 ≡ 1 (mod p).

Proof. Fix a prime number p ∈ N. Let a ∈ Z, and assume that a is
not a multiple of p.

As in the proof of Theorem 0.2.16, no two of 0, a, 2a, . . . , (p − 1)a
are congruent modulo p. For the sake of completeness, here is a
full proof.

Suppose that some two of 0, a, . . . , (p − 1)a are congruent
modulo p. Fix distinct i , j ∈ {0, 1, . . . , p − 1} s.t. ia ≡ ja (mod p).
Then (i − j)a ≡ 0 (mod p), that is, p|(i − j)a. Since p is prime
and does not divide a, we see that p|(i − j). But this is impossible
because i , j ∈ {0, . . . , p − 1} and i ̸= j , and so 0 < |i − j | < p.
Thus, no two of 0, a, 2a, . . . , (p − 1)a are congruent modulo p.



Fermat’s Little Theorem
If p ∈ N is a prime number, and a ∈ Z is not a multiple of p, then
ap−1 ≡ 1 (mod p).

Proof. Fix a prime number p ∈ N. Let a ∈ Z, and assume that a is
not a multiple of p.

As in the proof of Theorem 0.2.16, no two of 0, a, 2a, . . . , (p − 1)a
are congruent modulo p. For the sake of completeness, here is a
full proof.

Suppose that some two of 0, a, . . . , (p − 1)a are congruent
modulo p. Fix distinct i , j ∈ {0, 1, . . . , p − 1} s.t. ia ≡ ja (mod p).
Then (i − j)a ≡ 0 (mod p), that is, p|(i − j)a. Since p is prime
and does not divide a, we see that p|(i − j). But this is impossible
because i , j ∈ {0, . . . , p − 1} and i ̸= j , and so 0 < |i − j | < p.
Thus, no two of 0, a, 2a, . . . , (p − 1)a are congruent modulo p.



Fermat’s Little Theorem
If p ∈ N is a prime number, and a ∈ Z is not a multiple of p, then
ap−1 ≡ 1 (mod p).

Proof. Fix a prime number p ∈ N. Let a ∈ Z, and assume that a is
not a multiple of p.

As in the proof of Theorem 0.2.16, no two of 0, a, 2a, . . . , (p − 1)a
are congruent modulo p. For the sake of completeness, here is a
full proof.

Suppose that some two of 0, a, . . . , (p − 1)a are congruent
modulo p.

Fix distinct i , j ∈ {0, 1, . . . , p − 1} s.t. ia ≡ ja (mod p).
Then (i − j)a ≡ 0 (mod p), that is, p|(i − j)a. Since p is prime
and does not divide a, we see that p|(i − j). But this is impossible
because i , j ∈ {0, . . . , p − 1} and i ̸= j , and so 0 < |i − j | < p.
Thus, no two of 0, a, 2a, . . . , (p − 1)a are congruent modulo p.



Fermat’s Little Theorem
If p ∈ N is a prime number, and a ∈ Z is not a multiple of p, then
ap−1 ≡ 1 (mod p).

Proof. Fix a prime number p ∈ N. Let a ∈ Z, and assume that a is
not a multiple of p.

As in the proof of Theorem 0.2.16, no two of 0, a, 2a, . . . , (p − 1)a
are congruent modulo p. For the sake of completeness, here is a
full proof.

Suppose that some two of 0, a, . . . , (p − 1)a are congruent
modulo p. Fix distinct i , j ∈ {0, 1, . . . , p − 1} s.t. ia ≡ ja (mod p).

Then (i − j)a ≡ 0 (mod p), that is, p|(i − j)a. Since p is prime
and does not divide a, we see that p|(i − j). But this is impossible
because i , j ∈ {0, . . . , p − 1} and i ̸= j , and so 0 < |i − j | < p.
Thus, no two of 0, a, 2a, . . . , (p − 1)a are congruent modulo p.



Fermat’s Little Theorem
If p ∈ N is a prime number, and a ∈ Z is not a multiple of p, then
ap−1 ≡ 1 (mod p).

Proof. Fix a prime number p ∈ N. Let a ∈ Z, and assume that a is
not a multiple of p.

As in the proof of Theorem 0.2.16, no two of 0, a, 2a, . . . , (p − 1)a
are congruent modulo p. For the sake of completeness, here is a
full proof.

Suppose that some two of 0, a, . . . , (p − 1)a are congruent
modulo p. Fix distinct i , j ∈ {0, 1, . . . , p − 1} s.t. ia ≡ ja (mod p).
Then (i − j)a ≡ 0 (mod p), that is, p|(i − j)a.

Since p is prime
and does not divide a, we see that p|(i − j). But this is impossible
because i , j ∈ {0, . . . , p − 1} and i ̸= j , and so 0 < |i − j | < p.
Thus, no two of 0, a, 2a, . . . , (p − 1)a are congruent modulo p.



Fermat’s Little Theorem
If p ∈ N is a prime number, and a ∈ Z is not a multiple of p, then
ap−1 ≡ 1 (mod p).

Proof. Fix a prime number p ∈ N. Let a ∈ Z, and assume that a is
not a multiple of p.

As in the proof of Theorem 0.2.16, no two of 0, a, 2a, . . . , (p − 1)a
are congruent modulo p. For the sake of completeness, here is a
full proof.

Suppose that some two of 0, a, . . . , (p − 1)a are congruent
modulo p. Fix distinct i , j ∈ {0, 1, . . . , p − 1} s.t. ia ≡ ja (mod p).
Then (i − j)a ≡ 0 (mod p), that is, p|(i − j)a. Since p is prime
and does not divide a, we see that p|(i − j).

But this is impossible
because i , j ∈ {0, . . . , p − 1} and i ̸= j , and so 0 < |i − j | < p.
Thus, no two of 0, a, 2a, . . . , (p − 1)a are congruent modulo p.



Fermat’s Little Theorem
If p ∈ N is a prime number, and a ∈ Z is not a multiple of p, then
ap−1 ≡ 1 (mod p).

Proof. Fix a prime number p ∈ N. Let a ∈ Z, and assume that a is
not a multiple of p.

As in the proof of Theorem 0.2.16, no two of 0, a, 2a, . . . , (p − 1)a
are congruent modulo p. For the sake of completeness, here is a
full proof.

Suppose that some two of 0, a, . . . , (p − 1)a are congruent
modulo p. Fix distinct i , j ∈ {0, 1, . . . , p − 1} s.t. ia ≡ ja (mod p).
Then (i − j)a ≡ 0 (mod p), that is, p|(i − j)a. Since p is prime
and does not divide a, we see that p|(i − j). But this is impossible
because i , j ∈ {0, . . . , p − 1} and i ̸= j , and so 0 < |i − j | < p.

Thus, no two of 0, a, 2a, . . . , (p − 1)a are congruent modulo p.



Fermat’s Little Theorem
If p ∈ N is a prime number, and a ∈ Z is not a multiple of p, then
ap−1 ≡ 1 (mod p).

Proof. Fix a prime number p ∈ N. Let a ∈ Z, and assume that a is
not a multiple of p.

As in the proof of Theorem 0.2.16, no two of 0, a, 2a, . . . , (p − 1)a
are congruent modulo p. For the sake of completeness, here is a
full proof.

Suppose that some two of 0, a, . . . , (p − 1)a are congruent
modulo p. Fix distinct i , j ∈ {0, 1, . . . , p − 1} s.t. ia ≡ ja (mod p).
Then (i − j)a ≡ 0 (mod p), that is, p|(i − j)a. Since p is prime
and does not divide a, we see that p|(i − j). But this is impossible
because i , j ∈ {0, . . . , p − 1} and i ̸= j , and so 0 < |i − j | < p.
Thus, no two of 0, a, 2a, . . . , (p − 1)a are congruent modulo p.



Fermat’s Little Theorem
If p ∈ N is a prime number, and a ∈ Z is not a multiple of p, then
ap−1 ≡ 1 (mod p).

Proof (continued). Reminder: No two of 0, a, 2a, . . . , (p − 1)a are
congruent modulo p.

Since every integer is congruent to exactly one of 0, 1, . . . , p − 1
modulo p, it follows that there exists some rearrangement (i.e.
permutation) r1, . . . , rp−1 of the sequence 1, . . . , p − 1 s.t.

a ≡ r1 (mod p);
2a ≡ r2 (mod p);
...
(p − 1)a ≡ rp−1 (mod p).

It now follows that
a · 2a · · · · · (p − 1)a︸ ︷︷ ︸

=(p−1)!ap−1

≡ r1r2 . . . rp−1︸ ︷︷ ︸
=(p−1)!

(mod p),

and so (p − 1)!ap−1 ≡ (p − 1)! (mod p).
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Fermat’s Little Theorem
If p ∈ N is a prime number, and a ∈ Z is not a multiple of p, then
ap−1 ≡ 1 (mod p).

Proof. Reminder: (p − 1)!ap−1 ≡ (p − 1)! (mod p).

But now
(ap−1 − 1)(p − 1)! ≡ 0 (mod p),

that is, p |
(
(ap−1 − 1)(p − 1)!

)
.

Since p is prime, we see that p and (p − 1)! are relatively prime. It
follows that p | (ap−1 − 1), and consequently, ap−1 ≡ 1 (mod p),
which is what we needed to show. □
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