Linear Algebra 1: HW\#9

Denys Bulavka \& Irena Penev
Winter 2023/2024

due Friday, January 12, 2024, at noon (Prague time)

Submit your HW through the Postal Owl as a PDF attachment. Make sure your submission is printable: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. (Of course, you may also type, especially if you know how to use $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$.) Other formats will not be accepted. Please write your name on top of the first page of your HW.

Problem 1 (15 points). Consider the following set of vectors (matrices) in $\mathbb{Z}_{3}^{3 \times 2}$:

$$
\mathcal{A}=\left\{\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
0 & 0
\end{array}\right]\right\} .
$$

(a) Determine whether \mathcal{A} is a linearly independent set in $\mathbb{Z}_{3}^{3 \times 2}$.
(b) Determine whether \mathcal{A} is a spanning set of $\mathbb{Z}_{3}^{3 \times 2}$.
(c) Determine whether \mathcal{A} is a basis of $\mathbb{Z}_{3}^{3 \times 2}$.

Remark/Hint: Two of the three questions can be answered without any computation at all. Which two? (You still need to justify your answer, though!)

Problem 2 (15 points). Consider the following set of vectors (polynomials) in $\mathbb{P}_{\mathbb{Z}_{2}}^{3}$:

$$
\mathcal{B}=\left\{x^{2}, \quad x^{3}+1, \quad x^{3}+x^{2}+x+1, \quad x^{3}+x+1, \quad x^{2}+x\right\} .
$$

(a) Determine whether \mathcal{B} is a linearly independent set in $\mathbb{P}_{\mathbb{Z}_{2}}^{3}$.
(b) Determine whether \mathcal{B} is a spanning set of $\mathbb{P}_{\mathbb{Z}_{2}}^{3}$.
(c) Determine whether \mathcal{B} is a basis of $\mathbb{P}_{\mathbb{Z}_{2}}^{3}$.

Remark/Hint: Two of the three questions can be answered without any computation at all. Which two? (You still need to justify your answer, though!)

Problem 3 (15 points). Consider the following set of vectors (matrices) in $\mathbb{R}^{3 \times 3}$:

$$
\begin{aligned}
\mathcal{C}=\{ & {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & \pi & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & \pi & \pi^{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], } \\
& {\left[\begin{array}{ccc}
1 & \pi & \pi^{2} \\
\pi^{3} & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
1 & \pi & \pi^{2} \\
\pi^{3} & \pi^{4} & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
1 & \pi & \pi^{2} \\
\pi^{3} & \pi^{4} & \pi^{5} \\
0 & 0 & 0
\end{array}\right] } \\
& {\left.\left[\begin{array}{ccc}
1 & \pi & \pi^{2} \\
\pi^{3} & \pi^{4} & \pi^{5} \\
\pi^{6} & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
1 & \pi & \pi^{2} \\
\pi^{3} & \pi^{4} & \pi^{5} \\
\pi^{6} & \pi^{7} & 0
\end{array}\right],\left[\begin{array}{ccc}
1 & \pi & \pi^{2} \\
\pi^{3} & \pi^{4} & \pi^{5} \\
\pi^{6} & \pi^{7} & \pi^{8}
\end{array}\right]\right\} }
\end{aligned}
$$

(a) Determine whether \mathcal{C} is a linearly independent set in $\mathbb{R}^{3 \times 3}$.
(b) Determine whether \mathcal{C} is a spanning set of $\mathbb{R}^{3 \times 3}$.
(c) Determine whether \mathcal{C} is a basis of $\mathbb{R}^{3 \times 3}$.

Remark/Hint: You shouldn't need to do any row reducing in this problem.

Problem 4 (30 points). Consider the following polynomials with coefficients in \mathbb{Z}_{3} :

- $p_{1}(x)=x^{2}+2$;
- $p_{3}(x)=x^{3}+x^{2}+1$;
- $p_{2}(x)=2 x^{3}+1$;
- $p_{4}(x)=2 x^{2}$.

Find a basis \mathcal{B}_{U} of $U:=\operatorname{Span}\left(p_{1}(x), p_{2}(x), p_{3}(x), p_{4}(x)\right)$, and find a basis \mathcal{B} of $\mathbb{P}_{\mathbb{Z}_{3}}^{4}$ that extends \mathcal{B}_{U} (i.e. that satisfies $\mathcal{B}_{U} \subseteq \mathcal{B}$). Moreover, for each $i \in\{1,2,3,4\}$ such that $p_{i}(x) \notin \mathcal{B}$, express $p_{i}(x)$ as a linear combination of the vectors (polynomials) in \mathcal{B}.

Remark: Note that the $p_{i}(x)$'s are all of degree at most 3. However, \mathcal{B} should be a basis of $\mathbb{P}_{\mathbb{Z}_{3}}^{4}$.

Problem 5 (25 points). Consider the following matrix and vector, with entries understood to be in \mathbb{R} :

$$
A=\left[\begin{array}{cccc}
1 & -3 & 2 & 0 \\
2 & -6 & 4 & 1 \\
1 & -3 & 2 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
-5 \\
-8 \\
-3
\end{array}\right]
$$

Show that the matrix-vector equation $A \mathbf{x}=\mathbf{b}$ is consistent (and consequently, its solution set is an affine subset of \mathbb{R}^{4}). Find an affine frame and an affine basis of the solution set S of $A \mathbf{x}=\mathbf{b}$.

