Linear Algebra 1: HW#9

Denys Bulavka & Irena Penev Winter 2023/2024

due Friday, January 12, 2024, at noon (Prague time)

Submit your HW through the **Postal Owl** as a **PDF attachment**. Make sure your submission is **printable**: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. (Of course, you may also type, especially if you know how to use LAT_EX .) Other formats will **not** be accepted. Please write your **name** on top of the first page of your HW.

Problem 1 (15 points). Consider the following set of vectors (matrices) in $\mathbb{Z}_3^{3\times 2}$:

$\mathcal{A} = \left\{ \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 0 & 0 \end{bmatrix} \right\}$	\mathcal{A}	=	{	$\begin{bmatrix} 1\\2\\1 \end{bmatrix}$	2 1 1],	$\begin{bmatrix} 2\\1\\2 \end{bmatrix}$	1 1 1	,	$\begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$	1 1 1	,	$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$	2 1 0	}.	
---	---------------	---	---	---	-------------	----	---	-------------	---	---	-------------	---	---	-------------	----	--

- (a) Determine whether \mathcal{A} is a linearly independent set in $\mathbb{Z}_3^{3\times 2}$.
- (b) Determine whether \mathcal{A} is a spanning set of $\mathbb{Z}_3^{3\times 2}$.
- (c) Determine whether \mathcal{A} is a basis of $\mathbb{Z}_3^{3\times 2}$.

Remark/Hint: Two of the three questions can be answered without any computation at all. Which two? (You still need to justify your answer, though!)

Problem 2 (15 points). Consider the following set of vectors (polynomials) in $\mathbb{P}^3_{\mathbb{Z}_2}$:

$$\mathcal{B} = \left\{ x^2, \ x^3 + 1, \ x^3 + x^2 + x + 1, \ x^3 + x + 1, \ x^2 + x \right\}.$$

- (a) Determine whether \mathcal{B} is a linearly independent set in $\mathbb{P}^3_{\mathbb{Z}_2}$.
- (b) Determine whether \mathcal{B} is a spanning set of $\mathbb{P}^3_{\mathbb{Z}_2}$.

(c) Determine whether \mathcal{B} is a basis of $\mathbb{P}^3_{\mathbb{Z}_2}$.

Remark/Hint: Two of the three questions can be answered without any computation at all. Which two? (You still need to justify your answer, though!)

Problem 3 (15 points). Consider the following set of vectors (matrices) in $\mathbb{R}^{3\times3}$:

$$\mathcal{C} = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & \pi & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & \pi & \pi^2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & \pi & \pi^2 \\ \pi^3 & \pi^4 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & \pi & \pi^2 \\ \pi^3 & \pi^4 & \pi^5 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & \pi & \pi^2 \\ \pi^3 & \pi^4 & \pi^5 \\ \pi^6 & \pi^7 & 0 \end{bmatrix}, \begin{bmatrix} 1 & \pi & \pi^2 \\ \pi^3 & \pi^4 & \pi^5 \\ \pi^6 & \pi^7 & \pi^8 \end{bmatrix}, \begin{bmatrix} 1 & \pi & \pi^2 \\ \pi^3 & \pi^4 & \pi^5 \\ \pi^6 & \pi^7 & \pi^8 \end{bmatrix} \right\}.$$

(a) Determine whether C is a linearly independent set in $\mathbb{R}^{3\times 3}$.

(b) Determine whether C is a spanning set of $\mathbb{R}^{3\times 3}$.

(c) Determine whether C is a basis of $\mathbb{R}^{3\times 3}$.

Remark/Hint: You shouldn't need to do any row reducing in this problem.

Problem 4 (30 points). Consider the following polynomials with coefficients in \mathbb{Z}_3 :

- $p_1(x) = x^2 + 2;$ • $p_3(x) = x^3 + x^2 + 1;$
- $p_2(x) = 2x^3 + 1;$ $p_4(x) = 2x^2.$

Find a basis \mathcal{B}_U of $U := Span(p_1(x), p_2(x), p_3(x), p_4(x))$, and find a basis \mathcal{B} of $\mathbb{P}^4_{\mathbb{Z}_3}$ that extends \mathcal{B}_U (i.e. that satisfies $\mathcal{B}_U \subseteq \mathcal{B}$). Moreover, for each $i \in \{1, 2, 3, 4\}$ such that $p_i(x) \notin \mathcal{B}$, express $p_i(x)$ as a linear combination of the vectors (polynomials) in \mathcal{B} .

Remark: Note that the $p_i(x)$'s are all of degree at most 3. However, \mathcal{B} should be a basis of $\mathbb{P}^4_{\mathbb{Z}_3}$. **Problem 5** (25 points). Consider the following matrix and vector, with entries understood to be in \mathbb{R} :

	1	-3	2	0 -		[-5	
A =	2	-6	4	1	,	b =	-8	.
	1	-3	2	1		$\mathbf{b} = $	-3	

Show that the matrix-vector equation $A\mathbf{x} = \mathbf{b}$ is consistent (and consequently, its solution set is an affine subset of \mathbb{R}^4). Find an affine frame and an affine basis of the solution set S of $A\mathbf{x} = \mathbf{b}$.