Linear Algebra 1: HW\#8

Denys Bulavka \& Irena Penev
Winter 2023/2024

due Friday, January 5, 2024, at noon (Prague time)

Submit your HW through the Postal Owl as a PDF attachment. Make sure your submission is printable: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. (Of course, you may also type, especially if you know how to use $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$.) Other formats will not be accepted. Please write your name on top of the first page of your HW.

Problem 1 (20 points). Give a detailed proof of Corollary 4.3.3 from the Lecture Notes (on page 299).

Remark: An outline of the proof is given in the Lecture Notes. You are supposed to give the full details.

Problem 2 (30 points).
(a) Either construct a matrix $A \in \mathbb{R}^{4 \times 7}$ such that $\operatorname{Col}(A) \cong \operatorname{Nul}(A)$ (and prove that your matrix A really does have this property), or prove that no such matrix A exists.
(b) Either construct a matrix $B \in \mathbb{R}^{3 \times 4}$ such that $\operatorname{Col}(B) \cong \operatorname{Nul}(B)$ (and prove that your matrix B really does have this property), or prove that no such matrix B exists.
(c) Either construct a matrix $C \in \mathbb{R}^{3 \times 8}$ such that $\operatorname{Col}(C) \cong \operatorname{Nul}(C)$ (and prove that your matrix C really does have this property), or prove that no such matrix C exists.

Problem 3 (50 points). Consider the linear function $f: \mathbb{Z}_{3}^{4} \rightarrow \mathbb{Z}_{3}^{6}$ whose standard matrix is

$$
A=\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
1 & 2 & 2 & 1 \\
2 & 1 & 2 & 1 \\
0 & 0 & 2 & 1 \\
2 & 2 & 2 & 1 \\
1 & 1 & 1 & 2
\end{array}\right]
$$

and consider the following vectors with entries in \mathbb{Z}_{3} :

$$
\begin{array}{lc}
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
2 \\
2
\end{array}\right], & \mathbf{u}_{2}=\left[\begin{array}{l}
2 \\
2 \\
1 \\
1
\end{array}\right], \quad \mathbf{u}_{3}=\left[\begin{array}{l}
2 \\
2 \\
2 \\
2
\end{array}\right], \\
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
2 \\
2 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
2 \\
2 \\
2
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{l}
1 \\
2 \\
1 \\
2 \\
1 \\
2
\end{array}\right] .
\end{array}
$$

$\operatorname{Set} U:=\operatorname{Span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right)$ and $V:=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right) .{ }^{1}$
(a) Compute a basis of $f[U]$.
(b) Compute a basis of $f^{-1}[V]$.

Remark: There are several examples of this type in subsection 4.2.4 of the Lecture Notes. Feel free to use a calculator for any row reduction that you perform, but do keep in mind that on the exam, you might be asked to do problems of this type without a calculator.

[^0]
[^0]: ${ }^{1}$ So, U is a subspace of \mathbb{Z}_{3}^{4}, and V is a subspace of \mathbb{Z}_{3}^{6}.

