Linear Algebra 1: HW\#7

Denys Bulavka \& Irena Penev
Winter 2023/2024

due Friday, December 22 December 29, 2023, at noon (Prague time)

Abstract

Submit your HW through the Postal Owl as a PDF attachment. Make sure your submission is printable: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. (Of course, you may also type, especially if you know how to use $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$.) Other formats will not be accepted. Please write your name on top of the first page of your HW.

Problem 1 (25 points). Prove Proposition 3.2.12 from the Lecture Notes (on page 227).

Problem 2 (50 points). Read subsection 3.2.6 (on pages 236-238), and then complete the proofs of Proposition 3.2.22 and Theorem 3.2.23, as follows.
(a) Complete the proof of Proposition 3.2.22 by showing that the set

$$
\left\{\left(\mathbf{u}_{1}, \mathbf{0}_{W}\right), \ldots,\left(\mathbf{u}_{m}, \mathbf{0}_{W}\right),\left(\mathbf{0}_{U}, \mathbf{w}_{1}\right), \ldots,\left(\mathbf{0}_{U}, \mathbf{w}_{n}\right)\right\}
$$

is indeed a basis of the vector space $U \times W$.
(b) Complete the proof of Theorem 3.2.23 by showing that the set

$$
\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m-p}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{n-p}\right\}
$$

is indeed a basis of $U+W$.

Problem 3 (25 points). Prove Theorem 3.2.24 from the Lecture Notes (on page 238).

