Linear Algebra 1: HW\#6

Denys Bulavka \& Irena Penev
Winter 2023/2024

due Friday, December 8, 2023, at noon (Prague time)

Submit your HW through the Postal Owl as a PDF attachment. Make sure your submission is printable: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. (Of course, you may also type, especially if you know how to use $\mathrm{AAT}_{\mathrm{E}} \mathrm{X}$.) Other formats will not be accepted. Please write your name on top of the first page of your HW.

Problem 1 (45 points). Prove parts (b), (c), and (d) of Proposition 3.1.3 from the Lecture Notes, stated below for convenience. ${ }^{1}$

Proposition 3.1.3 from the Lecture Notes. Let V be a vector space over a field \mathbb{F}. Then all the following hold:
(a) for all $\mathbf{v} \in V, 0 \mathbf{v}=\mathbf{0}$;
(b) for all $\alpha \in \mathbb{F}, \alpha \mathbf{0}=\mathbf{0}$;
(c) for all $\mathbf{v} \in V$ and $\alpha \in \mathbb{F}$, if $\alpha \mathbf{v}=\mathbf{0}$, then $\alpha=0$ or $\mathbf{v}=\mathbf{0}$;
(d) for all $\mathbf{v} \in V,(-1) \mathbf{v}=-\mathbf{v}$.

Problem 2 (30 points). Let V be a vector space over a field \mathbb{F}, and let U and W be subspaces of V. Using Theorem 3.1.7 from the Lecture Notes, prove that $U \cap W$ and $U+W$ are both subspaces of $V .{ }^{2}$

Problem 3 (25 points). Prove Proposition 3.2.2 from the Lecture Notes, stated below for convenience.

Proposition 3.2.2 from the Lecture Notes. Let V be a vector space over a field \mathbb{F}, let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$, and let $\alpha_{1}, \ldots, \alpha_{k} \in$ $\mathbb{F} \backslash\{0\}$. Then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent if and only if the set $\left\{\alpha_{1} \mathbf{v}_{1}, \ldots, \alpha_{k} \mathbf{v}_{k}\right\}$ is linearly independent.

[^0]
[^0]: ${ }^{1}$ Part (a) was proven in the Lecture Notes. You are asked to prove the three remaining parts.
 ${ }^{2}$ Reminder: $U+W:=\{\mathbf{u}+\mathbf{w} \mid \mathbf{u} \in U, \mathbf{w} \in W\}$.

