Linear Algebra 1: HW#6

Denys Bulavka & Irena Penev Winter 2023/2024

due Friday, December 8, 2023, at noon (Prague time)

Submit your HW through the **Postal Owl** as a **PDF attachment**. Make sure your submission is **printable**: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. (Of course, you may also type, especially if you know how to use LATEX.) Other formats will **not** be accepted. Please write your **name** on top of the first page of your HW.

Problem 1 (45 points). Prove parts (b), (c), and (d) of Proposition 3.1.3 from the Lecture Notes, stated below for convenience.¹

Proposition 3.1.3 from the Lecture Notes. Let V be a vector space over a field \mathbb{F} . Then all the following hold:

- (a) for all $\mathbf{v} \in V$, $0\mathbf{v} = \mathbf{0}$;
- (b) for all $\alpha \in \mathbb{F}$, $\alpha \mathbf{0} = \mathbf{0}$;
- (c) for all $\mathbf{v} \in V$ and $\alpha \in \mathbb{F}$, if $\alpha \mathbf{v} = \mathbf{0}$, then $\alpha = 0$ or $\mathbf{v} = \mathbf{0}$;
- (d) for all $\mathbf{v} \in V$, $(-1)\mathbf{v} = -\mathbf{v}$.

Problem 2 (30 points). Let V be a vector space over a field \mathbb{F} , and let U and W be subspaces of V. Using Theorem 3.1.7 from the Lecture Notes, prove that $U \cap W$ and U + W are both subspaces of V.²

Problem 3 (25 points). Prove Proposition 3.2.2 from the Lecture Notes, stated below for convenience.

Proposition 3.2.2 from the Lecture Notes. Let V be a vector space over a field \mathbb{F} , let $\mathbf{v}_1, \ldots, \mathbf{v}_k \in V$, and let $\alpha_1, \ldots, \alpha_k \in \mathbb{F} \setminus \{0\}$. Then the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is linearly independent if and only if the set $\{\alpha_1 \mathbf{v}_1, \ldots, \alpha_k \mathbf{v}_k\}$ is linearly independent.

 $^{^1\}mathrm{Part}$ (a) was proven in the Lecture Notes. You are asked to prove the three remaining parts.

²Reminder: $U + W := \{\mathbf{u} + \mathbf{w} \mid \mathbf{u} \in U, \mathbf{w} \in W\}.$